含参数不等式恒成立问题中参数范围的确定
- 格式:pdf
- 大小:231.55 KB
- 文档页数:6
含参数不等式恒成立问题参数不等式恒成立问题是一类重要的数学问题,其表达形式为:(1)存在m个变量x1,x2,…,xm,每个变量的取值范围是实数集合Xi;(2)定义n个不等式Fi(X1,x2,…,xm);(3)寻找一组Xi使得F1(X1,x2,…,xm)≤0、F2(X1,x2,…,xm)≤0、⋯、Fn(X1,x2,…,xm)≤0成立。
参数不等式恒成立问题常见于最优化理论中的多元函数最优化。
在多元函数最优化中要求某几个函数的值都在一定的范围内。
为此必须找到一组最优参数使得这些不等式恒成立。
由此可以看出该问题是一个典型的大规模多变量不动点问题。
由于该问题是NP完全课时间复杂性问题,所以在本文中采用近似方法来进行求解。
通常情况下考虑使用“差分近似”来对连续可微无界函数Fi(Xi)进行局部递归分割处理。
即将Xi平面上分割成小单元格后将该单元格上的Fi(Xi)值作为Fi′(Xi)的左侧界和上侧界。
使用差分近似法能将大尺度的复杂性转化成小尺度的特征对应的问题来实施局部递归处理。
因此无界期望价值函数能够由一般情况中承受大量决策者原始价核心化而得到解决。
此外,由于该问题之所以难以直接求解是因为它是NP完全难以直接通过传统方法来处理的难度。
在这种情况下,采用动态规划技术来近似代替多项式时间复杂性方法也是常用而有效的手段。
动态规划技术需要将问题分解为一系列子问题,其中每个子问题都只包含部分参数的不等式恒成立的情况。
在这些子问题中,由于参数的数量并不大,因此可以使用多项式时间复杂度的算法来寻找出适当的解决方案。
总之,参数不等式恒成立问题是一类重要但复杂的数学问题。
在本文中,我们使用了“差分近似”和动态规划技术来近似解决该类难题。
它们能够帮助我们快速准确地对大规模多变量不动点问题进行实施局部递归处理。
同时也能有效地将原始NP完全课时间复杂度问题转化为尺度小特征对应的可行解决方案。
恒成立问题中含参范围的求解策略数学中含参数的恒成立问题,几乎覆盖了函数,不等式、三角,数列、几何等高中数学的所有知识点,涉及到一些重要的数学思想方法,归纳总结这类问题的求解策略,不但可以让学生形成良好的数学思想,而且对提高学生分析问题和解决问题的能力是很有帮助的,下面就几种常见的求解策略总结如下,供大家参考。
一、分离参数——最值化1 在给出的不等式中,如果能通过恒等变形分离出参数,即:a ≥f(x)恒成立,只须求出 ,则a ≥ ;若a ≤f(x)恒成立, 只须求出 ,则a ≤转化为函数求最值.例1 已知函数f(x)= ,若任意x ∈[2 ,+∞)恒有f(x)>0,试确定a 的取值范围. 解:根据题意得,x+−2>1在x ∈[2 ,+∞)上恒成立,即a>−+3x 在x ∈[2 ,+∞)上恒成立.设f(x)=-+3x .则f(x)=−+ ,当x=2时,=2 ,所以a>22在给出的不等式中,如果通过恒等变形不能直接解出参数,则可将两变量分别置于不等式的两边,即:若f(a)≥g(x)恒成立,只须求出g(x)最大值 ,则f(a)≥ .然后解不等式求出参数a 的取值范围; :若f(a)≤g(x)恒成立,只须求出g(x)最小值 ,则f(a)≤ .然后解不等式求出参数a 的取值范围.问题还是转化为函数求最值.例2 已知x ∈(−∞ ,1]时,不等式1++(a −)>0恒成立,求a 的取值范围.解 令=t ,∵x ∈(−∞ ,1] ∴t ∈(0 ,2].所以原不等式可化为<,要使上式在t ∈(0 ,2]上恒成立,只须求出f(t)=在t ∈(0 ,2]上的最小值即可. ∵f(t)==+=− 又t ∈(0 ,2] ∴∈[) ∴=f(2)=∴< , ∴−<a<例3 设c b a >>且ca mc b 1b a 1-≥-+-恒成立,求实数m 的取值范围。
解析:由于c a >,所以0c a >-,于是⎪⎭⎫ ⎝⎛-+--≤c b 1b a 1)c a (m 恒成立,因+≥⎪⎭⎫⎝⎛--+--++=⎪⎭⎫ ⎝⎛-+--+-=⎪⎭⎫ ⎝⎛-+--2c b b a b a c b 11c b 1b a 1)]c b ()b a [(c b 1b a 1)c a (.4cb b a b ac b 2=--⋅-- (当且仅当b a c b -=-时取等号),故4m ≤。
求不等式恒成立问题中参数的取值问题是高考试题中的常见题型.此类问题综合性较强,不仅考查了不等式,还考查了函数、方程、导数、求最值的方法.求不等式恒成立问题中参数的取值的方法有很多,本文主要介绍参变分离法、数形结合法、基本不等式法.一、参变分离法参变分离法是求不等式恒成立问题中参数的取值的常规方法,是指将不等式中的参数a 与变量f (x )分离在不等式的两侧,将问题转化为a ≤f (x )min 或a ≥f (x )max ,求得f (x )的最值,便能确定a 的取值范围.例1.当x ≥2时,不等式x ln x ≥kx -2(k +1)恒成立,求k 的最大整数值.解:将原不等式变形可得k ≤x ln 2+2x -2(x >2),令g (x )=x ln x +2x -2,对g (x )函数求导g ′(x )=x -2ln x -4(x -2)2,设h (x )=x -2ln x -4,对函数h (x )求导h ′(x )=1-2x,∴函数h (x )在(2,+∞)上单调递增,而h (8)=6ln 2-4>0,h (9)=4ln 3-5<0,∴g ′(x )零点x 0∈(8,9),即h (x 0)=0,x 0-2ln x 0-4=0,∴当2<x <x 0时,g ′(x )<0,函数g (x )单调递减,当x >x 0时,g ′(x )>0,函数g (x )单调递增,∴g (x )≥g (x 0)=x 0ln x 0+2x 0-2=x 0-22,k ≤g (x 0),而3<x 0-22<72,∴k 最大整数值为3.在本题中,首先通过变形分离出参数,构造出新的函数,然后通过二次求导确定函数的的单调性以及最值,进而求得参数k 的取值.二、数形结合法在解答不等式恒成立问题时,我们可以首先将不等式进行变形,然后构造出适当的函数,绘制出相应的函数图象,借助图形来讨论曲线的临界位置,建立新的不等式,进而确定参数的取值.例2.已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2),若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为______.解:当x ≥0时,f (x )=ìíîïï-x ,0≤x <a 2,-a 2,a 2≤x <2a 2,x -3a 2,x ≥2a2作出函数的图象,再根据函数为奇函数画出x <0时的图象,如图所示,由题意,要使∀x ∈R ,f (x -1)≤f (x )恒成立,应满足2a 2-(-4a 2)≤1,解得a ∈éëêû.这里主要运用了数形结合法.借助函数的图象来分析问题,能帮助我们快速打开解题的思路,提升解题的效率.三、基本不等式法基本不等式法是求最值问题的常用方法.在求不等式恒成立问题中参数的取值时,我们可以结合题意,将问题转化为求最值问题,构造满足基本不等式应用的条件,运用基本不等式来求得最值,进而得到参数的取值范围.例3.设a 为实常数,y =f (x )是定义在R 上的奇函数,当x <0时,f (x )=9x +a 2x+7,若f (x )≥a +1对一切x ≥0成立,则a 的取值范围为______.解:因为y =f (x )是定义在R 上的奇函数,所以当x =0时,f (0)=0,则0≥a +1,所以a ≤-1,设x >0,则-x <0,所以f (x )=-f (-x )=-éëêùûú9(-x )+(a 2-x )+7=9x +a 2x -7.由基本不等式得9x +a 2x -7≥-7=-6a -7,由f (x )≥a +1对一切x ≥0成立,只需使-6a -7≥a +1,即使a ≤-87,结合a ≤-1,可得所求a 的取值范围是æèùû-∞,-87.在解答本题时,首先根据函数的奇偶性求得函数的解析式,然后运用基本不等式求得函数f (x )的最值,再结合题目条件建立使不等式恒成立的新的不等式,即可求出参数的取值范围.以上三种方法均有各自的特征,无论运用哪种方法来求不等式恒成立问题中参数的取值,都要首先将不等式进行变形,再构造函数,灵活运用函数的图象、性质或基本不等式来求得最值,再建立关于参数的不等式,解不等式求得参数的取值.(作者单位:江苏省包场高级中学)江望杰46。
不等式恒成立问题的求参策略山东省莱西一中北校 赵贞才 (266600)含有参数的不等式恒成立问题是同学们常见的一类题,这类题涵盖范围广。
不少同学面对此类题,不知从何下手 。
其实这类题,规律性较强,有法可循。
本文结合实例探讨一下解题策略。
1. 分离参数法如果能把不等式中的参数与主元分离开来,则可以通过求函数最值来简化问题。
如:max )()(x f t x f t >⇔>恒成立,min )()(x f t x f t <⇔<恒成立例1:已知 3421lg )(ax f x x ∙++= 若x ∈(-∞,1]时,f (x )有意义,求a的范围.分析:原题等价于不等式03421>∙++ax x 对x ∈(-∞,1]恒成立,分离参数,得()()xxa 2141-->,令 ()()xxx g 2141)(--= ,x ∈(-∞,1],显然g(x)为增函数,故只须43)1()(max -==>g x g a 即可。
例2:已知函数x x x f 2cos 34sin 2)(2-⎪⎭⎫ ⎝⎛+=π⎥⎦⎤⎢⎣⎡∈2,4ππx① 求)(x f 的最大值和最小值;② 若不等式 2|)(|<-m x f ,在⎥⎦⎤⎢⎣⎡∈2,4ππx 上恒成立,求实数m 的取值范围.分析:(1)2)(,3)(min max ==x f x f2)(2)(2|)(|)2(+<<-⇔<-x f m x f m x f41<<∴m2. 分类讨论法:按所给不等式中参数的本质属性划分不同种类进行讨论,特别应注意分类要“不重不漏”。
例3:已知3)(2++=ax x x f 当[]2,2-∈x 时a x f ≥)(恒成立,求a 的取值范围?2)(2)(min max +<<-∴x f m x f解:法一 原不等式恒成立,即]2,2[3)1(2-∈--≥-x x a x 在时恒成立,为了分离常数,必须对1-x 的符号进行分类讨论。
思路探寻思路探寻式恒成立问题中参数的取值范围时,可将“数”与“形”结合起来,根据代数式的几何意义画出几何图形,借助图形来讨论不等式成立的条件,从而达到解题的目的.在研究图形时,要关注一些极端情形,以及临界的情形,如相交、相切等.例4.设x ∈[-4,0],若不等式x (-4-x )<43x +1-a 恒成立,求a 的取值范围.解:设y 1=x (-4-x ),则(x +2)2+y 21=4(y 1≥0),该式可表示是如图所示的上半圆.设y 2=43x +1-a ,其图象为直线.由图可知,要使不等式恒成立,需使半圆始终在直线的下方,即使圆心(-2,0)到直线4x -3y +3-3a =0的距离d =|-8+3-3a|5>2,且1-a >0,可得a <-5,即a 的取值范围为()-∞,-5.我们将y 1=x (-4-x )看作上半圆,将y 2=43x +1-a 看作一条直线,将问题转化为求使半圆恒在直线下方时的a 的取值范围.根据图形找出临界情形:圆与直线相切,求得此时a 的取值范围,即可解题.借助图象分析问题,不仅可以使解题变得更加简单,还会使解题思路更加明朗.四、分类讨论在求不等式恒成立问题中参数的取值范围时,经常要用到分类讨论法对参数进行分类讨论.在解题时,要首先明确参数对不等式的影响,确定分类的标准;然后分几类情况对问题进行讨论,求得每种情况下的结果;最后汇总所得的结果.例5.当x ∈[2,8]时,不等式log 2a -1x >-1恒成立,求a 的取值范围.解:(1)当2a 2-1>1时,由题意知12a 2-1<x 恒成立,即12a 2-1<x min ;因为x ∈[2,8],所以12a 2-1<2,解得a ∈(-∞,-1)⋃(1,+∞);(2)当0<2a 2-1<1时,由题意知12a 2-1>x 恒成立,即12a 2-1>x max ;因为x ∈[2,8],所以12a 2-1>8,解得a ∈(-34,-)⋃(34);故a∈(-∞,-1)⋃(-34,-)⋃(34)⋃(1,+∞).根据对数函数的性质,可知需分2a 2-1>1和0<2a 2-1<1两种情况进行讨论,才能求得参数a 的取值范围.在进行分类讨论时,要有明确的讨论思路,逐层逐级进行讨论,避免出现遗漏或重复讨论某种情况.五、利用判别式在求二次不等式恒成立问题中参数的取值范围时,可把问题化为一元二次不等式在实数集上恒成立的问题,用判别式法求解.一般地,二次函数f (x )=ax 2+bx +c 恒大于0⇔ìíîa >0,Δ<0,f (x )=ax 2+bx +c 恒小于0⇔{a <0,Δ<0.据此建立关于参数的不等式,解该不等式即可求得参数的取值范围.例6.若不等式2x 2+2mx +m4x 2+6x +3<1对一切x ∈R 恒成立,求实数m 的取值范围.解:因为4x 2+6x +3=(2x +32)2+34>0在R 上恒成立,所以2x 2+2mx +m4x 2+6x +3<1⇔2x 2+2mx +m <4x 2+6x +3⇔f (x )=2x 2+(6-2m )x +3-m >0;要使得f (x )恒大于0,需使Δ=(6-2m )2-8(3-m )<0,解得1<m <3,故实数m 的取值范围为m ∈(1,3).由于4x 2+6x +3>0在R 上恒成立,于是原问题可转化为一元二次函数f (x )=2x 2+(6-2m )x +3-m 在R 恒大于0的问题,由二次函数的图象可知当a >0时,Δ<0,用判别式法即可解题.虽然由恒成立的不等式求参数的取值范围问题较为复杂,但是同学们只要熟练掌握上述五种求解思路,明确其适用条件,根据解题需求选用合适的方法、思路进行求解,就能有效地提升解题的效率.本文系2021年度云南省教育科学规划单位资助课题“基于深度学习的高中数学课堂教学策略研究”(课题批准号:BE21028)阶段性研究成果.(作者单位:云南省曲靖市民族中学)53。
恒成立求参数范围题解题技巧
嘿,同学们!今天咱就来讲讲恒成立求参数范围题的解题技巧,这可真是个让人又爱又恨的家伙啊!
比如说,给你这样一道题:对于任意 x,不等式x²+ax+1>0 恒成立,求 a 的取值范围。
哇,是不是一下子有点懵?别急,听我慢慢道来。
首先呢,咱得看到关键信息,“恒成立”这三个字可太重要啦!就好像你要追一个心仪的对象,不管对方啥时候出现,你都得有办法应对,才能成功追求到嘛。
这时候就得用上我们的绝招啦!
第一种方法,判别式法。
咱先把不等式看成一个二次函数,这就像给它拍了张快照。
然后看看判别式,如果判别式小于 0,那它就恒在 x 轴上方,不就恒成立啦!就像天总是蓝的,你就不用担心下雨啦!像刚才那道题,咱用判别式来算一算,一下子就能找到 a 的范围啦!
再比如,给你这样一个例子:x²-2ax+2-a>0 恒成立,这又咋搞?嘿嘿,还是用同样的办法呀,判别式出马,轻松搞定!
还有第二种方法,最值法哦!有时候我们得找到这个函数的最值,让最值都满足条件,那肯定就恒成立啦!这就好比你得把自己的底线守好,只要底线不出问题,那一切就都没问题啦!
哎呀呀,学会这些技巧,是不是觉得恒成立求参数范围题也没那么可怕啦?其实啊,数学就是这样,只要你掌握了方法,就能轻松应对!所以大家一定要多练习,多思考,把这些技巧都变成自己的武器,去攻克那些难题吧!相信你们一定可以的!加油哦!。
思路探寻∵sin C =sin ()A +B =sin A cos B +sin B cos A =2sin C cos A ,∴cos A =12,∵a sin A =b sin B =c sin C,∴bc =B C =163sin B sin æèöø2π3-B =83sin æèöø2B -π6+43,∵0<B <2π3,∴-π6<2B -π6<7π6,当2B -π6=π2,即B =π3时,bc 取最大值4,∵S △ABC =12bc sin A ≤3,∴△ABC 面积的最大值为3.解答本题,需先运用正弦定理进行边角互化,将a cos B =()2c -b cos A 等价转化为sin A cos B =(2sin C -)sin B cos A ,求得角A ,再根据正弦定理求得bc ,便可根据公式S =12ab sin C 求得三角形面积的表达式,最后根据三角函数的有界性求得最值.可见,求解与三角形有关的最值问题,关键要运用正余弦定理进行边角互化,求得角、周长、面积的表达式,然后运用基本不等式、三角函数的有界性来求得最值.一般地,可运用正弦定理来将角化为边,运用余弦定理来将边化为角.在解题的过程中,要注意挖掘一下隐含条件:(1)三角形的内角和为180o ;(2)三角形的两边之和大于第三边;(3)三角形的三边、三角均为正数.这些条件都是隐含在题目当中,若没有挖掘出来,便会缺少解题的条件,得出错误的答案.(作者单位:安徽省蚌埠第二中学)在学习中,我们经常会遇到求不等式恒成立问题中参数的取值范围.此类问题一般较为复杂,通常要求根据含有参数的不等式、方程、函数求使不等式恒成立时参数的取值范围.由于这类问题涉及的知识点较多,所以其求解途径多种多样.本文结合例题,谈一谈求参数的取值范围的两种常用途径:分离参数、数形结合.一、分离参数分离参数法是求不等式恒成立问题中参数的取值范围的重要方法.其大致的解题步骤为:①对含有参数的不等式、方程、函数进行变形,使参数单独置于一侧,变量置于另一侧,如a ≥f ()x 、a ≤f ()x ;②将问题转化为函数的最值问题,如a ≥f ()x 等价于a ≥f ()x max ,a ≤f ()x 等价于a ≤f ()x min ;③根据函数的单调性求得其最值;④建立新不等式,求出参数的取值范围.例1.已知f ()x =x ln x +a x,g ()x =x -e x -1+1.若∀x 1∈éëùû12,3,x 2∈()-∞,+∞,f ()x 1≥g ()x 2恒成立,则实数a 的取值范围为______.解:由题意可知,∀x 1∈éëùû12,3,x 2∈()-∞,+∞,f ()x 1≥g ()x 2等价于f ()x 1min ≥g ()x 2max ,∵g '()x =1-ex -1,当g '()x =0时,x =1,当x 2∈()-∞,1时,g '()x >0,g ()x 单调递增;当x 2∈()1,+∞时,g '()x <0,g ()x 单调递减,∴g ()x 2max =g ()1=1,∴f ()x =x ln x +a x ≥1在x ∈éëùû12,3上恒成立,即a ≥x -x 2ln x 在x ∈éëùû12,3上恒成立,令h ()x =x -x 2ln x ,x ∈éëùû12,3,朱红玉48思路探寻∴实数a 的取值范围为a >1.在解答该题时,需首先对函数f ()x =x 3+2判断出函数的单调性,求得其最值,这样便可将问题转化为在x ∈()0,+∞上ax >e x -1恒成立.然后构造-1,画出其图象,O。
龙源期刊网
例谈不等式恒成立问题中参数范围的求解策略
作者:王丽
来源:《数理化学习·高一二版》2013年第04期
不等式恒成立问题中参数范围的求解问题,它涉及的知识面广、综合性强是学生学习的难点,从而成为高考和竞赛试题中的热点问题,尤其是在最近几年的高考试题中屡屡出现,由于学生对此类问题求解方法的领会还不够透彻,缺乏系统的理解和把握,因而解答问题的过程中往往较繁还极易产生错解,为此笔者对这类问题进行总结,给出解决问题一般方法,指明此种问题的一般求解策略,以飨读者.
一、数形结合,结合函数图象求范围
例1设x∈(0,4),若不等式x(4-x)>ax恒成立,求a的取值范围.
解:设y1=x(4-x),则有(x-2)2+y21=4(y1≥0),是圆心在(2,0),半径为2的上半圆C.再设y2=ax,它是过原点,斜率为a的直线l.在同一直角坐标系下作出它们的图象,由题意知半圆恒在直线上方,从而可以看出a
评注:对于不等式两端有明显的几何意义时可以考虑构造函数,通过数形结合利用函数图象求范围,往往直观形象,方便快捷.仿照此法读者可以解决:设不等式x2
二、分类讨论,借助函数性质求范围
从以上数例可以看出,应当指出的是对于一个具体问题来说,往往要结合实际采取多种策略的共同参与才能奏效,这就需要领会各种方法的精髓,灵活而又恰当地使用上述各种策略解题就无往而不胜了.。
含参不等式恒成立问题中,求参数取值范围一般方法恒成立问题是数学中常见问题,也是历年高考的一个热点。
大多是在不等式中,已知一个变量的取值范围,求另一个变量的取值范围的形式出现。
下面介绍几种常用的处理方法。
一、分离参数在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()m a xa f x ≥;若()a f x≤恒成立,只须求出()min f x ,则()m i na f x ≤,转化为函数求最值。
例1、已知函数()lg 2af x x x ⎛⎫=+- ⎪⎝⎭,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。
解:根据题意得:21a x x+->在[)2,x ∈+∞上恒成立,即:23a x x >-+在[)2,x ∈+∞上恒成立, 设()23f x x x =-+,则()23924f x x ⎛⎫=--+ ⎪⎝⎭当2x =时,()max 2f x = 所以2a >在给出的不等式中,如果通过恒等变形不能直接解出参数,则可将两变量分别置于不等式的两边,即:若()()f a g x ≥恒成立,只须求出()max g x ,则()()max f a g x ≥,然后解不等式求出参数a 的取值范围;若()()f a g x ≤恒成立,只须求出()m i n g x ,则()()m i n fa g x ≤,然后解不等式求出参数a 的取值范围,问题还是转化为函数求最值。
例2、已知(],1x ∈-∞时,不等式()21240x x a a ++-⋅>恒成立,求a 的取值范围。
解:令2xt =,(],1x ∈-∞ (]0,2t ∴∈ 所以原不等式可化为:221t a a t+-<,要使上式在(]0,2t ∈上恒成立,只须求出()21t f t t+=在(]0,2t ∈上的最小值即可。
()22211111124t f t tt t t +⎛⎫⎛⎫==+=+- ⎪ ⎪⎝⎭⎝⎭ 11,2t ⎡⎫∈+∞⎪⎢⎣⎭()()m in 324f t f ∴==234a a ∴-<1322a ∴-<<二、分类讨论在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。
含参不等式恒成立问题中求参数的取值范围“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考命题者的青睐。
另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。
一、判别式法:若所求问题可转化为二次不等式,则可考虑应用判别式法解题。
一般地,对于二次函数),0()(2R x a c bx ax x f ∈≠++=,有1)0)(>x f 对R x ∈恒成立⎩⎨⎧<∆>⇔00a ;2)0)(<x f 对R x ∈恒成立⎩⎨⎧<∆<⇔0a 。
例1.已知函数])1(lg[22a x a x y +-+=的定义域为R ,求实数a 的取值范围。
解:由题设可将问题转化为不等式0)1(22>+-+a x a x 对R x ∈恒成立,即有04)1(22<--=∆a a 解得311>-<a a 或。
所以实数a 的取值范围为),31()1,(+∞--∞ 。
若二次不等式中x 的取值范围有限制,则可利用根的分布解决问题。
例2.设22)(2+-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,求实数m 的取值范围。
解:设m mx x x F -+-=22)(2,则当),1[+∞-∈x 时,0)(≥x F 恒成立当120)2)(1(4<<-<+-=∆m m m 即时,0)(>x F 显然成立; 当0≥∆时,如图,0)(≥x F 恒成立的充要条件为:⎪⎪⎩⎪⎪⎨⎧-≤--≥-≥∆1220)1(0m F 解得23-≤≤-m 。
综上可得实数m 的取值范围为)1,3[-。
二、最值法将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有: 1)a x f >)(恒成立min )(x f a <⇔ 2)a x f <)(恒成立max )(x f a >⇔例3.已知x x x x g a x x x f 4042)(,287)(232-+=--=,当]3,3[-∈x 时,)()(x g x f ≤恒成立,求实数a 的取值范围。
浅谈含参数问题求参数取值范围的几种方法通过多年的高考试卷看,求参数的取值范围问题一直是高考考查的重点和热点,同时也是一个难点.考生有时会感到难度较大,以至于得分不高.经过多年的数学教学实践,探求了一些解决含参数问题的有效方法.叙述如下.一、分离参数法所谓分离参数法也就是将参数与未知量分离于表达式的两边,然后根据未知量的取值范围情况决定参数的范围.这种方法可避免分类讨论的麻烦,使问题得到简单明快的解决.例1 已知函数g(x)=x2-ax+4=0在[2,4]有零点,求a的取值范围.解∵函数g(x)=x2-ax+4在[2,4]上有零点,g(x)=x 2-ax+4=0在[2,4]有实根.a=x+4[]x在[2,4]有实根.f(x)=x+4[]x,则a的取值范围等同于函数f(x)在[2,4]上的值域.∵f′(x)=1-4[]x2=(x-2)(x+2)[]x2≥0在[2,4]上恒成立,∴f′(x)在[2,4]上单调递增.∴f(2)≤f(x)f(4),即4≤f(x)≤5,∴4≤a≤5.当然此题还有其他的解法在此不给予说明.二、主参换位法某些含参不等式恒成立问题,在分离参数会遇到讨论的麻烦或者即使能容易分离出参数与变量,但函数的最值却难以求出时,可考虑变换思维角度.可把变元与参数换个位置,即把已知取值范围的变量作为主元,把要求取值范围的变量看作参数,再结合其他知识(转化为一次或二次函数等问题即利用构造函数的思想),往往会取得出奇制胜的效果.例2 若对于任意a∈(-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于0,求x的取值范围.分析此题若把它看成a的二次函数,由于a,x都要变,则函数的最小值很难求出,思路受阻.若视a为主元,从而转化为关于a的一次函数,则给解题带来转机.解设g(a)=(x-2)a+x2-4x+4,把它看成关于a的直线,由题意知,直线恒在横轴下方.所以g(-1)≥0,g(1)>0.解得xm(x2-1)对满足|m|≤2的所有m都成立,求x 的取值范围.解设f(m)=m(x2-1)-(2x-1),对满足|m|≤2的m,f(m)1函数y=log ax的图像显然在函数y=3x2图像的下方,所以不成立;当0a≥1[]27.综上得:1>a>1[]27.数学的深奥复杂性在于数学问题的千变万化,参数问题形式多样,方法灵活多变,技巧性较强.这就要求我们要以变应变,在解题过程中,要根据具体的题设条件,认真观察题目中不等式的结构特征,从不同的角度、不同的方向加以分析探讨,从而选择适当方法快速而准确地解出.当然除了以上的方法外,还有许多其他的方法,值得一提的是,各种方法之间并不是彼此孤立的.因此,系统地掌握参数问题的解题方法,无疑会对学生今后学习及培养学生分析问题和解决问题等方面有很大的帮助.。
如何求恒成立问题中参数的范围湖南省衡东县欧阳遇中学 廖鹏飞恒成立问题是中学数学的一类很重要的题型,它是函数、不等式等内容交汇处的一个较为活跃的知识点,很好地考查了分类讨论、数形结合、转化与化归等数学思想方法. 其中往往是以求某一个参数的范围为命题方向,解答这类问题常常有如下几种常用技巧和思路:1. 判别式法例1 若不等式210mx mx ++>对一切实数恒成立,求实数m 的取值范围. 解:当0m =时,10>显然对一切实数恒成立;当0m ≠时,要使不等式210mx mx ++>对一切实数恒成立,须有00m >⎧⎨∆<⎩,,,即2040m m m >⎧⎨-<⎩,,解得04m <<.综上, m 的取值范围是[04),. 注:不等式20ax bx c ++>对任意实数x 恒成立00a b c ==⎧⇔⎨>⎩,,或00a >⎧⎨∆<⎩,;;不等式20ax bx c ++<对任意实数x 恒成立00a b c ==⎧⇔⎨<⎩,或00.a <⎧⎨∆<⎩, 2. 构造函数法①一次函数型问题,利用一次函数的图像特征求解.例2.对于一切 |m| ≤2,不等式m x mx x +>++212恒成立,求实数x 的取值范围.解:设12)1()(2+-+-=x x m x m f ,当1=x 时,0)(=m f 不符合题意. 当1≠x 时,要使0)(>m f 在]2,2[-∈m 上恒成立,则:⎩⎨⎧>>-0)2(0)2(f f ⎪⎩⎪⎨⎧>->+-⇒0103422x x x ⇒31>-<x x 或. 故)1,(--∞∈x ),3(+∞ ②二次函数型问题,结合抛物线图像.例3. 对于| x | ≤2,不等式03)1()1(2>+-+-x m x m 恒成立,求实数m 的取值范围解:设3)1()1()(2+-+-=x m x m x f . 当1=m 时,3)(=x f >0,符合题意. 当1,01<>-m m 即时,∵)(x f 图像对称轴为21=x ,∴)(x f >0在]2,2[-∈x 上 恒成立⇔△=0)1(12)1(2<---m m ,解得:111<<-m当1,01><-m m 即时,∵min )(x f )2(-=f ,∴)(x f >0在]2,2[-∈x 上恒成立⇔ 0)2(>-f ,即03)2()1()2()1(2>+-⨯-+-⨯-m m ,解得:231<<m . 综上,)23,11(-∈m注:若已知条件中的变量有两个,其中有一个变量的范围已知,若该变量为一次,则可以采用一次函数法,若为二次,则可以采用二次函数法,注意分类讨论思想的应用. 3. 直接利用图象判断例4. 当x ∈(1,2)时,不等式(x-1)2<log a x 恒成立,求a 的取值范围.分析:本题若直接求解,则较为繁难,若将不等号两边分别设成两个函数,则左边为二次函数,图象是抛物线,右边为对数函数的图象,借助图形可直观、简捷求解.解:设y 1=(x-1)2,y 2=log a x ,则在同一坐标系内y 1 、y 2的图象如右图所示,要使对一切x ∈(1,2),y 1<y 2恒成立,显然a>1,并且只需当x=2时y 2的函数值大于等于y 1的函数值.故log a 2>1,a>1, ∴ 1<a ≤2.注:对于f(x)<g(x)(或f(x)>g(x))型问题,一般先利用数形结合思想转化为函数图象的关系再处理。