拉氏变换1(重点)
- 格式:ppt
- 大小:1.15 MB
- 文档页数:47
第一讲 拉普拉斯变换及其应用1.1基本要求1,熟悉拉氏变换的基本法则2,熟练掌握典型函数的拉氏变换式。
3,掌握用拉氏变换求解微分方程初值问题的思路。
4,熟练掌握求有理分式函数拉氏反变换的方法 1.2.重点讲解1, 对于学习本课程而言,广义积分式(拉氏变换的定义)的收敛性以及复变量主值积分式(反变换定义式)的计算,与正确地熟练地运用拉氏变换的基本法则相比不是主要的,因为在工程计算中可以用查表的方式来完成拉氏变换和拉氏反变换的计算。
而拉氏变换的基本法则的运用则直接关系到是否真正掌握这种变换的工具。
2,拉氏变换的线性性质源自定积分的线性性质,这说明作为一种变换关系,拉氏变换是线性变换。
应当指出线性关系并非所有变换都具有的性质,例如以十为底的对数可以看成正半数轴到数轴的变换关系,但关系式g()g g l a b l a l b +≠+说明取对数的运算显然不满足线性关系。
3, 为了保证拉氏变换的一一对应关系,总假定拉氏变换的定义式中的原函数()f t 在t 时为零。
即原函数应写成0<()1()f t t ⋅,根据单位阶跃函数1(t)的定义,这里()1()f t ⋅t 为()0()1()00f t t f t t t > ⋅=<下面给出()f t 、()1()f t t ⋅、、0()1()f t t t ⋅−00()1(f t t t t )−⋅−、0(f t t )−的函数关系,以说明通常所说“将()f t 延迟t ” 的正确表示。
显然应当是图1-1中的(d) ,不是(c)或(e) 0()1()f t t ⋅0()1()f t t t ⋅−00()1()f t t t t −⋅− (d)(c)(b) (a) (e)图1-1 将()f t 延迟t基于上述认识,就能正确表达图形和用延迟定理求出某些图形的拉氏变换式。
例题1-2图1-2 波形图求图1-2中的波形的拉氏变换。
解 图1-2中的波形可以看成、()1()t t ⋅001(t t t t )−⋅−、t t 01()t 0⋅−这三个信号的代数和,读者可画出这三个信号的波形图以验证下式的正确性。
控制原理补充讲义——拉氏变换拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。
一、拉氏变换与拉氏及变换的定义1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作:称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。
f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件):1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。
2)当时,,M,a为实常数。
2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。
—拉氏反变换符号关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。
二、典型时间函数的拉氏变换在控制系统分析中,对系统进行分析所需的输入信号常可化简成一个或几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。
注意:六大性质一定要记住1.单位阶跃函数2.单位脉冲函数3.单位斜坡函数4.指数函数5.正弦函数sinwt由欧拉公式:所以,6.余弦函数coswt其它的可见下表:拉氏变换对照表三、拉氏变换的性质1、线性性质若有常数k1,k2,函数f1(t),f2(t),且f1(t),f2(t)的拉氏变换为F1(s),F2(s),则有:,此式可由定义证明。
2、位移定理(1)实数域的位移定理若f(t)的拉氏变换为F(s),则对任一正实数a有,其中,当t<0时,f(t)=0,f(t-a)表示f(t)延迟时间a.证明:,令t-a=τ,则有上式=例:求其拉氏变换(2)复数域的位移定理若f(t)的拉氏变换为F(s),对于任一常数a,有证:例:求的拉氏变换3、微分定理设f(t)的拉氏变换为F(s),则其中f(0+)是由正向使的f(t)值。
证:同理可推广到n阶:当初始条件为0时,即则有4、积分定理设f(t)的拉氏变换为F(s),则,其中时的值。