差热和热重分析
- 格式:ppt
- 大小:5.78 MB
- 文档页数:78
实验二热重-差热分析法一、实验目的1.掌握热重和差热分析的基本原理。
2.学习热重和差热分析仪的操作。
3.学会定性解释差热谱图。
4.用差热仪测定绘制CuSO4·5H2O的DTA曲线,分析其水分子的脱去顺序。
二、实验原理差热分析(DTA)是在程序控制温度下,建立被测量物质和参比物的温度差与温度关系的一种技术。
数学表达式为△T=Ts-Tr=f(T或t)其中:Ts ,Tr分别代表试样及参比物温度;T是程序温度;t是时间。
记录的曲线叫差热曲线或DTA曲线。
本实验以α – Al2O3作为参比物质,记录CuSO4·5H2O的DTA曲线,从而考察其失去五分子结晶水的情况。
物质受热时,发生化学变化,质量也就随之改变,测定物质质量的变化也就随之改变,测定物质质量的变化就可研究其变化过程,热重法(TG)是在程序控制温度下,测量物质质量与温度关系的一种技术,热重法实验得到的曲线称为热重曲线(TG曲线)。
三、实验仪器:差热分析仪由加热炉、试样容器、热电偶、温度控制系统及放大、记录系统等部分组成。
四、实验步骤:1.依次开启稳压电源、工作站、气体流量计、主机(开关均在后面)、电脑,打开氮气瓶,使之压力为0.5MP。
2.打开炉子,手动在左右两个陶瓷杆放入铝坩埚容器,关好炉子,在操作界面上调零,仪器自动扣除了空坩埚的重量。
3.打开炉子取出样品坩埚容器将约5-10mg的样品研成粉末放入铝坩埚容器。
4.打开软件TA-60WS Collection Monitor 点击measure,出现measure parameter,在这里我们可以设置所需要的程序温度,然后点击Start,要我们文件保存在哪里。
5.单击Start。
6.仪器测定结束。
四、结果处理1.仪器结束后,打开软件TA60,找到要保存的结果文件。
2.依次找到重量线,热线,程序升温线。
3.首先从热线中分析出样品的吸热峰和放热峰。
从重量线上分析出样品重量的损失(单击重量线,点击Analysis,出现Weigh loss,然后分析)。
实验八差热、热重分析一、目的要求1. 了解差热分析法的一般原理和差热分析仪的基本构造;2. 掌握差热仪的使用方法;3.测定草酸钙的差热谱图,并根据所得到的差热谱图分析样品在加热过程中所发生的化学变化。
二、实验原理许多物质在被加热或冷却的过程中,会发生物理或化学等的变化,如相变、脱水、分解或化合等过程。
与此同时,必然伴随有吸热或放热现象。
当我们把这种能够发生物理或化学变化并伴随有热效应的物质,与一个对热稳定的、在整个变温过程中无热效应产生的基准物(或叫参比物)在相同的条件下加热(或冷却)时,在样品和基准物之间就会产生温度差,通过测定这种温度差可了解物质变化规律,从而确定物质的一些重要物理化学性质,称为差热分析(Differential Thermal Analysis,DTA)。
差热分析是在程序控制温度下,试样物质S和参比物R的温度差与温度关系的一种技术。
差热分析原理如图8-1所示。
图8-1 差热分析原理示意图试样S与参比物R分别装在分别装在两个坩埚内。
在坩埚下面各有一个片状热电偶,这两个热电偶相互反接。
对S和R同时进行程序升温,当加热到某一温度试样发生放热或吸热时,试样的温度TS会高于或低于参比物温度TR产生温度差ΔT,该温度差就由上述两个反接的热电偶以差热电势形式输给差热放大器,经放大后输入记录仪,得到差热曲线,即DTA曲线。
另外,从差热电偶参比物一侧取出与参比物温度TR对应的信号,经热电偶冷端补偿后送记录仪,得到温度曲线,即T曲线。
图8-2为完整的差热分析曲线,即DTA曲线及T曲线。
纵坐标为ΔT,吸热向下(右峰),放热向上(左峰),横坐标为温度T(或时间)。
图8-2 差热分析曲线现代差热分析仪器的检测灵敏度很高,可检测到极少量试样所发生各种物理、化学变化,如晶形转变、相变、分解反应、交联反应等。
图8-3是一种高聚合物典型的差热分析曲线,即ΔT- t曲线。
图上反应了该高聚合物玻璃化温度转变、结晶放热峰、熔融吸热峰、氧化放热峰、若分解吸热峰。
差热热重分析实验报告一、实验目的差热热重分析(Differential Thermal Analysis Thermogravimetric Analysis,简称 DTATGA)是一种常用的热分析技术,通过同时测量样品在加热或冷却过程中的质量变化(热重分析,TGA)和热效应(差热分析,DTA),可以获取有关样品的热稳定性、组成、相变等重要信息。
本次实验的目的是利用差热热重分析仪对给定的样品进行测试,深入了解其热性能,并对实验结果进行分析和讨论。
二、实验原理(一)热重分析(TGA)热重分析是在程序控制温度下,测量物质质量与温度关系的一种技术。
当样品在加热过程中发生物理或化学变化(如挥发、分解、氧化等)导致质量减少时,通过记录质量随温度的变化曲线(TGA 曲线),可以确定样品的质量损失情况,并计算出相应的质量损失率。
(二)差热分析(DTA)差热分析是在程序控制温度下,测量样品与参比物之间的温度差随温度或时间变化的一种技术。
当样品发生物理或化学变化时,会吸收或放出热量,导致样品与参比物之间产生温度差。
通过记录温度差随温度的变化曲线(DTA 曲线),可以确定样品的相变温度、反应起始和终止温度等热效应信息。
三、实验仪器与材料(一)实验仪器本次实验使用的是_____型差热热重分析仪,仪器主要由加热炉、温度控制系统、质量测量系统、差热测量系统和数据采集与处理系统组成。
(二)实验材料实验所用样品为_____,其纯度为_____。
四、实验步骤(一)样品制备将待测试的样品研磨成粉末状,以确保样品受热均匀。
称取适量的样品(一般为 5 10 mg),放入氧化铝坩埚中。
(二)仪器准备打开差热热重分析仪,设置实验参数,包括升温速率(_____℃/min)、终止温度(_____℃)、气氛(如氮气、空气等)及其流速等。
(三)实验操作将装有样品的坩埚放入加热炉中,启动实验程序。
仪器会按照设定的参数自动进行加热,并实时记录样品的质量变化和温度差。
热分析技术中的热重分析与差热分析研究第一章热分析技术介绍热分析技术是一种通过对物质进行升温或降温,进而测试其物理学性质和化学反应行为的方法。
热分析技术主要分为热重分析和差热分析两种。
热重分析主要通过检测物质质量的变化来研究物质的热稳定性、热分解和吸湿性等特性。
差热分析则是通过对样品和参比物的热能变化进行比较,来研究物质的热力学性能和热反应行为。
热分析技术在化学、材料、药学等领域都有着广泛的应用。
例如,在药学领域中,通过热分析技术可以研究药物的热稳定性和热分解行为,从而验证药物的质量和稳定性。
在材料领域中,通过热分析技术可以研究材料的热膨胀性、燃烧特性和晶体相变等特性。
因此,热分析技术得到了广泛的应用和发展。
第二章热重分析2.1 原理及方法热重分析是一种通过连续称量样品的质量变化来研究物质热稳定性、热分解和吸附性等特性的方法。
一般情况下,将样品放置在热重天平中,通过加热来提高样品的温度,一边称量样品的质量变化,一边记录样品温度的变化,进而得到样品的热分析曲线。
通过这个曲线,可以确定样品的热分解温度、分解产物以及分解反应的特性等。
2.2 应用领域热重分析在材料和化学领域中有着广泛的应用。
例如,在材料领域中,热重分析可以用来测试聚合物和可燃材料的热分解行为,评估材料的质量和稳定性。
在化学领域中,热重分析可以用来研究化学反应的温度和热效应等特性。
此外,热重分析也被应用于生物学领域中,可用于研究生物分子的热稳定性和分解反应等。
第三章差热分析3.1 原理及方法差热分析是一种通过对比样品和参比物在升温过程中的热能输出来研究物质的热化学行为的方法。
一般情况下,将样品和参比物分别装入热量计中,通过不同的升温速率加热,测量样品和参比物的热耗散或吸收,从而得到样品的热分析曲线。
通过曲线的比较,可以确定样品的热力学性质、热反应的热效应等信息。
3.2 应用领域差热分析在化学、材料和药学等领域中得到了广泛应用。
例如,在化学领域中,差热分析可以用来研究化学反应的热效应和反应焓等信息,在材料领域中,差热分析可以用来研究材料的热性能和热分解行为等。
差热-热重分析法测定硫酸铜的热分析图谱一、实验目的1.了解差热分析法、热重分析法的基本原理。
2.了解差热热重同步热分析仪的基本构造并掌握使用方法。
3.正确控制实验条件,并学会对热分析谱图进行定性分析和定量处理。
二、实验原理1.差热分析法(Differential Thermal Analysis,DTA)差热分析是在程序控制温度下,测量试样与参比物(一种在测量温度范围内不发生任何热效应的物质)之间的温度差与温度关系的一种技术。
许多物质在加热或冷却过程中会发生熔化、凝固、晶型转变、吸附、脱附等物理转变及分解、化合、氧化还原等化学反应。
这些变化在微观上必将伴随体系焓的改变,从而产生热效应,在宏观上表现为该物质与外界环境之间有温度差。
选择一种对热稳定的物质作为参比物,将其与试样一起置于可按设定速率升温的热分析仪中,分别记录参比物的温度以及试样与参比物间的温度差。
以温差对温度作图就可以得到差热分析曲线,简称DTA曲线。
2. 热重法(Thermogravimetry,TG)热重法是在程序控制温度下,测量物质的质量变化与温度关系的一种技术,其基本原理是热天平。
热天平分为零位法和变位法两种。
变位法,就是根据天平梁的倾斜度与质量变化呈比例的关系,用差动变压器等检知倾斜度,并自动记录。
零位法,是采用差动变压器法、光学法或电触点法测定天平梁的倾斜度,并用螺线管线圈对安装在天平系统中的永久磁铁施加力,使天平梁的倾斜复原。
由于对永久磁铁所施加的力与质量变化呈比例,这个力又与流过螺线管的电流呈比例,因此只要测量并记录电流,便可得到质量变化的曲线,以质量对温度作图就可以得到热重曲线,简称TG曲线。
三、实验用品1.仪器日本SHIMADZU DTG-60差热-热重同步热分析仪(TA-60工作站),镊子,坩埚,研钵。
2.药品参比物:α-AL2O3(A.R,原装进口)试样:CuSO4·5H2O(A.R)四、操作步骤1、熟悉差热-热重同步热分析仪的组成及相应旋钮的作用。
热分析法一、实验目的1. 理解热分析方法的基本原理;2. 了解热分析仪的构造和基本操作。
二、基本原理热分析可以分为热机械、差热和热重三大类。
(1)热机械法包括热机械分析(TMA)与动态热机械分析(DMA),测量材料的膨胀、刚性、阻尼等机械特性与温度、负载和时间的函数关系。
德国耐驰仪器公司另提供专用的热膨胀仪,测量材料在热处理过程中的膨胀或收缩情况,研究软化温度、烧结过程等。
热分析法是在程序控制温度下,精确记录待测物质理化性质与温度的关系,研究其受热过程所发生的晶型转变、熔融、升发、吸附等物理变化和脱水、热分解、氧化、还原等化学变化,用以对该物质进行物理常数、熔点和沸点的确定以及作为鉴别和纯度检查的方法。
(2)差热分析(DSC、DTA)测量材料在线性升降温或恒温条件下由于物理变化(相变、熔融、结晶等)或化学反应(氧化、分解、脱水等)而导致的热焓变化(吸热过程、放热过程)或比热变化。
(3)热重分析(TGA)则是测量上述过程中材料发生的重量变化。
若与差热分析联用则称为同步热分析。
热重法是在程序控制温度下,测量物质重量与温度关系的一种技术。
记录的重量变化对温度的关系曲线即热重曲线。
热重曲线的纵坐标为重量(m),横坐标为温度(T)或时间(t)。
重量基本不变的区段称为平台。
由测量曲线上平台之间的重量差值,可计算出待测物在相应温度范围内所失重量的比例(%)。
本法适用于药物结晶水的测定和贵重药物或在空气中极易氧化药物的干燥失重分析。
三、系统构成1. 主机:珀金埃尔默Diamond TG/DTA热重差热同步分析仪2. 操作控制系统:DELL电脑和Muse软件3. 打印机:HP打印机四、实验步骤1. 系统开机准备(1)接通电源,启动电脑(2)打开氮气钢瓶的阀门(3)打开热重差热同步分析仪主机电源2. 操作步骤(1)运行Muse软件(2)输入样品名称、注释及操作者姓名(3)将装有参比物的坩埚及空坩埚放到热天平上,待稳定后,清零。
差热与热重分析作为常见的物料分析技术,对于物料的热稳定性、热分解过程等方面提供了重要的信息。
本文将从差热与热重分析技术的基本原理、实验流程与数据分析、应用前景等方面进行详细讲解。
一、差热与热重分析的原理差热与热重分析是通过对物料样品升温过程中在不同温度下的热变化进行量化分析,来研究物料稳定性、热分解特性等方面的技术。
其中,差热分析技术主要是通过测量样品与对比样品在同一温度程序下的热力学参数差异来推断样品的热性质;而热重分析则是通过测量样品在升温过程中的质量变化来分析其热分解过程。
两者均能通过对样品在升温过程中的热变化进行量化来获取物料特性信息。
差热与热重分析的实验步骤主要包括样品制备、实验设计、实验操作、数据处理等环节。
其中,样品制备是最重要的一步,样品的性质与制备方式对于实验结果具有重要影响。
实验设计中,需要确定所要研究的参数,包括升温速率、升温程序、取样方式等;实验操作中,需要关注实验过程中的环境条件(如气氛氧化还原程度)以及实验装置的准备与检测。
在数据处理方面,需要根据实验所得数据进行曲线拟合、峰面积积分、峰温浓度计算等操作,以获取样品的热稳定性、热分解过程等信息。
二、差热与热重分析实验流程与数据处理2.1 差热分析流程差热分析技术所用仪器为热差示仪,其基本原理为:将样品和对比样品同时加热,测量两者热力学参数(如焓值、热流量)的差异,通过计算或绘图等方式展现出来,从而推断样品的热性质。
差热分析的操作流程如下:(1)样品制备样品应选取足量、均匀的样品颗粒,并将其粉碎至样品颗粒粒径<200目的要求,并保证样品在升温过程中的稳定性、均匀性。
(2)实验装置准备差热分析中常用的热差示仪一般包括热源、样品、对比样品、检测系统、温度控制系统等组件。
其中热源为差热分析的核心部件,样品、对比样品应储存在专用样品舱内以保证实验精度。
检测系统可选用红外线探测器等手段,温度控制系统则可用PID或脉冲宽度调制等方式进行温度控制。
常用热分析技术:差示扫描量热法(DSC)、差热分析(DTA)、热重分析(TAG)物质的物理状态和化学状态发生变化(如升华、氧化、聚合、固化、硫化、脱水、结晶、熔融、晶格改变或发生化学反应)时,往往伴随着热力学性质(如热焓、比热、导热系数等)的变化,故可通过测定其热力学性能的变化,来了解物质物理或化学变化的过程。
主要方法有:▪差热分析-DTA;▪差示扫描量热法-DSC;▪热重分析-TGA。
▪1. TG的基本原理TG:可调速的加热或冷却环境中,以被测物重量作为时间或温度的函数进行记录的方法。
DTG:微商热重曲线,热重曲线对时间或温度的一阶微商的方法获得的曲线。
2. 分析方法:升温法和恒温法升温法:样品在真空或其他任何气体中进行等速加温,样品将温度的升高发生物理变化和化学变化使原样品失重—动态法。
原理:在某特定的温度下,会发生重量的突变,以确定样品的特性。
恒温法:在恒温下,记录样品的重量变化作为时间的函数的方法。
3. 影响TGA数据的因素(1)气体的浮力和对流浮力的影响:样品周围的气体因温度的升高而膨胀,比重减小,则样品的TGA值增加。
对流的影响:对流的产生使得测量出现起伏。
(2)挥发物的再凝聚凝聚物的影响:物质分解产生的挥发物质可能凝聚在与称重皿相连而又较冷的部位上,影响失重的测定结果。
(3)样品与称量皿的反应反应的影响:某些物质在高温下会与称量皿发生化学反应而影响测定结果。
(4)升温速率的影响升温速率的影响:升温速率太快,TGA曲线会向高温移动;速度太慢,实验效率降低。
(5)样品用量和粒度用量和粒度影响:样品用量大,挥发物不易逸出,影响曲线比那话的清晰度;样品细,反应会提前影响曲线低温移动。
(6)环境气氛环境气氛对热失重曲线的影响4. 热重分析的应用热重分析主要研究在空气或惰性气氛材料的热稳定性、热分解作用和氧化分解等物理化学变化;也广泛用于涉及质量变化的所有物理过程。
根据热失重曲线可获得材料热分解过程的活化能和反应级数:k = dm/dt= A·mn·e-E/RT;ln(dm/dt) = lnA + nlnm- E/RT;获得n和E的方法:a. 示差法;b. 不同升温速率法;ln(d m/d t) = lnA + n ln m- E/RT;ln k= 0时,有:E/RT0= lnA + n ln m;T0—反应速度的对数为零时的温度;1. DSC的工作原理差示扫描量热法(DSC)是在程序控制温度条件下,测量输入给样品与参比物的功率差与温度关系的一种热分析方法。
差热分析与热重分析计划学时:2学时本实验通过DTA研究物质BaCl2.2H2O在加热过程中所发生的物理化学变化,绘制相应曲线,确定其变化的实质。
【实验目的】(1) 掌握DTA热分析仪的原理和实验技术。
(2) 测量化学分解反应过程中的分解温度。
(3) 测量物质在加热过程中所发生的物理化学变化,绘制相应曲线,从而研究材料的反应过程。
【实验原理】热分析是物理化学分析的基本方法之一。
综合热分析研究物质在加热过程中发生相变或其他物理化学变化时所伴随的能量、质量和体积等一系列的变化,可以确定其变化的实质或鉴定矿物。
DSC和DTA研究物质在加热过程中内部能量变化所引起的吸热或放热效应。
1. 差热分析DTA原理差热分析(Differential Thermal Analysis 简称DTA )是指在程序控制温度下,测量物质和参比物之间的温度差与温度(或时间)关系的一种技术。
用数学式表达为△T= Ts—Tr ( T 或t )式中Ts ,Tr ——分别代表试样及参比物温度;T ——程序温度;t ——时间。
试样和参比物的温度差主要取决于试样的温度变化。
DTA 仪由以下几部分组成:(1) 样品支持器。
(2) 程序控温的炉子。
(3) 记录器。
(4) 检测差热电偶产生的热电势的检测器和测量系统。
(5) 气氛控制系统。
若将呈热稳定的已知物质(即参比物)和试样一起放入一个加热系统中,并以线性程序温度对它们加热。
在试样没有发生吸热或放热变化,且与程序温度间不存在温度滞后时,试样和参比物的温度与线性程序温度是一致的。
即Ts—Tr(△T)为零时,两温度线重合,在△T 曲线上则为一条水平基线。
若试样发生放热变化,由于热量不可能从试样瞬间导出,于是试样温度偏离线性升温线,且向高温方向移动。
而参比物的温度始终与程序温度一致,△T >0,在△T 曲线上是一个向上的放热峰。
反之,在试样发生吸热变化时,由于试样不可能从环境瞬间吸收足够的热量,从而使试样温度低于程序温度。