高一数学集合基础知识
- 格式:doc
- 大小:288.00 KB
- 文档页数:3
高一数学上集合知识点归纳在数学学科中,集合是一个重要的概念,涉及到众多的知识点。
本文将对高一数学上的集合知识点进行归纳,帮助同学们更好地理解和掌握这一部分内容。
一、集合的概念和表示法集合是指把具有共同特征的事物归到一起而成的整体。
可以通过列举法、描述法、符号法等方式来表示一个集合。
集合中的元素是指属于该集合的事物。
二、集合间的关系1.子集关系:若集合A的每一个元素都是集合B的元素,则称A是B的子集,记作A⊆B。
同时,根据子集关系,还可以定义真子集和空集。
2.相等关系:若集合A包含了与集合B相同的元素,且集合B也包含了与集合A相同的元素,则称A等于B,记作A=B。
3.交集和并集:交集是指两个集合共同包含的元素组成的集合,记作A∩B;并集是指两个集合中所有元素组成的集合,记作A∪B。
还可以定义空集和全集的交集和并集。
4.补集:对于给定的一个全集U,集合A在全集U中除去自己的元素组成的集合称为A的补集,记作A'。
三、集合的运算1.求并集:将两个集合中的元素全部加起来,重复的元素只计算一次。
2.求交集:取两个集合中相同的元素。
3.求差集:求一个集合中不属于另一个集合的元素组成的集合。
4.集合的运算律:并集和交集具有交换律、结合律和分配律。
四、集合的表示方式和常用符号1.集合的列举法:通过列出集合中的元素来表示集合。
2.集合的描述法:通过描述集合中元素的特征来表示集合。
3.集合的符号法:通过使用集合符号表示集合,例如用大写字母表示集合,用大括号表示元素。
五、集合的常用性质和定理1.空集的性质:空集是任何集合的子集,且空集是唯一的。
2.集合的幂集:对于一个集合A,由A的所有子集组成的集合称为A的幂集,记作P(A)。
3.集合的基本运算律:并集和交集运算满足交换律、结合律和分配律。
4.集合的排列组合:通过排列和组合的方式,可以求解集合中元素的排列和组合数量。
综上所述,高一数学上的集合知识点包括集合的概念和表示法、集合间的关系、集合的运算以及集合的常用性质和定理等内容。
高一数学集合知识点总结5篇第1篇示例:高一数学集合知识点总结数学中的集合理论是一门基础重要的数学分支,它在高中数学教学中占有重要位置。
在我们高一的数学学习中,集合知识点也是必须掌握的内容之一。
下面就让我们来总结一下高一数学中的集合知识点吧。
一、集合的概念集合是由若干个元素构成的整体。
一般用大写字母A、B、C等表示集合,用小写字母a、b、c等表示元素。
集合中的元素是无序排列的,并且一个集合中的元素都是不同的。
二、集合的表示方法1. 列举法:直接将集合中的所有元素列出来,用大括号{}括起来。
例如:A={1,2,3,4,5}2. 描述法:通过一个条件来描述集合中的元素的特点。
例如:B={x|x是正整数,且x<6}三、集合之间的关系1. 交集:集合A和集合B的交集,记作A∩B,表示A和B共同拥有的元素组成的集合。
2. 并集:集合A和集合B的并集,记作A∪B,表示A和B所有的元素组成的集合。
3. 差集:集合A减去集合B,记作A-B,表示只属于A而不属于B的元素组成的集合。
4. 补集:集合A对于全集U的补集,记作A’或者A^c,表示不属于A的元素组成的集合。
四、集合运算规律1. 交换律:A∩B=B∩A,A∪B=B∪A2. 结合律:(A∩B)∩C=A∩(B∩C),(A∪B)∪C=A∪(B∪C)3. 分配律:A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A∪C)4. 吸收律:A∩(A∪B)=A,A∪(A∩B)=A5. 其他运算规律:A∪(A’∩B)=A∪B,A∩(A’∪B)=A∩B五、集合的应用1. 数学中的集合是研究对象的统一表达形式,常用于描述集合之间的关系。
2. 集合论在概率论、代数学、数论等多个数学分支中都有广泛的应用。
3. 集合的知识也经常会在真实生活中的问题中得到应用,比如排列组合问题、概率统计问题等。
通过对高一数学集合知识点的总结,我们对集合的概念、表示方法、集合之间的关系、集合运算规律以及集合的应用有了更清晰的认识。
高一数学集合知识点总结_高三数学知识点总结一、集合的概念集合是指具有某种特定性质的对象的总体。
一般记为大写英文字母A,B,C…集合中的对象称为元素,记作小写字母a,b,c…。
二、集合的表示方法1. 列举法:将集合中的元素按一定次序一一列举出来。
例如:A={1,2,3,4,5}2. 描述法:给出集合中元素的某种性质的数学表达式。
例如:B={x|x为自然数,且0<x<6}三、集合的基本运算1. 并集定义:设A和B是两个集合,由所有属于集合A或者属于集合B的元素所构成的集合,称为A和B的并集,记作A∪B。
例如:若A={1,2,3},B={3,4,5},则A∪B={1,2,3,4,5}五、集合的基本定理1. 有限集的基本定理对于有限集A,|A∪B|=|A|+|B|-|A∩B||A|表示集合A的元素个数。
2. 集合的基本性质(1)空集的性质空集是任意集合的子集。
(2)全集的性质全集是任意集合的父集。
六、集合的应用集合的相关知识在数学中有着广泛的应用,例如在概率统计中,集合的运算可以很好地描述事件、样本空间等概念;在数学分析中,集合可以用来表示数轴上的区间、开闭集等概念;在数理逻辑中,集合运算可以用来表示充分条件、必要条件等概念。
在高一数学中,集合的知识虽然只是数学的基础知识之一,但是却是十分重要的内容,能够帮助学生建立起数学基本思维,培养学生的逻辑思维能力,为将来数学的学习打下基础。
高三数学作为学生们数学学习的最后阶段,涉及到的知识点繁多,其中包括了微积分、立体几何、概率统计等内容。
下面就对高三数学的一些重要知识点进行总结。
一、微积分微积分是高三数学中一个重要的知识点,主要包括了导数、微分、积分等内容。
1. 导数导数是函数在某一点处的变化率,通常用函数f(x)关于自变量x的一阶微分dx的商来表示。
例如:若y=f(x),则y’=f’(x)=lim(Δx→0)(f(x+Δx)-f(x))/Δx2. 微分微分是导数的一种形式,通常用于刻画变化量小的两点之间的差别。
高一数学“集合”知识点总结一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性如:世界上最高的山(2) 元素的互异性如:集合中的任意两个元素差不多上不同的(3) 元素的无序性: 集合中的元素之间是没有顺序的。
如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R1) 列举法:将集合中的元素一一列举出来{a,b,c……}2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{xÎR| x-3>2} ,{x| x-3>2}3) 语言描述法:例:{不是直角三角形的三角形}4) Venn图:4、集合的分类:(1) 有限集含有有限个元素的集合(2) 无限集含有无限个元素的集合(3) 空集不含任何元素的集合例:{x|x2=-5}二、集合间的差不多关系属于:Î;包含于:Í;属于与包含于的区别:属因此元素与集合之间的关系,例如:元素a属于集合A{a,b}包含因此集合与集合之间的关系。
例如:集合A{a}包含于集合B {a,c}1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
AÍA②真子集:假如AÍB,且A¹ B那就说集合A是集合B的真子集,记作A B(或B A)③假如AÍB, BÍC ,那么AÍC④假如AÍB 同时BÍA 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
高一数学集合知识点归纳总结大全集合是数学中的一个基本概念,也是高中数学中的一门重要内容。
在高一数学学习中,集合知识点的理解和掌握对于后续数学学习的成功至关重要。
本文将从集合的基本概念、常用运算、集合间的关系以及应用领域等方面,对高一数学集合知识点进行归纳总结。
一、集合的基本概念集合是由一些确定的、互不相同的对象所组成的整体。
常用大写字母A、B、C等表示集合,小写字母a、b、c等表示集合中的元素。
集合的元素可以是数字、字母、符号等。
集合中的元素用花括号{}括起来,用逗号分隔。
例子1:集合A={1, 2, 3, 4}例子2:集合B={a, b, c, d}二、集合的表示方法1. 列举法:直接将集合中的元素列出来并用花括号{}括起来。
例如:A={1, 2, 3, 4},B={a, b, c, d}2. 描述法:根据给定条件描述集合中的元素。
例如:A={x | x是整数,1≤x≤4},B={y | y是英文字母,a≤y≤d}三、集合的分类1. 空集:不包含任何元素的集合,用符号∅表示。
2. 单元素集合:只包含一个元素的集合。
3. 有限集:元素个数有限的集合。
4. 无限集:元素个数无限的集合。
5. 并集:将两个集合的所有元素合并在一起形成的集合,用符号∪表示。
6. 交集:两个集合中共同具有的元素形成的集合,用符号∩表示。
7. 子集:如果一个集合的所有元素都属于另一个集合,那么称前一个集合是后一个集合的子集,用符号⊆表示。
四、集合的运算1. 并集运算:将两个集合的所有元素合并在一起形成的集合。
例如:A={1, 2, 3, 4},B={3, 4, 5, 6},则A∪B={1, 2, 3, 4, 5, 6}2. 交集运算:两个集合中共同具有的元素形成的集合。
例如:A={1, 2, 3, 4},B={3, 4, 5, 6},则A∩B={3, 4}3. 差集运算:从一个集合中去掉与另一个集合相同的元素,所得到的元素组成的集合。
高一数学集合知识点总结# 高一数学集合知识点总结集合是数学中最基本的概念之一,它描述了一组具有某种特定性质的元素的全体。
在高中数学中,集合的概念和运算是学习其他数学知识的基础。
以下是高一数学中关于集合的一些重要知识点。
## 1. 集合的定义集合是由一些确定的、互不相同的元素所组成的整体。
用大写字母表示集合,元素用小写字母表示,属于关系用符号∈ 表示。
## 2. 集合的表示方法- 列举法:直接列举出集合中的所有元素,如集合A={1, 2, 3}。
- 描述法:用文字描述集合中的元素,如集合B={x | x是小于10的正整数}。
## 3. 集合的分类- 有限集:元素数量有限的集合。
- 无限集:元素数量无限的集合。
- 空集:不含任何元素的集合,记作∅。
## 4. 子集与真子集- 子集:如果集合A的所有元素都属于集合B,则称A是B的子集,记作A ⊆ B。
- 真子集:如果A是B的子集,且A不等于B,则称A是B的真子集,记作A ⊂ B。
## 5. 集合的运算- 并集:两个集合所有元素的集合,记作A ∪ B。
- 交集:两个集合共有的元素的集合,记作A ∩ B。
- 差集:属于集合A但不属于集合B的元素的集合,记作A - B。
- 补集:属于全集U但不属于集合A的元素的集合,记作∁_U A。
## 6. 集合的包含关系- 相等:如果A的每个元素都属于B,且B的每个元素都属于A,则称A等于B,记作A = B。
- 子集关系:如果A的所有元素都属于B,则A是B的子集。
## 7. 集合的幂集幂集是指一个集合的所有子集的集合,包括空集和该集合本身。
## 8. 集合的笛卡尔积两个集合A和B的笛卡尔积是所有可能的有序对(a, b)的集合,其中a 属于A,b属于B,记作A × B。
## 9. 特殊集合- 自然数集:表示为N。
- 整数集:表示为Z。
- 有理数集:表示为Q。
- 实数集:表示为R。
## 10. 集合的运算律集合运算满足交换律、结合律和分配律。
高一年级数学《集合》知识点总结【一】一.知识归纳:1.集合的相关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N*2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,则AB(或AB);2)真子集:AB且存有x0∈B但x0A;记为AB(或,且)3)交集:A∩B={xx∈A且x∈B}4)并集:A∪B={xx∈A或x∈B}5)补集:CUA={xxA但x∈U}注意:①?A,若A≠?,则?A;②若,,则;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,掌握相关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。
4.相关子集的几个等价关系①A∩B=AAB;②A∪B=BAB;③ABCuACuB;④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
5.交、并集运算的性质①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
二.例题讲解:【例1】已知集合M={xx=m+,m∈Z},N={xx=,n∈Z},P={xx=,p∈Z},则M,N,P满足关系A)M=NPB)MN=PC)MNPD)NPM分析一:从判断元素的共性与区别入手。
高一集合知识点总结集合是数学中非常基础且重要的概念,它有着广泛的应用。
本文将围绕高一阶段学习的集合知识点进行总结。
一、集合的基本概念1. 集合的定义:集合是由一些具有相同特性的对象组成的整体。
2. 集合的表示方法:常用的表示方法有列举法、描述法和级数法。
3. 元素与集合的关系:一个元素可以属于一个集合,也可以不属于一个集合。
4. 空集:不含任何元素的集合称为空集。
二、集合的运算1. 并集:包含两个或多个集合中的所有元素的集合。
2. 交集:包含几个集合中共同元素的集合。
3. 差集:包含一个集合中所有不属于另一个集合的元素的集合。
4. 补集:在一个全集中,除去一个集合中的元素后,剩下的元素构成的集合。
5. 集合的运算法则:包括交换律、结合律、分配律等。
三、集合的性质1. 子集:如果一个集合的所有元素都属于另一个集合,则前者称为后者的子集。
2. 真子集:如果一个集合是另一个集合的子集,且两个集合不相等,则前者称为后者的真子集。
3. 幂集:一个集合所有子集的集合。
4. 两个集合相等的充要条件:就是它们互为子集。
5. 全集:包含研究对象的一切元素的集合。
6. 互不相交:两个集合没有共同的元素。
7. 集合的基数:一个集合所含元素的个数。
四、集合的应用1. 应用于数学证明:集合论是数学的基础理论之一,许多数学证明都涉及到集合的概念和运算。
2. 应用于概率统计:集合可以用于描述样本空间、事件和概率等概念。
3. 应用于函数关系:集合可以用于描述函数的定义域、值域和图像等概念。
4. 应用于逻辑推理:集合可以用于描述命题、逻辑关系和推理过程等。
五、常见问题与解析1. 集合的相等与包含关系:很多问题需要判断两个集合是否相等或一个集合是否包含另一个集合。
2. 集合的运算性质:有时需要利用集合的运算性质简化问题或变换表达式。
3. 幂集的计算:计算幂集需要将一个集合的所有子集列举出来。
4. 集合的守恒问题:在进行集合运算时,需要注意集合的守恒问题,即集合运算前后集合元素的变化情况。
高一集合全部知识点高中数学之集合论基础集合是数学中一个非常重要且基础的概念,它是数学思维和逻辑推理的基石。
在高中数学的学习中,集合论的知识贯穿始终,为理解和掌握更高级的数学概念打下坚实的基础。
本文将对高一数学中的集合知识点进行梳理和讲解。
一、集合的概念集合是由一些明确定义的元素所构成的整体,这些元素可以是数字、字母、图形或任何其他数学对象。
我们用大写字母如A、B、C等来表示集合,而集合中的元素则用小写字母如a、b、c等表示。
例如,我们可以定义一个集合A,它包含了所有的正整数,那么A={1, 2,3, ...}。
二、集合的表示方法集合的表示主要有两种方法:列举法和描述法。
1. 列举法:直接列出集合中的所有元素,如集合A={1, 2, 3}。
2. 描述法:用数学符号和语言描述出集合中元素的性质,如集合B={x | x是小于5的正整数},表示B包含了1、2、3、4这四个元素。
三、集合间的关系集合间的关系主要包括子集、真子集、并集、交集和补集。
1. 子集:如果集合A的所有元素都是集合B的元素,那么我们说A是B的子集,记作A⊆B。
2. 真子集:集合A是B的子集,并且A和B不相等,即A⊊B。
3. 并集:集合A和集合B的并集是包含A和B所有元素的集合,记作A∪B。
4. 交集:集合A和集合B的交集是同时属于A和B的所有元素组成的集合,记作A∩B。
5. 补集:在某个全集U中,集合A的补集是全集U中不属于A的元素组成的集合,记作A'或C_U(A)。
四、集合的运算集合的运算主要包括并集、交集和差集。
1. 并集运算:A∪B = {x | x∈A 或x∈B}。
2. 交集运算:A∩B = {x | x∈A 且x∈B}。
3. 差集运算:A-B = {x | x∈A 且 x∉B},表示从集合A中去除那些也属于集合B的元素。
五、特殊集合在集合论中,还有一些特殊的集合,如空集、全集和单元素集合。
1. 空集:不包含任何元素的集合,记作∅。
数学高一的集合知识点在高一数学课程中,集合是一个非常重要的数学概念。
它是数学中研究对象的分类和组织方式,具有广泛的应用。
本文将介绍高一学生需要了解和掌握的集合知识点。
一、集合的基本概念1. 集合的定义:集合是由一定规则确定的,具有确定性和互异性的事物的总称。
2. 元素:集合中的个体称为元素,用小写字母表示。
如果a是集合A的元素,记作a∈A;如果a不是集合A的元素,记作a∉A。
3. 集合的表示方法:列举法和描述法。
列举法是将集合的所有元素一个个列举出来;描述法是使用描述集合元素的特征或性质来表示集合。
4. 空集:不包含任何元素的集合称为空集,用符号∅表示。
二、集合的运算1. 交集:对于给定的两个集合A和B,它们的交集是同时属于A和B的元素组成的集合,记作A∩B。
2. 并集:对于给定的两个集合A和B,它们的并集是包含A和B中所有元素的集合,记作A∪B。
3. 差集:对于给定的两个集合A和B,A与B的差集是属于A但不属于B的元素组成的集合,记作A-B。
4. 互斥事件:如果两个事件A和B的交集为空集,即A∩B=∅,则称事件A和事件B是互斥事件。
5. 包含关系:若集合A中的任意一个元素同样也属于集合B,则称集合A是集合B的子集,记作A⊆B。
若存在元素属于A而不属于B,则称集合A是集合B的真子集,记作A⊂B。
三、集合的关系与运算性质1. 相等关系:若集合A包含的元素与集合B完全相同,则称集合A与集合B相等,记作A=B。
2. 空集关系:对于任意集合A,有A∪∅=A,A∩∅=∅。
3. 并集交换律:对于任意集合A和B,有A∪B=B∪A。
4. 交集交换律:对于任意集合A和B,有A∩B=B∩A。
5. 结合律:对于任意集合A、B和C,有(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C)。
四、集合的应用1. 集合的运用:集合在数学中被广泛应用于各个领域,如概率论、数理逻辑、离散数学等。
2. Venn图:Venn图是用来表示集合间包含关系和交集、并集、差集等运算的图形工具。
集合与简易逻辑练习题
1.设集合{}21<≤-=x x M ,{}0≤-=k x x N ,若M N M =,则k 的取值范围( )
(A )(1,2)- (B )[2,)+∞ (C )(2,)+∞ (D)]2,1[-
2.如图,U 是全集,M 、P 、S 是U 的3个子集,则阴影部分所表示的集合是 ( )
A 、 ()M
P S B 、 ()M P S C 、 ()u M
P C S D 、 ()u M P C S
3.设{}022=+-=q px x x A ,{}05)2(62=++++=q x p x x B ,若⎭
⎬⎫
⎩⎨⎧=21B A ,则=B A ( ) (A )⎭⎬⎫⎩⎨⎧-4,31
,21 (B )⎭⎬⎫⎩⎨⎧-4,21 (C )⎭⎬⎫⎩⎨⎧31,21 (D)⎭
⎬⎫⎩⎨⎧21
4.函数2232
y x x =--的定义域为( ) A 、(],2-∞ B 、(],1-∞ C 、11,,222⎛⎫⎛⎤-∞ ⎪ ⎥⎝⎭⎝⎦ D 、11,,222⎛⎫⎛⎫-∞ ⎪ ⎪⎝
⎭⎝⎭ 5.已知命题[]2:"1,2,0"p x x a ∀∈-≥,命题2:",220"q x R x ax a ∃∈++-=,若命题“p q ∧” 是真命题,
则实数a 的取值范围是 ( )
A.(,2]{1}-∞-
B.(,2]
[1,2]-∞- C.[1,)+∞ D.[2,1]-
6.已知命题:p R x ∈∃,022≤++a ax x .若命题p 是假命题,则实数a 的取值范围是
(A)(,0][1,)-∞+∞ (B)[0,1] (C)(,0)(1,)-∞+∞ (D)(0,1)
7.命题“a b >”是命题“22ac bc >”的 条件.
8.设{}{}
I a A a a =-=-+241222,,,,,若{}1I C A =-,则a=__________。
9.已知集合A ={1,2},B ={x x A ⊆},则集合B= .
10.已知集合{}{}A x y y x B x y y x ==-==()|()|,,,322那么集合A B =
11.50名学生做的物理、化学两种实验,已知物理实验做的正确得有40人,化学实验做的正确的有31人,两种实验都做错的有4人,则这两种实验都做对的有 人.
12.已知集合{}{}A a a d a d B a aq aq =++=,,,,,22,其中a ,d ,q R ∈,若A=B ,求q 的值。
13.已知全集U={}22,3,23a a +-,若A={},2b ,{}5U C A =,求实数的a ,b 值
14.若集合S={}23,a ,{}|03,T x x a x Z =<+<∈且S ∩T={}1,P=S ∪T,求集合P 的所有子集
15.已知集合A={}
37x x ≤≤,B={x|2<x<10},C={x | x<a },全集为实数集R.
(1) 求A ∪B ,(C R A)∩B ;(2) 如果A ∩C ≠φ,求a 的取值范围。
16.已知方程02
=++q px x 的两个不相等实根为βα,。
集合},{βα=A , =B {2,4,5,6},=C {1,2,3,4},A ∩C =A ,A ∩B =φ,求q p ,的值?
17.已知集合A 的元素全为实数,且满足:若a A ∈,则
11a A a +∈-。
(1)若3a =-,求出A 中其它所有元素;
(2)0是不是集合A 中的元素?请你设计一个实数a A ∈,再求出A 中的所有元素?
(3)根据(1)(2),你能得出什么结论。
18.设命题p:不等式21x x a -<+的解集是1{3}3x x -
<<;命题q:不等式2441x ax ≥+的解集是∅,若“p 或q”为真命题,试求实数a 的值取值范围.
19.若40x p +<是022>--x x 的充分条件,求实数p 的取值范围.。