基本尺规作图
- 格式:doc
- 大小:37.50 KB
- 文档页数:1
基本尺规作图在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。
最基本,最常用的尺规作图,通常称基本作图。
一些复杂的尺规作图都是由基本作图组成的。
五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线;题目一:作一条线段等于已知线段。
已知:如图,线段a .求作:线段AB,使AB = a .作法:(1)作射线AP;(2)在射线AP上截取AB=a .则线段AB就是所求作的图形。
题目二:作已知线段的中垂线。
已知:如图,线段MN.求作:直线PQ,使PQ┴MN.作法:(1)分别以M、N为圆心,大于的相同线段为半径画弧,两弧相交于P,Q;(2)连接PQ交MN于O.则直线PQ就是所求作的MN的中垂线。
题目三:作已知角的角平分线。
已知:如图,∠AOB,求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。
作法:(1)以O为圆心,任意长度为半径画弧,分别交OA,OB于M,N;(2)分别以M、N为圆心,大于的相同线段为半径画弧,两弧交∠AOB内于P;(3)作射线OP。
则射线OP就是∠AOB的角平分线。
题目四:作一个角等于已知角。
求作一个角等于已知角∠MON(如图1).图(1)图(2)(1)作射线11M O ;(2)在图(1)上,以O 为圆心,任意长为半径作弧,交OM 于点A ,交ON 于点B ;(3)以1O 为圆心,OA 的长为半径作弧,交11M O 于点C ;(4)以C 为圆心,以AB 的长为半径作弧,交前弧于点D ;(5)过点D 作射线D O 1. 则∠D CO 1就是所要求作的角.过一点作已知直线的垂线;过直线上(或直线外)一点作已知直线的垂线:①过直线上一点作已知直线的垂线;图1-9-5②过直线外一点作已知直线的垂线.图1-9-6例1:阅读下面材料:数学课上,老师提出如下问题: 尺规作图:经过已知直线上一点作这条直线的垂线.小艾的作法如下:老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是.【答案】等腰三角形“三线合一”;两点确定一条直线小云的作法如下:老师说:“小云的作法正确.”请回答:小云的作图依据是.【答案】四条边都相等的四边形是菱形;菱形的对边平行(本题答案不唯一) 例3阅读下面材料:在数学课上,老师提出如下问题:甲、乙、丙、丁四位同学的主要作法如下:作法正确的同学是;这位同学作图的依据是.【答案】丁;垂直平分线上的点到线段两端点的距离相等;等量代换。
三尺规作图§3.10 基本作图(一)一、教学目标1.使学生了解尺规作图的意义.2.使学生熟练掌握基本作图①、②.3.会用几何语言叙述作图过程.二、教学重点和难点1.重点:正确掌握基本作图①、②.2.难点:会用精练准确的几何语言叙述作图过程.三、教学方法引导学生动手动脑,掌握基本作图①、②.熟悉作图语言.四、教学手段利用硬纸片剪接将知识具体化.五、教学过程(一)复习提问1.什么叫做角?角的平分线?2.已知△ABC和△A'B'C'中AB=A'B',BC=B'C',AC=A'C'.求证:△ABC≌△A'B'C'.(二)引入新课前面我们学习了全等三角形的性质、判定及一些较简单的几何证明题.在学习中常常感到需要有准确、方便的画图方法,画出符合条件的几何图形.本节我们学习这种几何作图方法.(三)讲解新课前面,我们学过用刻度尺、三角板、量角器和圆规等多种工具画几何图形.如果只用直尺(学生使用的尺子都有刻度,这里告诉学生,直尺是用来画直线的,或者延长线段、射线成直线的.我们作图时,可以使用一般的刻度尺、三角板,只要不用它们去度量长度,就是这里所说的直尺)和圆规,也可以画出许多图形,有时还很方便.(1)尺规作图:在几何里,把限定用直尺和圆规来画图,称为尺规作图.(2)基本作图:最基本、最常用的尺规作图,通常称基本作图.一些复杂的尺规作图,都是由基本作图组成的,第一册里曾讲过用尺规作一条线段等于已知线段,这是一种基本作图,下面再介绍几种基本作图:1.作一个角等于已知角下面我们研究只用直尺和圆规画一个角等于已知角.前面我们学会了用直尺和圆规作一条线段等于已知线段,学习判定两个三角形全等“边边边”公理时曾经已知三边画三角形得到边边边公理而因全等三角形的对应角相等,进而达到角相等的目的.作一个角等于已知角就是已知:∠AOB如图3-57.求作:∠A'O'B',使∠A'O'B'=∠AOB.分析:假设∠A'O'B'已作出,且∠A'O'B'=∠AOB,如图3-58,在OA、OB、O'A'、O'B'上取点C、D、C'、D',使OC=OD=O'C'=O'D',那么△COD≌△C'O'D'.由此可知,要作出∠A'O'B',使∠A'O'B'=∠AOB,只要作出△O'C'D',使O'C'=OC,O'D'=OD,C'D'=CD,这就是前面学过的“已知三边画三角形”.作法:(请同学们读句画图)(投影仪打出)(1)作射线O'A'.(2)以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D,如图3-59.(3)以点O'为圆心,以O'C'长为半径作弧,交O'A'于C'.(4)以点C'为圆心,以C'D'长为半径作弧,交前弧于D'.(5)经过点D'作射线O'B',∠A'O'B就是所求的角.证明:连结CD、C'D',由作法可知△C'O'D≌△COD(SSS)∴∠C'O'D'=∠COD(全等三角形对应角相等).即∠A'O'B'=∠AOB.说明:作图题的证明,常以作法为根据,只要“作法”中写明了作的是什么,证明中就可以用它作根据去证明.注意,在作图题的“证明”中,一般过程都写得比较简单.如这个证明三角形全等的地方,把条件省略了.练习:如图3-60,在∠AOB的外部作∠AOC,使∠AOC=∠AOB.首先要求作图工具——直尺(无刻度)、圆规.然后引导学生分析题意,弄清已知是什么,求作是什么?画出已知条件(一个角),写出已知、求作.在求作中先写出什么图形,再写使它合乎什么条件.作法可让学生或教师作图,学生叙述作法.让学生写出证明过程.2.平分已知角前面我们用量角器作一个已知角∠AOB的平分线OC,怎样用尺规来画已知角的平分线呢?分析:如图3-61,假如∠AOB的平分线OC已经画出,在前面角的平分线的研究中,我们用折线的实验发现:如果有OE=OD,那么CE=CD.这个实验也启发我们:如果有OE=OD,CE=CD,那么OC平分∠AOB吗?用“SSS”公理易证△OEC≌△ODC,∠EOC=∠DOC,即OC平分∠AOB.于是容易看出,要作∠AOB的平分线OC,在于怎样才能找到起关键作用的点C?怎样确定点C呢?不难看出,为了确定C点,必须先找点E、D.以O为圆心,任意长为半径作弧,分别交OA、OB于D、E,那么OD=OE吗?再分别以D、E为圆心,适当的长度为半径作弧,设两弧交于点C,那么CD=CE吗?而D、E为圆心,“适当”的长度为半径作弧,两弧有一交点时,怎样的长度才“适当”呢?已知:∠AOB如图3-62.求作:射线OC,使∠AOC=∠BOC.作法:(1)在OA和OB上,分别截取OD、OE,使OD=OE.两弧交于点C.(3)作射线OC.OC就是所求的射线.证明:连结CD、CE,由作法可知△ODC≌△OEC∴∠COD=∠COE(全等三角形的对应角相等).即∠AOC=∠BOC.小结:(1)基本作图1、2有一个不同之点,即基本作图2要把射线OC作在∠AOB内部,位置有指定性,基本作图1所作的∠A'O'B'并不受∠AOB的位置限制,但通常把∠A'O'B'作在∠AOB的近旁.(2)作图工具只限直尺和圆规,用铅笔画图,并保留作图过程中的辅助线(作图痕迹).(3)只画图的题,要求画完图,写明所求作的图形.如基本作图中要写出“∠A'O'B'就是所求的角.”(4)要熟练掌握常用的几种几何作图语言.如:①过点×、点×作直线××;或作直线××;(用投影仪)或作射线××.②连结两点××;或连结××.③在××上截取××=××.④延长××到点×,或延长××到×使××=××.(5)在以后的作图中,如果遇到属于基本作图的地方,不必重复作图的详细过程,只把它当作“成法”用一句话概括即可,如作∠×××=∠×××.(四)练习教材P.59中练习1、2.(五)作业教材P.64中习题3.5 A组2、3、4.(六)板书设计。
五种基本尺规作图原理
人们使用基本尺规作图原理来实现建筑设计的梦想,它的最大优势是清楚明确的把握,使得建筑几何复杂的形状得以精准描绘。
一般来说,基本尺规作图原理分为5种:法线法、角线法、圆心角法、线段步进正交正切法和自然对对称法。
法线法,是通过已知直线指定一个圆,利用该圆的极点、切点来组合形成一个特定的平面结构。
角线法,是一种构造复杂几何形状的方法,它可以用直角构造多边形,而伴随的弧线则是角线法的补充,可以拓展出多边形的轮廓。
圆心角法,又称极角法,依据圆心角的角度来绘制各种曲线。
线段步进正交正切法,是根据给定的形状,利用正切正交线段连线来拓展出和原线段相似的形状。
自然对称法,是一种以正交正切线段为基础的拓展形状的方法,采用延伸的方式拓展出和原线段相似的曲线。
这些基本尺规作图原理是当代建筑设计最重要的方法之一,可将单纯的几何形状转化为复杂的几何结构,既能满足建筑物的外观、功能,又能节约施工费用,更能确保施工准确,具有极大的应用价值。