各类型中高难度全等三角形 题 习题版
- 格式:pdf
- 大小:351.92 KB
- 文档页数:31
全等三角形经典证明:AB=10,AC=2,D 是BC 中点,AD 是整数,求AD1.:D 是AB 中点,∠ACB=90°,求证:12CD AB2.:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23. :∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC4.:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5.:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE6. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
7.:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠CCDBAADBC8、:AB=CD ,∠A=∠D ,求证:∠B=∠C9.〔5分〕如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .10.〔5分〕如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA11.〔6分〕如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,假设AB =CD ,AF =CE ,BD 交AC 于点M .〔1〕求证:MB =MD ,ME =MF〔2〕当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?假设成立请给予证明;假设不成立请说明理由.12.〔7分〕:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,〔1〕求证:△AED ≌△EBC .〔2〕观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.〔直接写出结果,不要求证明〕:/13.〔7分〕如图,△ABC 中,∠BAC =90度,AB =AC ,BD是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .14、〔10分〕如图:DF=CE ,AD=BC ,∠D=∠C 。
全等三角形题库(70题)一、解答题(本大题共70小题,共560.0分)1.如图,在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD.AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何.【答案】解:(1)∵BE、CF分别是AC、AB两边上的高,∴∠AFC=∠BFC=∠BEC=∠BEA=90°∴∠BAC+∠ACF=90°,∠BAC+∠ABE=90°,∠G+∠GAF=90°,∴∠ABE=∠ACF.在△ABD和△GCA中,{BD=AC∠ABE=∠ACF AB=CG,∴△ABD≌△GCA(SAS),∴AD=GA,(2)结论:AG⊥AD.理由:∵△ABD≌△GCA(SAS),∴∠BAD=∠G,∴∠BAD+∠GAF=90°,∴AG⊥AD.【解析】(1)先由条件可以得出∠ABE=∠ACF,就可以得出△ABD≌△GCA,就有AD= GA,∠BAD=∠G;(2)结论:AG⊥AD.由(1)可以得出∠GAD=90°,进而得出AG⊥AD.本题考查了全等三角形的判定及性质的运用、直角三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,学会利用等量代换证明垂直,属于中考常考题型.2.如图,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;【答案】解:作DM⊥AF于M,EN⊥AF于N,∵BC⊥AF,∴∠BFA=∠AMD=90°,∵∠BAD=90°,∴∠1+∠2=∠1+∠B=90°,∴∠B=∠2,在△ABF与△DAM中,{∠BFA=∠AMD ∠B=∠2AB=AD,∴△ABF≌△DAM(AAS),∴AF=DM,同理,△ACF≌△EAN(AAS),AF=EN,∴EN=DM,∵DM⊥AF,EN⊥AF,∴∠GMD=∠GNE=90°,在△DMG与△ENG中,{∠DMG =∠ENG ∠DGM =∠EGN DM =EN, ∴△DMG≌△ENG(AAS),∴DG =EG ,即点G 是DE 的中点.【解析】本题考查了全等三角形的判定和性质,垂直的定义,余角的性质,正确的作出辅助线是解题的关键.作DM ⊥AF 于M ,EN ⊥AF 于N ,根据余角的性质得到∠B =∠2,根据全等三角形的性质得到AF =DM ,同理AF =EN ,求得EN =DM ,由全等三角形的性质得到DG =EG ,于是得到点G 是DE 的中点.3. 如图,将Rt △ABC 沿斜边翻折得到△ADC ,点E ,F 分别为DC ,BC 边上的点,且∠EAF =12∠DAB.试猜想DE ,BF ,EF 之间有何数量关系,并证明你的猜想.【答案】解:猜想:DE +BF =EF.证明:延长CF ,作∠4=∠1,如图:∵将Rt △ABC 沿斜边翻折得到△ADC ,点E ,F 分别为DC ,BC 边上的点,且∠EAF = 12∠DAB ,∴∠1+∠2=∠3+∠5,∠2+∠3=∠1+∠5,∵∠4=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF =∠FAE ,在△AGB 和△AED 中,{∠4=∠1AB =AD ∠ABG =∠ADE, ∴△AGB≌△AED(ASA),∴AG =AE ,BG =DE ,在△AGF 和△AEF 中,{AG =AE ∠GAF =∠EAF AF =AF, ∴△AGF≌△AEF(SAS),∴GF =EF ,∴DE +BF =EF .【解析】本题考查了全等三角形的判定与性质,解题的关键是作辅助角,将DE 和BF 放在一起,便于数量关系的猜想和证明.通过延长CF ,将DE 和BF 放在一起,便于寻找等量关系,通过两次三角形全等证明,得出结论.4. 已知△ABC 为等边三角形,点D 为直线BC 上一动点(点D 不与点B ,点C 重合).以AD 为边作等边三角形ADE ,连接CE .(1)如图1,当点D 在边BC 上时.①求证:△ABD≌△ACE ;②直接判断结论BC =DC +CE 是否成立(不需证明);(2)如图2,当点D 在边BC 的延长线上时,其他条件不变,请写出BC ,DC ,CE 之间存在的数量关系,并写出证明过程.【答案】解:(1)①∵△ABC 和△ADE 是等边三角形,∴∠BAC =∠DAE =60°,AB =BC =AC ,AD =DE =AE .∴∠BAC −∠DAC =∠DAE −∠DAC ,∴∠BAD=∠EAC.在△ABD和△ACE中{AB=AC∠BAD=∠EAC AD=AE,∴△ABD≌△ACE(SAS).②∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中{AB=AC∠BAD=∠EAC AD=AE,∴△ABD≌△ACE(SAS).∴BD=CE.∵BD=BC+CD,∴CE=BC+CD;【解析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE;②由△ABD≌△ACE就可以得出BC= DC+CE;(2)由等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE= AE,进而就可以得出△ABD≌△ACE,就可以得出BC+CD=CE.本题考查了等边三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.5.已知点C是∠MAN平分线上一点,∠BCD的两边CB、CD分别与射线AM、AN相交于B,D两点,且∠ABC+∠ADC=180°.过点C作CE⊥AB,垂足为E.(1)如图1,当点E在线段AB上时,求证:BC=DC;(2)如图2,当点E在线段AB的延长线上时,探究线段AB、AD与BE之间的等量关系;(3)如图3,在(2)的条件下,若∠MAN=60°,连接BD,作∠ABD的平分线BF交AD于点F,交AC于点O,连接DO并延长交AB于点G.若BG=1,DF=2,求线段DB的长.【答案】(1)证明:如图1,过点C作CF⊥AD,垂足为F,∵AC平分∠MAN,CE⊥AB,CF⊥AD,∴CE=CF,∵∠CBE+∠ADC=180°,∠CDF+∠ADC=180°,∴∠CBE=∠CDF,在△BCE和△DCF中,{∠CBE=∠CDF∠CEB=∠CFD=90°CE=CF,∴△BCE≌△DCF(AAS)∴BC=DC;(2)解:AD−AB=2BE,理由如下:如图2,过点C作CF⊥AD,垂足为F,∵AC平分∠MAN,CE⊥AB,CF⊥AD,∴CE=CF,AE=AF,∵∠ABC+∠ADC=180°,∠ABC+∠CBE=180°,∴∠CDF=∠CBE,在△BCE和△DCF中,{∠CBE=∠CDF∠CEB=∠CFD=90°CE=CF,∴△BCE≌△DCF(AAS),∴DF=BE,∴AD=AF+DF=AE+DF=AB+BE+DF=AB+2BE,∴AD−AB=2BE;(3)解:如图3,在BD上截取BH=BG,连接OH,∵BH=BG,∠OBH=∠OBG,OB=OB在△OBH和△OBG中,{BH=BG∠OBH=∠OBG OB=OB,∴△OBH≌△OBG(SAS)∴∠OHB=∠OGB,∵AO是∠MAN的平分线,BO是∠ABD的平分线,∴点O到AD,AB,BD的距离相等,∴∠ODH=∠ODF,∵∠OHB=∠ODH+∠DOH,∠OGB=∠ODF+∠DAB,∴∠DOH=∠DAB=60°,∴∠GOH=120°,∴∠BOG=∠BOH=60°,∴∠DOF=∠BOG=60°,∴∠DOH=∠DOF,在△ODH和△ODF中,{∠DOH=∠DOF OD=OD∠ODH=∠ODF,∴△ODH≌△ODF(ASA),∴DH=DF,∴DB=DH+BH=DF+BG=2+1=3.【解析】(1)过点C作CF⊥AD,根据角平分线的性质得到CE=CF,证明△BCE≌△DCF,根据全等三角形的性质证明结论;(2)过点C作CF⊥AD,根据角平分线的性质得到CE=CF,AE=AF,证明△BCE≌△DCF,得到DF=BE,结合图形解答即可;(3)在BD上截取BH=BG,连接OH,证明△OBH≌△OBG,根据全等三角形的性质得到∠OHB=∠OGB,根据角平分线的判定定理得到∠ODH=∠ODF,证明△ODH≌△ODF,得到DH=DF,计算即可.本题考查的是全等三角形的判定和性质、角平分线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.6.如图,在△ABC和△ADE中,AB=AD,AC=AE,∠1=∠2.(1)求证:△ABC≌△ADE;(2)找出图中与∠1、∠2相等的角(直接写出结论,不需证明).【答案】(1)证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,即∠BAC=∠DAE,在△BAC和△DAE中{AB=AD∠BAC=∠DAE AC=AE,∴△ABC≌△ADE(SAS);(2)解:∵△ABC≌△ADE,∴∠B=∠D,∵∠AMB=∠DMF,∴∠1=∠MFD,∵∠MFD=∠NFC,∴∠1=∠NFC,∴与∠1、∠2相等的角有∠NFC,∠MFD.【解析】(1)根据等式的性质可得∠BAC=∠DAE,然后利用SAS判定△ABC≌△ADE;(2)利用三角形内角和定理可得∠1=∠MFD,再由对顶角相等可得∠1=∠NFC.此题主要考查了全等三角形的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.7.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:①△ADC≌△CEB.②DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD−BE;(3)当直线MN绕点C旋转到图(3)的位置时,请写出DE,AD,BE之间的等量关系.【答案】解:(1)①∵AD⊥MN,BE⊥MN,∴∠ADC=∠ACB=90°=∠CEB,∴∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,{∠CAD=∠BCE ∠ADC=∠CEB AC=BC,∴△ADC≌△CEB(AAS);②∵△ADC≌△CEB,∴CE=AD,CD=BE,∴DE=CE+CD=AD+BE;(2)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=∠ACB=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,{∠CAD=∠BCE ∠ADC=∠CEB AC=BC,∴△ADC≌△CEB(AAS);∴CE=AD,CD=BE,∴DE=CE−CD=AD−BE;(3)当MN旋转到题图(3)的位置时,AD,DE,BE所满足的等量关系是:DE=BE−AD.理由如下:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=∠ACB=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,{∠CAD=∠BCE ∠ADC=∠CEB AC=BC,∴△ADC≌△CEB(AAS),∴CE=AD,CD=BE,∴DE=CD−CE=BE−AD.【解析】本题属于三角形综合题,主要考查了全等三角形的判定与性质的综合应用,解题时注意:全等三角形的对应边相等,同角的余角相等,解决问题的关键是根据线段的和差关系进行推导,得出结论.(1)①根据AD⊥MN,BE⊥MN,∠ACB=90°,得出∠CAD=∠BCE,再根据AAS即可判定△ADC≌△CEB;②根据全等三角形的对应边相等,即可得出CE=AD,CD=BE,进而得到DE=CE+CD=AD+BE;(2)先根据AD⊥MN,BE⊥MN,得到∠ADC=∠CEB=∠ACB=90°,进而得出∠CAD=∠BCE,再根据AAS即可判定△ADC≌△CEB,进而得到CE=AD,CD=BE,最后得出DE=CE−CD=AD−BE;(3)DE=BE−AD,与(2)同理,即可证明:DE=BE−AD.8.如图,已知∠AOB=∠COD=90°,AB=CD,OA=OC.求证:(1)△AOB≌△COD(2)DE=BF.【答案】证明:(1)∵∠AOB=∠COD=90°,∴在Rt△AOB和Rt△COD中,{AB=CDOA=OC,∴Rt△AOB≌Rt△COD(HL),即△AOB≌△COD;(2)∵△AOB≌△COD∴OD=OB,∠A=∠C,∵∠AOB=∠COD=90°∴∠AOB−∠EOF=∠COD−∠EOF,即∠AOE=∠COF在△AOE和△COF中,{∠AOE=∠COF OA=OF∠A=∠C,∴△AOE≌△COF(ASA),∴OE=OF,∵OD=OB,∴OD−OE=OB−OF,即DE=BF.【解析】(1)根据题意,利用HL定理可以证明结论成立;(2)根据(1)中的结论,再根据三角形全等的性质和判定,可以证明结论成立.本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求结论需要的条件,利用数形结合的思想解答.9. 以点A 为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD ,CE .(1)试说明:BD =CE ;(2)延长BD 交CE 于点F ,求∠BFC 的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.【答案】解:(1)∵△ABC 、△ADE 是等腰直角三角形,∴AB =AC ,∠BAD =∠EAC =90°,AD =AE ,∵在△ADB 和△AEC 中,{AD =AE ∠DAB =∠EAC AB =AC,∴△ADB≌△AEC(SAS),∴BD =CE .(2)∵△ADB≌△AEC ,∴∠ACE =∠ABD ,而在△CDF 中,∠BFC =180°−∠ACE −∠CDF ,又∵∠CDF =∠BDA ,∴∠BFC =180°−∠DBA −∠BDA =∠DAB =90°.(3)BD =CE 成立,且两线段所在直线互相垂直,即∠BFC =90°.理由如下:∵△ABC 、△ADE 是等腰直角三角形,∴AB =AC ,AD =AE ,∠BAC =∠EAD =90°,∵∠BAC +∠CAD =∠EAD +∠CAD ,∴∠BAD =∠CAE ,∵在△ADB 和△AEC 中,{AD =AE ∠DAB =∠EAC AB =AC,∴△ADB≌△AEC(SAS),∴BD =CE ,∠ACE =∠DBA ,【解析】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等,对应角相等.也考查了等腰直角三角形的性质.(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△AEC,则BD=CE;(2)由△ADB≌△AEC得到∠ACE=∠DBA,利用三角形内角和定理可以得到∠BFC= 180°−∠ACE−∠CDF=180°−∠DBA−∠BDA=∠DAB=90°;(3)与(1)一样可证明△ADB≌△AEC,得到BD=CE,∠ACE=∠DBA,利用三角形内角和定理得到∠BFC=∠CAB=90°.10.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.【答案】证明:(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,在△ABF和△AEC中,∵{AE=AB∠EAC=∠BAF AF=AC,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如图,根据(1),△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°−∠ABF−∠BDM=180°−90°=90°,所以EC⊥BF.【解析】(1)先求出∠EAC=∠BAF,然后利用“边角边”证明△ABF和△AEC全等,根据全等三角形对应边相等即可证明;(2)根据全等三角形对应角相等可得∠AEC=∠ABF,设AB、CE相交于点D,根据∠AEC+∠ADE=90°可得∠ABF+∠ADM=90°,再根据三角形内角和定理推出∠BMD=90°,从而得证.本题考查了全等三角形的判定与性质,根据条件找出两组对应边的夹角∠EAC=∠BAF 是证明的关键,也是解答本题的难点.11.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【答案】证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,{AB=AD∠BAC=∠DAE AC=AE,(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,{BF=GF∠AFB=∠AFG AF=AF,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,{∠GCA=∠DCA ∠CGA=∠CDA AG=AD,∴△CGA≌△CDA(AAS),∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【解析】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.(1)根据题意和题目中的条件可以找出△BAC≌△DAE的条件;(2)根据(1)中的结论和等腰直角三角形的定义可以得到∠FAE的度数;(3)根据题意和三角形全等的知识,作出合适的辅助线即可证明结论成立.12.如图1,四边形ABCD是正方形,点E是边BC上的动点(不与B,C重合),将线段AE绕点E顺时针旋转90°得到线段EF,连接AF,EF、AF分别与CD交于点M、N,作FG⊥BC于点G;(1)求证:BE=CG(2)探究线段BE、EN、DN间的等量关系,并说明理由;(3)如图2,当点E运动到BC的中点时,若AB=6,求MN的长.【答案】(1)证明:∵EF⊥AE,∴∠AEB+∠GEF=90°,又∵∠AEB+∠BAE=90°∴∠GEF=∠BAE,又∵FG⊥BC,∴∠ABE=∠EGF=90°,在△ABE与△EGF中,{∠ABE=∠EGF ∠BAE=∠GEF AE=EF,∴△ABE≌△EGF(AAS),∴AB=EG,∴BE=CG.(2)解:结论:EN=BE+DN.理由:如图1中,延长EB到K,使得BK=DN.∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠D=∠ABC=∠ABK=90°,∵DN=BK,∴△ADN≌△ABK(SAS),∴AK=AN,∠BAK=∠DAN,∵EA=EF,∠AEF=90°,∴∠EAF=45°,∴∠KAE=∠BAK+∠BAE=∠DAN+∠BAE=45°,∴∠EAK=∠EAN=45°,∵AE=AE,∴△EAK≌△EAN(SAS),∴EN=EK,∵EK=BK+BE=DN+BE,∴EN=BE+DN.(3)解:如图2中,作FK⊥AB于K,交CD于J.∵BE=CE=3,∴FG=BE=CG=3,∵AB//CD,∴∠FKB=∠FJC=90°,∵∠G=∠JCG=90°,∴四边形FGCJ是矩形,∵CG=FG,∴四边形FGCJ是正方形,CG=FG=3,∵EC=CG,CM//FG,∴CM=12FG=32,∴JM=CJ−CM=32,∵四边形BGFK是矩形,∴FK=BG=9,BK=FG=AK=3,∵JN//AK,∴NJAK =FJFK,∴NJ3=39,∴NJ=1,∴MN=NJ+JM=1+32=52.【解析】(1)根据同角的余角相等得到一对角相等,再由一对直角相等,且AE=EF,利用AAS得到三角形ABE与三角形EFG全等即可解决问题.(2)结论:EN=BE+DN.如图1中,延长EB到K,使得BK=DN.构造全等三角形解决问题即可.(3)如图2中,作FK⊥AB于K,交CD于J.分别求出NJ,JM即可解决问题.此题属于四边形综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定和性质,正方形的性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.13.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60゜,则∠AFB=________;(2)如图2,若∠ACD=α,则∠AFB=_____________(用含α的式子表示);(3)将图2中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),如图3.试探究∠AFB与α的数量关系,并予以证明.【答案】解:(1)120°;(2)180°−α;(3)∠AFB=180°−α,证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中{AC=DC∠ACE=∠DCB CE=CB,∴△ACE≌△DCB,∴∠AEC=∠DBC,∴∠AFB=∠AEC+∠CEB+∠EBD=∠DBC+∠CEB+∠EBC=∠CEB+∠EBC=180°−∠ECB=180°−α,即∠AFB=180°−α.【解析】本题考查了全等三角形的性质和判定,三角形外角性质,三角形的内角和定理(1)求出∠ACE=∠DCB,证△ACE≌△DCB,推出∠CAE=∠CDB,求出∠AFB=∠CDA+∠DAC,根据三角形内角和定理求出即可;(2)求出∠ACE=∠DCB,证△ACE≌△DCB,推出∠CAE=∠CDB,求出∠AFB=∠CDA+∠DAC,根据三角形内角和定理求出即可;(3)求出∠ACE=∠DCB,证△ACE≌△DCB,推出∠CAE=∠CDB,求出∠AFB=∠CEB+∠CBE,根据三角形内角和定理求出即可.【解答】解:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中{AC=DC∠ACE=∠DCB CE=CB∴△ACE≌△DCB,∴∠CAE=∠CDB,∴∠AFB=∠CDB+∠CDA+∠DAE=∠CDA+∠DAE+∠BAE=∠CDA+∠DAC=180°−60°=120°,故答案为:120°;(2)解:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中{AC=DC∠ACE=∠DCB CE=CB∴△ACE≌△DCB,∴∠CAE=∠CDB,∴∠AFB=∠CDB+∠CDA+∠DAE=∠CDA+∠DAE+∠BAE=180°−∠ACD=180°−α,故答案为:180°−α;(3)见答案.14.(1)问题发现:如图1,△ABC与△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,则线段AE、BD的数量关系为_______,AE、BD所在直线的位置关系为________;(2)深入探究:在(1)的条件下,若点A,E,D在同一直线上,CM为△DCE中DE边上的高,请判断∠ADB的度数及线段CM,AD,BD之间的数量关系,并说明理由.【答案】解:(1)AE=BD,AE⊥BD;(2)结论:AD=2CM+BD,理由:如图2中,∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠BDC=∠AEC=135°.∴∠ADB=∠BDC−∠CDE=135°−45°=90°;在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AD=DE+AE=2CM+BD.【解析】【分析】本题属于三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.(1)结论:AE=BD,AE⊥BD.如图1中,延长AE交BD于点H,AH交BC于点O.只要证明△ACE≌△BCD(SAS),即可解决问题;(2)结论:AD=2CM+BD,只要证明△ACE≌△BCD(SAS),即可解决问题.【解答】解:(1)结论:AE=BD,AE⊥BD.理由:如图1中,延长AE交BD于点H,AH交BC于点O.∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,∵∠CAE+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠CBD=90°∴∠AHB=90°,∴AE⊥BD.故答案为AE=BD,AE⊥BD.(2)见答案.15.如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC,D在线段BC上,E是线段AD上一点.现以CE为直角边,C为直角顶点,在CE的下方作等腰直角△ECF,连接BF.(1)如图1,求证:∠CAE=∠CBF;(2)当A、E、F三点共线时,取AF的中点G,连接CG,求证:AE2+EF2=4CG2;(3)如图3,若AC=BC=3√3,∠BAD=15°,连接DF,当E运动到使得∠ACE=30°时,求△DEF的面积.【答案】(1)证明:∵△ABC,△ECF都是等腰直角三角形,∴CA=CB,CE=CF,∠ACB=∠ECF=90°,∴∠ACE=∠BCF,∴△ACE≌△BCF(SAS),∴∠CAE=∠CBF;(2)解:延长AC至点H,使CH=AC,连接HF,BE.由(1)得:△ACE≌△BCF,∴AE=BF,且∠CAD=∠DBF,∵∠ADB=∠CAD+∠ACD=∠DBF+∠DFB,∴∠DFB=∠ACD=90°,∴BF2+EF2=BE2,易证△CEB≌△CFH,∴BE=HF=2CG,∴BF2+EF2=BE2=4CG2;(3)解:过点F作FH⊥BC于H,如图3所示:∵△ABC是等腰直角三角形,∠ACB=90°,AC=BC,∴∠BAC=∠ABC=45°,∵∠BAD=15°,∴∠CAE=45°−15°=30°,∴∠ACE=∠CAE=30°,∴AE=CE=CF,同(1)得:△ACE≌△BCF(SAS),∴BF=AE,∠ACE=∠BCF=30°,∴CF=BF,∴∠BCF=∠CBF=30°,∵FC=FB,FH⊥BC,∴CH=BH=12BC=3√32,FH=√33CH=32,CF=BF=2FH=3,∵∠CED=∠CAE+∠ACE=60°,∠ECD=90°−30°=60°,∴△ECD是等边三角形,∴EC=CF=CD=3,∴S△DEF=S△ECD+S△CDF−S△ECF=√34×32+12×3×32−12×3×3=9√3−94.【解析】(1)证明△ACE≌△BCF(SAS),即可解决问题;(2)延长AC至点H,使CH=AC,连接HF,BE,由(1)得△ACE≌△BCF,进而得到BF2+ EF2=BE2,易证△CEB≌△CFH,即可解决问题;(3)过点F作FH⊥BC于H,如图3所示,同(1)得△ACE≌△BCF,再证明△BCF是底角为30°的等腰三角形,再求出CH,FB,CF的长,然后根据S△DEF=S△ECD+S△CDF−S△ECF 计算即可.本题属于三角形综合题,考查了等腰直角三角形的性质,含30°角的直角三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.16.平面直角坐标系中,A(a,0),B(b,b),C(0,c),且满足:√a−4+(2b−a−c)2+|b−c|=0,E、D分别为x轴和y轴上动点,满足∠DBE=45°.(1)求A、B、C三点坐标;(2)如图1,若D为线段OC中点,求E点坐标;(3)当E,D在x轴和y轴上运动时,试探究CD、DE和AE之间的关系.【答案】解:(1)∵√a−4+(2b−a−c)2+|b−c|=0,∴a=4,b=c,2b−a−c=0,∴b=4,c=4,∴点A(4,0),点B(4,4),点C(0,4);(2)如图1,将△BCD绕点B逆时针旋转90°得到△BAH,∵点A(4,0),点B(4,4),点C(0,4),∴OA=OC=BC=AB=4,∵D为线段OC中点,∴CD=DO=2,∵将△BCD绕点B逆时针旋转90°得到△BAH,∴△BCD≌△BAH,∴BD=BH,∠CBD=∠HBA,CD=AH=2,∵∠DBE=45°,∴∠CBD+∠EBA=45°,∴∠EBA+∠ABH=45°=∠HBE=∠DBE,且BD=BH,BE=BE,∴△DBE≌△HBE(SAS)∴DE=EH,∵OH=OA+AH=4+2=6,∴DE=EH=6−OE,∵DE2=OD2+OE2,∴(6−OE)2=4+OE2,∴OE=8,3,0);∴点E坐标为(83(3)如图1,若点E在x轴正半轴,点D在y轴正半轴上,由(2)可知:DE=EH,AH=CD,∴DE=AE+AH=AE+CD,如图2,点E在x轴负半轴,点D在y轴正半轴,将△BCD绕点B逆时针旋转90°得到△BAH,∴△BCD≌△BAH,∠DBH=90°,∴BD=BH,∠CBD=∠HBA,CD=AH,∵∠DBE=45°,∴∠DBE=45°=∠HBE,且BD=BH,BE=BE,∴△DBE≌△HBE(SAS)∴DE=EH,∴AE=AH+EH=CD+DE;如图3,点E在x轴正半轴,点D在y轴负半轴,将△BCD绕点B逆时针旋转90°得到△BAH,∴△BCD≌△BAH,∠DBH=90°,∴BD=BH,∠CBD=∠HBA,CD=AH,∵∠DBE=45°,∴∠DBE=45°=∠HBE,且BD=BH,BE=BE,∴△DBE≌△HBE(SAS)∴DE=EH,∴CD=AH=AE+EH=AE+DE.【解析】(1)由非负性可求a,b,c的值,即可求解;(2)将△BCD绕点B逆时针旋转90°得到△BAH,可得BD=BH,∠CBD=∠HBA,CD= AH=2,由“SAS”可证△DBE≌△HBE,可得DE=EH,由勾股定理可求OE的长,即可求E点坐标;(3)分三种情况讨论,由旋转的性质,全等三角形的性质可求解.本题是四边形综合题,考查了非负性,正方形的性质,旋转的性质,全等三角形的判定和性质,利用分类讨论思想解决问题是本题的关键.17.如图,在锐角三角形AOB中,分别以OA、OB为腰在△AOB外作等腰直角三角形OAE和等腰直角三角形OBD.(1)如图1,连接BE、AD,求证:BE=AD.(2)如图2,以O为原点、AB边上的高OC所在的直线为y轴.建立平面直角坐标系,连接ED与y轴交于点F.①若A点坐标为(n,m),请用n、m表示;E点的坐标(________,________)及D点的横坐标为________.②△AOB的面积S△AOB与△EOD的面积S△EOD有什么数量关系?请写出你的结果,并给出证明.【答案】解:(1)∵△OAE、△OBD均为等腰直角三角形,∴OD=OB,OA=OE,∠DOB=∠AOE=90°.∴∠EOA+∠AOB=∠BOD+∠AOB,即∠EOB=∠AOD.在Rt△EOB和Rt△AOD中,∴Rt△EOB≌Rt△AOD.∴BE=AD.(2)①m;−n;−m.②S△AOB=S△EOD,证明如下:如图所示:过点B作BN⊥OA,垂足为N,过点D作DM⊥OE,垂足为M.∵∠EOD+∠DOM=180°,∠EOD+∠NOB=180°,∴∠DOM=∠NOB.在△OBN和△ODM中,∴△OBN≌△ODM.∴MD=BN.又∵AO=OE,∴12AO⋅BN=12OE⋅DM,即S△AOB=S△EOD.【解析】【分析】本题主要考查三角形全等的性质与判定,等腰直角三角形的性质与判定,点的坐标的确定等知识的综合运用.(1)依据等腰直角三角形的性质可得到OD=OB,OA=OE,∠DOB=∠AOE=90°,然后依据等式的性质可证明∠EOB=∠AOD,接下来,依据SAS可证明Rt△EOB≌Rt△AOD,最后,依据全等三角形的性质可得到BE=AD.(2)①过点E作EG⊥y轴,垂足为G,过点D作DH⊥x轴,垂足为H.先证明∠OEG=∠AOC,然后再证明△OEG≌△AOC,依据全等三角形的性质可得到OG=AC,EG=OC,从而可得到点E的坐标,接下来再证明△ODH≌△OBC.从而可得到OH=OC,故此可得到点D的横坐标;②过点B作BN⊥OA,垂足为N,过点D作DM⊥OE,垂足为M,先证明△OBN≌△ODM,从而可得到MD=BN,最后,依据三角形的面积公式求解即可.【解答】(1)见答案;(2)①如图所示:过点E作EG⊥y轴,垂足为G,过点D作DH⊥x轴,垂足为H.∵∠EOA=90°,∴∠EOG+∠AOC=90°.又∵∠EOG+∠OEG=90°,∴∠OEG=∠AOC.在△OEG和△AOC中,∴△OEG≌△AOC.∴OG=AC,EG=OC.∵A(n,m)∴E(m,−n).∵∠DOH+∠HOB=90°,∠HOB+∠BOC=90°,∴∠DOH=∠BOC.在△ODH和△OBC中,∴△ODH≌△OBC.∴OH=OC.∴点D的横坐标为−m.故答案为:m;−n;−m;②见答案.18.已知,△ABC是等边三角形,D是直线BC上一点,以D为顶点做∠ADE=60°.DE交过C且平行于AB的直线于E,求证:AD=DE;当D为BC的中点时,(如图1)小明同学很快就证明了结论:他的做法是:取AB的中点F,连结DF,然后证明△AFD≌△DCE.从而得到AD=DE,我们继续来研究:(1)如图2、当D是BC上的任意一点时,求证:AD=DE(2)如图3、当D在BC的延长线上时,求证:AD=DE(3)当D在CB的延长线上时,请利用图4画出图形,并说明上面的结论是否成立(不必证明).【答案】(1)证明:在AB上截取AF=DC,连接FD,如图2所示:∵△ABC是等边三角形,∴AB=BC,∠B=60°,又∵AF=DC,∴BF=BD,∴△BDF是等边三角形,∴∠BFD=60°,∴∠AFD=120°,又∵AB//CE,∴∠DCE=120°=∠AFD,而∠EDC+∠ADE=∠ADC=∠FAD+∠B∠ADE=∠B=60°,∴∠FAD=∠CDE,在△AFD和△DCE中{∠FAD=∠CDE AF=CD∠AFD=∠DCE,∴△AFD≌△DCE(ASA),∴AD=DE;(2)证明:在BA的延长线上截取AF=DC,连接FD,如图3所示:∵△ABC是等边三角形,∴AB=BC,∠B=60°,又∵AF=DC,∴BF=BD,∴△BDF是等边三角形,∴∠F=60°,又∵AB//CE,∴∠DCE=60°=∠F,而∠FAD=∠B+∠ADB,∠CDE=∠ADE+∠ADB,又∵∠ADE=∠B=60°,∴∠FAD=∠CDE,在△AFD和△DCE中,{∠FAD=∠CDEAF=CD∠F=∠DCE,∴△AFD≌△DCE(ASA),∴AD=DE;(3)解:AD=DE仍成立.理由如下:在AB的延长线上截取AF=DC,连接FD,如图4所示:∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠FAD+∠ADB=60°,又∵AF=DC,∴BF=BD,∵∠DBF=∠ABC=60°,∴△BDF是等边三角形,∴∠AFD=60°,又∵AB//CE,∴∠DCE=∠ABC=60°,∴∠AFD=∠DCE,∵∠ADE=∠CDE+∠ADB=60°,∴∠FAD=∠CDE,在△AFD和△DCE中,{∠FAD=∠CDE AF=CD∠AFD=∠DCE,∴△AFD≌△DCE(ASA),∴AD=DE.【解析】(1)在AB上截取AF=DC,连接FD,证明△BDF是等边三角形,得出∠BFD=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论;(2)在BA的延长线上截取AF=DC,连接FD,证明△BDF是等边三角形得出∠F=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论;(3)在AB的延长线上截取AF=DC,连接FD,证明△BDF是等边三角形,得出∠BFD= 60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论.本题是三角形综合题目,考查了全等三角形的判定与性质、等边三角形的判定与性质、平行线的性质、三角形的外角性质等知识;本题综合性强,有一定难度,通过作辅助线证明三角形全等是解题的关键.19.如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD的右侧作等腰直角三角形ADE,∠DAE=90°,AD=AE.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时,如图1,线段CE、BD的位置关系为______,数量关系为______;②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由;(2)如图3,如果AB≠AC∠BAC≠90°,点D在线段BC上运动.探究:当∠ACB多少度时,CE ⊥BC ?小明通过(1)的探究,猜想∠ACB =45°时,CE ⊥BC.他想过点A 做AC 的垂线,与CB 的延长线相交,构建图2的基本图案,寻找解决此问题的方法.小明的想法对吗?如不对写出你的结论;如对按此方法解决问题并写出理由.【答案】垂直 相等【解析】解:(1)CE 与BD 位置关系是CE ⊥BD ,数量关系是CE =BD .理由:如图1,∵∠BAD =90°−∠DAC ,∠CAE =90°−∠DAC ,∴∠BAD =∠CAE .又BA =CA ,AD =AE ,∴△ABD≌△ACE (SAS)∴∠ACE =∠B =45°且CE =BD .∵∠ACB =∠B =45°,∴∠ECB =45°+45°=90°,即CE ⊥BD .故答案为:垂直,相等;②都成立∵∠BAC =∠DAE =90°,∴∠BAC +∠DAC =∠DAE +∠DAC ,∴∠BAD =∠CAE在△DAB 与△EAC 中,{AD =AE ∠BAD =∠CAE AB =AC∴△DAB≌△EAC(SAS),∴CE =BD ,∠B =∠ACE ,∴∠ACB +∠ACE =90°,即CE ⊥BD(2)小明的想法对的当∠ACB =45°时,CE ⊥BD理由:过点A 作AG ⊥AC 交CB 的延长线于点G ,则∠GAC =90°,∵∠ACB=45°,∠AGC=90°−∠ACB,∴∠AGC=90°−45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,在△GAD与△CAE中,{AC=AG∠DAG=∠EAC AD=AE∴△GAD≌△CAE(SAS),∴∠ACE=∠AGC=45°,∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥BC(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;②先根据“SAS”证明△ABD≌△ACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A作AG⊥AC交BC于点G,画出符合要求的图形,再结合图形判定△GAD≌△CAE,得出对应角相等,即可得出结论.本题为三角形综合题,主要考查了全等三角形的判定与性质及等腰直角三角形的性质,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等,对应角相等进行求解.20.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B、C作过点A的直线的垂线BD、CE,垂足为D、E.求证:(1)△ABD≌△CAE;(2)DE=BD+CE.【答案】证明:(1)∵BD⊥DE,CE⊥DE,∴∠D=∠E=90°,∵∠BAC=90°,∴∠DAB+∠DBA=∠DAB+∠EAC,∴∠DBA=∠EAC;在△ABD与△CAE中,∵{∠DBA=∠EAC ∠BDA=∠AEC AB=AC,∴△ABD≌△CAE(AAS),(2)由(1)得:△ABD≌△CAE,∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE.【解析】证明∠DBA=∠EAC,这是解决该题的关键性结论;证明△ABD≌△CAE,得到BD=AE,AD=CE,即可解决问题.该题主要考查了全等三角形的判定及其性质的应用问题;准确找出命题中隐含的等量关系,是证明全等三角形的关键.21.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,且∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE= BD+CE是否成立?如成立;请你给出证明;若不成立,请说明理由.【答案】证明:(1)∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中{∠ABD=∠CAE ∠BDA=∠CEA AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD,∵在△ADB和△CEA中{∠ABD=∠CAE ∠BDA=∠CEA AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.【解析】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;得出∠CAE=∠ABD是解题关键.(1)根据BD⊥直线l,CE⊥直线l得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD= CE,于是DE=AE+AD=BD+CE;(2)利用∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°−α,得出∠CAE=∠ABD,进而得出△ADB≌△CEA即可得出答案.22.如图①,已知CA=CB,CD=CE,∠ACB=∠DCE=ɑ,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含ɑ的式子表示∠AMB的度数(3)当ɑ=90°时,AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.【答案】解:(1)如图①,∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,{CA=CB;∠ACD=∠BCECD=CE,∴△ACD≌△BCE(SAS),∴BE=AD;(2)如图①,∵△ACD≌△BCE,∴∠CAD=∠CBE,∵△ABC中,∠BAC+∠ABC=180°−α,∴∠BAM+∠ABM=180°−α,∴△ABM中,∠AMB=180°−(180°−α)=α;(3)△CPQ为等腰直角三角形.证明:如图②,由(1)可得,BE=AD,∵AD,BE的中点分别为点P、Q,∴AP=BQ,∵△ACD≌△BCE,∴∠CAP=∠CBQ,在△ACP和△BCQ中,{CA=CB∠CAP=∠CBQ AP=BQ,∴△ACP≌△BCQ(SAS),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形.【解析】本题属于三角形综合题,主要考查了全等三角形的判定与性质,等腰直角三角形的判定以及三角形内角和定理的综合应用.等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.解题时注意掌握全等三角形的对应边相等,对应角相等的运用.(1)由CA=CB,CD=CE,∠ACD=∠BCE,利用SAS即可判定△ACD≌△BCE;(2)根据△ACD≌△BCE,得出∠CAD=∠CBE,即可得到∠AMB=∠ACB=α;(3)先根据SAS判定△ACP≌△BCQ,再根据全等三角形的性质,得出CP=CQ,∠ACP=∠BCQ,最后根据∠ACB=90°即可得到∠PCQ=90°,进而得到△PCQ为等腰直角三角形.23.据图回答问题(1)如图①,已知:△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)拓展:如图②,将(1)中的条件改为:△ABC中,AB=AC,D、A、E三点都在直线m上,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE= BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,{∠ABD=∠CAE ∠BDA=∠CEA AB=AC,。
1.已知:如图,AB DE ∥,AC DF ∥,BE CF =.求证:AB DE =.2.图中是一副三角板,45︒的三角板Rt DEF ∆的直角顶点D 恰好在30︒的三角板Rt ABC ∆斜边AB 的中点处,304590A E EDF ACB ∠=︒∠=︒∠=∠=︒,,,DE 交AC 于点G ,GM AB ⊥于M .(1)如图1,当DF 经过点C 时,作CN AB ⊥于N ,求证:AM DN =.(2)如图2,当DF AC ∥时,DF 交BC 于H ,作HN AB ⊥于N ,(1)的结论仍然成立,请你说明理由.3.在正方形ABCD 中,AB 、BC 、CD 三边上分别有点E 、G 、F ,且EF DG ⊥.求证:EF DG =.4.在正方形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 边上的点,且EG FH ⊥,求证:EG FH =.5.ABC ∆中,90B ∠=︒,M 为AB 上一点,使得AM BC =,N 为BC 上一点,使得CN BM =,连AN 、CM 交于P 点.试求APM ∠的度数,并写出你的推理证明的过程.FEDC B A图2图1EHABCD FGMN NMGF ED CBAGFEDC BA M GFE DC BAHGFE D CBAGFE MN H D CBA6.如图,在Rt ABC ∆中,AB AC AD BC =⊥,,垂足为D .E F 、分别是CD AD 、上的点,且CE AF =.如果62AED ∠=︒,那么DBF ∠=__________.7.E 、F 分别是正方形ABCD 的BC 、CD 边上的点,且BE CF =.求证:AE BF ⊥.8.E 、F 、G 分别是正方形ABCD 的BC 、CD 、AB 边上的点,GE EF ⊥,GE EF =.求证:BG CF BC +=.9.如图,矩形ABCD 中,E 是AD 上一点,CE EF ⊥交AB 于F 点,若2DE =,矩形周长为16,且CE EF =,求AE 的长.N MPCB AFEDBA PFEDCBAGA BC DEF10.如图,已知ABC ∆中,90ABC AB BC ∠=︒=,,三角形的顶点在相互平行的三条直线123l l l ,,上,且12l l ,之间的距离为2,23l l ,之间的距离为3,则AC 的长是______.11.两个全等的30︒、60︒的三角板ADE 、BAC ,如右下图所示摆放,E 、A 、C 在一条直线上,连结BD .取BD 的中点M ,连结ME 、MC ,试判断EMC ∆的形状,并说明理由.12.已知等腰直角三角形ABC ,C ∠为直角,M 为BC 的中点.CD AM ⊥.求证:AMC DMB ∠=∠.求证:AMC DMB ∠=∠.13.如图所示,已知在等腰直角三角形ABC 中,BAC ∠是直角,D 是AC 上一点,AE BD ⊥,AE 的延长线交BC 于F ,若ADB FDC ∠=∠,求证:D 是AC 的中点.14.如图所示,在等边ABC ∆中,DE BC ∥,O 为ADE ∆的中心,M 为BE 的中点,求证OM CM ⊥.EDCBF ACBAl 3l 2l 1ME DCBA MDCBA F EDCBA15.已知P 为等腰直角ABC ∆的斜边AB 上任意一点,PE 、PF 分别为AC 、BC 之垂线,垂足为E 、F .M 为AB 之中点.则E 、M 、F 组成等腰直角三角形.16.长方形ABCD 中,4AB =,7BC =,BAD ∠的角平分线交BC 于点E ,EF ED ⊥交AB 于F ,则EF =_________.17.如图,设ABC ∆和CDE ∆都是正三角形,且62EBD ∠=︒,则AEB ∠的度数是()A .124︒B .122︒C .120︒D .118︒18.已知:BD CE 、是ABC ∆的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =,求证:⑴AP AQ =;⑵AP AQ ⊥.MP F EC BA FEDCB A 1ADBCE19.如图,ABC ∆的边BC 在直线l 上,AC BC ⊥,且AC BC =;EFP ∆的边FP 也在直线l 上,边EF 与边AC 重合,且EF FP =.⑴在图1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的数量关系和位置关系;⑵将EFP ∆沿直线l 向左平移到图2的位置时,EP 交AC 于点Q ,连结AP ,BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;⑶将EFP ∆沿直线l 向左平移到图3的位置时,EP 的延长线交AC 的延长线于点Q ,连结AP ,BQ .你认为⑵中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.20.ABC ∆中,D 为BC 中点,DE BC ⊥交BAC ∠的平分线于点E ,EF AB ⊥于F EG AC ⊥于G .求证:BF CG =.21.如图,在正方形ABCD 中,M 是AB 的中点,,MN MD BN CBE ⊥∠平分,E 为AB 的延长线上一PDQCBEA图⑴lPC (F )B A (E )图⑵Q ←lPFE C B A图⑶←QAEB CF Pl4321A B C EFPlQN lPFCBEAQEGF DC BA22.如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?23.如图,点M 为正方形ABCD 的边AB (或BA )延长线上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,此时MD 与MN 有何数量关系?并加以证明.24.如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?25.已知,ABC ∆中,3AB =,120BAC ∠=︒,1AC =,D 为AB 延长线上一点,1BD =,点P 在BAC ∠的平分线上,且满足PAD ∆是等边三角形.NM EDCB AN CDE B M A NCDEB M A CDNEM B A NEB M A D⑵求点C 到BP 的距离.26.如图,已知ABC ∆和ADE ∆都是等边三角形,B 、C 、D 在一条直线上,试说明CE 与AC CD +相等的理由.27.如图,在四边形ABCD 中,AD BC ∥,点E 是AB 上一个动点;若60B ∠=︒,AB BC =,且60DEC ∠=︒,判断AD AE +与BC 的关系并证明你的结论.28.已知,在ABC ∆中,ACB ∠为锐角,D 是射线BC 上一动点(D 与C 不重合),以AD 为一边向右侧作等边ADE ∆(C 与E 不重合),连接CE .⑴若ABC ∆为等边三角形,当点D 在线段BC 上时(如图1所示),则直线BD 与直线CE 所夹锐角为度;⑵若ABC ∆为等边三角形,当点D 在线段BC 的延长线上时(如图2所示),你在⑴中得到的结论是否仍然成立?请说明理由;⑶若ABC ∆不是等边三角形,且BC AC >(如图3所示).试探究当点D 在线段BC 上时,你在⑴中得到的结论是否仍然成立?若成立,请说明理由;若不成立,请指出当ACB ∠满足什么条件时,能使⑴中的结论成立,并说明理由.CB PDAE DCBAEDCBAEDCB A图1FED C BA图2BC D F AE图3BC FA29.如图,等边三角形ABC ∆与等边DEC ∆共顶点于C 点.求证:AE BD =.30.如图,ABD ∆和CED ∆均为等边三角形,AC BC =,AC BC ⊥.若BE =CD =.31.如图,B ,C ,E 三点共线,且ABC ∆与DCE ∆是等边三角形,连结BD ,AE 分别交AC ,DC 于M ,N 点.求证:CM CN =.32.如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.请你证明:(1)AN BM =;(2)DE AB ∥;(3)CF 平分AFB ∠.33.如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形,D 是AN 中点,E 是BM 中点,求证:CDE ∆是等边三角形.DECBA图6DECBANMEDCBAM D NEC BF A34.如下图,在线段AE 同侧作两个等边三角形ABC ∆和CDE ∆(120ACE ∠<°),点P 与点M 分别是线段BE 和AD 的中点,则CPM ∆是()A .钝角三角形B .直角三角形C .等边三角形D .非等腰三角形35.已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.CG 、CH 分别是ACN ∆、MCB ∆的高.求证:CG CH =.36.如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG .求证:AE CG =.37.以ABC ∆的两边AB AC ,为边向外作正方形ABDE ACFG ,,求证:CE BG =,且CE BG ⊥.M DNECBAPMBC DEAHG NM CBAG FE DCBA38.如图,在△ABC 外面作正方形ABEF 与ACGH ,AD 为△ABC 的高,其反向延长线交FH 于M ,求证:(1)BH CF =;(2)MF MH=39.如图1,若ABC ∆和ADE ∆为等边三角形,M N ,分别EB CD ,的中点,易证:CD BE =,AMN ∆是等边三角形.(1)当把ADE ∆绕A 点旋转到图2的位置时,CD BE =是否仍然成立?若成立请证明,若不成立请说明理由;(2)当ADE ∆绕A 点旋转到图3的位置时,AMN ∆是否还是等边三角形?若是,请给出证明,并求出当2AB AD =时,ADE ∆与ABC ∆及AMN ∆的面积之比;若不是,请说明理由.40.如图所示.正方形ABCD 中,在边CD 上任取一点Q ,连AQ ,过D 作DP AQ ⊥,交AQ 于R ,交BC 于P ,正方形对角线交点为O ,连OP ,OQ .求证:OP OQ ⊥.GOFEDCB AGHM FED CBA图1N M E DC BA图2ABCDEMN图3ABCDEMN41.如图所示,在等腰直角ABC ∆的斜边AB 上取两点M 、N ,使45MCN ∠=︒,记AM m =,MN x =,BN n =,求证:以x 、m 、n 为边长的三角形的形状是直角三角形.42.请阅读下列材料:已知:如图1在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 、E 分别为线段BC 上两动点,若45DAE ∠=︒.探究线段BD 、DE 、EC 三条线段之间的数量关系.小明的思路是:把AEC ∆绕点A 顺时针旋转90︒,得到ABE '∆,连结E D ',使问题得到解决.请你参考小明的思路探究并解决下列问题:⑴猜想BD 、DE 、EC 三条线段之间存在的数量关系式,并对你的猜想给予证明;⑵当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时,如图2,其它条件不变,⑴中探究的结论是否发生改变?请说明你的猜想并给予证明.43.如图所示,在五边形ABCDE 中,90B E ∠=∠=︒,AB CD AE ===1BC DE +=,求此五边形的面积.RQPOD CBAx m n N M CBA 图1ABCDE图2AB CDE【巩固】在五边形ABCDE 中,已知AB AE =,BC DE CD +=,180ABC AED ∠+∠=︒,连接AD .求证:AD 平分CDE ∠.44.如图,五边形ABCDE 中,AB AE =,BC DE CD +=,120BAE BCD ∠=∠=︒,180ABC AED ∠+∠=︒,连结AD 。
1. 如图,已知等边△ ABC,P在AC延长线上一点,以PA为边作等边△ APE,EC延长线交BP于M,连接AM,求证:(1)BP=CE;(2)试证明:EM-PM=AM.3.已知,如图①所示,在△ABC和△ ADE中,AB AC,AD AE,BAC DAE ,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:① BE CD ;② AM AN ;2)在图①的基础上,将△ADE 绕点 A 按顺时针方向旋转180o,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立4、如图1,以△ ABC的边AB 、AC为边分别向外作正方形ABDE和正方形ACFG ,连结EG ,试判断△ABC与△AEG 面积之间的关系,并说明理由.2、点 C 为线段AB 上一点,△ ACM, △ CBN 都是等边三角形,线段AN,MC 交于点E,BM,CN交于点F。
求证:1)AN=MB. (2)将△ ACM 绕点 C 按逆时针方向旋转一定角度,如图②所示,其他条件不变,1)中的结论是否依然成立?(3)AN 与BM 相交所夹锐角是否发生变化。
B图①CB图1)F7、已知 Rt △ ABC 中, AC BC ,∠C 90,D 为AB 边的中点, EDF 90°,EDF 绕 D 点旋转,它的两边分别交 AC 、 CB (或它们的延长线)于 E 、 F.1 当 EDF 绕 D 点旋转到 DE AC 于E时(如图1),易证S △DEF S △CEF S △ ABC .DEF CEF 2 ABC当 EDF 绕 D 点旋转到 DE 和 AC 不垂直时, 在图 2 和图 3 这两种情况下, 上述结论是否成立?若成立, 请给予证明;8. 已知 AC//BD, ∠CAB 和∠ DBA 的平分线 EA 、EB 与 CD 相交于点 E. 求证 :AB=AC+BD.5、如图所示,已知△ ABC 和△ BDE 都是等边三角形,且 A 、 HB 平分∠ AHD ;④∠ AHC=60 °,⑤△ BFG 是等边三角形;⑥ A .3个 B .4 个 C .5个 D .6 个B 、D 三点共线.下列结论:① AE=CD ;② BF=BG ;③ FG ∥AD .其中正确的有()6. 如图所示,△ ABC 是等腰直角三角形,∠ ACB =90°,AD 交 AD 于点 F ,求证:∠ ADC =∠ BDE .是 BC 边上的中线,过 C 作 AD 的垂线,交 AB 于点 E , 、 S △CEF 、 S △ABC 又有怎样的数量关系?请写出你的猜想,不需证明.图1若不成立,S △ DEF 图2图210、已知,如图1,在四边形ABCD 中,BC>AB,AD=DC,BD 平分∠ ABC 。
1.已知:如图,AB ∥DE ,AC ∥DF ,BE =CF .求证:AB =DE .A DB EC F 【答案】∵ AB ∥ DE ,∴ ∠B =∠DEF∵AC ∥DF ,∴∠F =∠ACB∵ BE =CF ,∴ BE +EC =CF +EC 即 BC =EF∴∆ABC ≌∆DEF ,∴AB =DE .2.图中是一副三角板,45︒的三角板Rt ∆DEF 的直角顶点D 恰好在30︒的三角板Rt ∆ABC 斜边AB 的中点处,∠A = 30︒,∠E = 45︒,∠EDF =∠ACB = 90︒,DE 交AC 于点G ,GM ⊥AB 于M .(1)如图1,当DF 经过点C 时,作CN ⊥AB 于N ,求证:AM =DN .(2)如图2,当DF ∥AC 时,DF 交BC 于H ,作HN ⊥AB 于N ,(1)的结论仍然成立,请你说明理由.FCEGAM D N B图1ECFG HA B图2【答案】⑴ ∵ ∠A = 30︒,∠ACB = 90︒, D 是 AB 的中点,∴ BC =BD , ∠B = 60︒ ∴△BCD 是等边三角形.又∵CN ⊥DB ,∴DN =1DB ,2∵∠EDF = 90︒,∆BCD 是等边三角形.∴∠ADG = 30︒,而∠A = 30︒,∴GA =GD .∵ GM ⊥AB ,∴AM =1 AD 2又∵AD =DB ,∴AM =DN .⑵∵DF ∥AC ,∴∠BDF =∠A = 30︒,∠AGD =∠GDH = 90︒,∴∠ADG = 60︒.∵∠B = 60︒,AD =DB ,∴∆ADG ≌∆DBH ,∴AG =DH ,又∵∠BDF =∠A ,GM ⊥AB ,HN ⊥AB ,∴∆AMG ≌∆DNH .∴AM =DN .3.在正方形ABCD 中,AB 、BC 、CD 三边上分别有点E 、G 、F ,且EF ⊥DG .求证:EF =DG .⎨ ⎩ADA DEEM FFB G CBGC【答案】过点C 作 EF 的平行线,交 AB 于 M .易知CM = EF .从而证的∆BCM ≌ ∆CDG ,从而有 DG = CM ,故 EF = DG .4.在正方形 ABCD 中, E 、 F 、G 、 H 分别是 AB 、 BC 、CD 、 DA 边上的点,且 EG ⊥ FH ,求证: EG = FH .A HD A H N DGGEEMBF CBF C【答案】过点 E 作 EM ⊥ CD ,过点 F 作 FN ⊥ AD ,垂足分别为 M 、N . 由 EM ⊥ CD , FN ⊥ AD , EG ⊥ FH ,易得∠MEG = ∠NFH 因为 EM = BC , BC = CD , CD = NF ,所以 EM = NF 故∆EMG ≌ ∆NFH ,所以 EG = FH .5.∆ABC 中, ∠B = 90︒ , M 为 AB 上一点,使得 AM = BC , N 为 BC 上一点,使得CN = BM ,连 AN 、CM 交于 P 点.试求∠APM 的度数,并写出你的推理证明的过程.AMBN C【答案】∠APM 的度数为45︒证明过程如下:如图过点 M 作 AB 的垂线 MD ,使 MD = CN ,连接 DA 、 DN , 于是因为 MD ∥ CN 且 MD = CN ,所以四边形 MDNC 是平行四边形. 从而∠MDN = ∠MCN ,又因为CN = BM ,得到 DM = BM ,进而在∆MDA 与∆MBC 中, ⎧DM = BM ⎪∠DMA = ∠MBC = 90︒ , ⎪MA = BC PFP⎨ ⎩所以∆DMA ≌ ∆MBC ,这样 DA = MC ,而 MC = DN , 所以 DN = DA .又因为∠ADN = ∠ADM + ∠MDN= ∠ADM + ∠DAM = 90︒ , 所以得到∆ADN 是一个等腰直角三角形,所以∠AND = 45︒ ,利用 MC ∥ DN ,从而得到∠APM = ∠AND = 45︒ .ADB NC6.如图,在Rt ∆ABC 中, AB = AC ,AD ⊥ BC ,垂足为 D . E 、F 分别是CD 、AD 上的点,且CE = AF .如果∠AED = 62︒ ,那么∠DBF = .A【答案】28︒BDE7.E 、F 分别是正方形 ABCD 的 BC 、CD 边上的点,且 BE = CF .求证:AE ⊥ BF .ADF【答案】在∆ABE 和∆BCF 中⎧ AB = BC ⎪∠ABE = ∠BCF⎪BE = CF∴ ∆ABE ≌ ∆BCF BEC∴ ∠BAE = ∠CBF ∵ ∠BAE + ∠AEB = 90︒ ∴ ∠CBF + ∠AEB = 90︒ ∴ AE ⊥ BF8.E 、F 、G 分别是正方形 ABCD 的 BC 、CD 、AB 边上的点,GE ⊥ EF ,GE = EF .求证: BG + CF = BC .AD【答案】显然, ∆BEG ≌ ∆CFE ,GFBECM PC∴ BG = CE , BE = CF ∴ BG + CF = BC9.如图,矩形 ABCD 中, E 是 AD 上一点, CE ⊥ EF 交 AB 于 F 点,若 DE = 2 ,矩形周长为16 ,且CE = EF ,求 AE 的长.AEDFBC【答案】∵ FE ⊥ EC ,∴ ∠AEF + ∠DEC = 90︒ .∵ ∠AEF + ∠AFE = 90︒ , ∴ ∠AFE = ∠DEC .在三角形 AFE 与∆DEC 中, FE = CE , ∠A = ∠D = 90︒ , ∠AFE = ∠DEC , ∴ ∆AFE ≌ ∆DEC . ∴ AE = DC . ∵矩形周长为16 , ∴ AD + DC = 8 . ∵ AD = AE + DE ,∴且 DE = 2 .∴ 2 AE = 8 - DE . 即 AE = 3 .10.如图,已知∆ABC 中,∠ABC = 90︒,AB = BC ,三角形的顶点在相互平行的三条直线l 1 ,l 2 ,l 3 上,且l 1 ,l 2 之间的距离为2 ,l 2 ,l 3 之间的距离为3 ,则 AC 的长是 .Al 1 l 2【答案】2 Bl 311.两个全等的30︒ 、60︒ 的三角板 ADE 、 BAC ,如右下图所示摆放, E 、 A 、C 在一条直线上,连结 BD .取 BD 的中点 M ,连结 ME 、MC ,试判断∆EMC 的形状, 并说明理由.BMDEA C【解析】判断∆EMC 是等腰直角三角形.理由:如图,连结 AM .17MBA C∵ ∠DAE = 30︒ , ∠BAC = 60︒ ,∴ ∠DAB = 90︒ ∵ ∆ADE ≌ ∆BAC ,∴ AD = AB又∵ M 是 BD 的中点,∴ AM = DM = BM ∴ ∠ADM = ∠MAB = 45︒ ∴ ∠EDM = ∠EDA + ∠ADM = 60︒ + 45︒ = 105︒ ∴ ∠MAC = ∠MAB + ∠BAC = 45︒ + 60︒ = 105︒ ∴ ∠EDM = ∠MAC ∵ ED = CA ,∴ ∆EDM ≌ ∆CAM ∴ EM = CM , ∠DME = ∠AMC而∠DME + ∠EMA = 90︒ ,∴ ∠AMC + ∠EMA = 90︒ 即∠EMC = 90︒ ,∴ ∆EMC 是等腰直角三角形.12.已知等腰直角三角形 ABC , ∠C 为直角, M 为 BC 的中点. CD ⊥ AM .求证: ∠AMC = ∠DMB .求证: ∠AMC = ∠DMB .CA DB【答案】法一:如图,过 B 作 EB ⊥ BC ,交CD 延长线于 E .CE∵ ∠3 + ∠1 = 90︒ , ∠4 + ∠1 = 90︒ ,∴ ∠3 = ∠4 .又 AC = CB ,∴ Rt ∆CBE ≌ Rt ∆AMC ,∴ BE = CM , ∠5 = ∠1 . 又 BM = CM ,∴ BE = BM .∴ ∠MBD + ∠EBD = 90︒ ,而∠MBD = 45︒ ,∴ ∠EBD =∠MBD . 又 BD 为公共边,∴ ∆BED ≌ ∆BMD .∴ ∠5 = ∠2 .解法二:如图,作底边 AB 的高CE 交 AM 于 F ,则CE 亦为中线和角平分线,3 1 M4 2 ADB5 MDC ∴AE =CE =BE .又∠3 +∠CDE =∠4 +∠CDE = 90︒.∴∠3 =∠4 ,∴Rt∆DCE = Rt∆FAE ,∴AMA E D B=CE=2,∴∠EDF = 45︒=∠B ,故CM AC 1DF ∥BC .又 E 、M 为AB 、BC 的中点,∴连接EM ,则EM ∥AC .∴AC ⊥BC ,∴EM ⊥BC ,故EM ⊥DF .∴EM 为DF 的中垂线.∴∠FME =∠DME .而∠FME +∠1 =∠DME +∠2 = 90︒,∴∠1 =∠2 .解法三:如图,作CG =AG 的平分线CF 交AM 于F ,CA DB 则∠ACF =∠MCF = 45︒,即ACF =∠CBD = 45︒.∵AC ⊥BC ,C D ⊥AM ,∴∠CAF +∠CMF =∠BCD +∠CMF = 90︒.∴BM=1.AC 2又∠B =∠CAD ,∴∆ACF ≌∆CBD .∴CF =BD .又CM =BM ,∠MCF =∠MBD .∴∆CFM ≌∆BDM .∴∠FMC =∠DMB .解法四:如图,过D 作DG ⊥CB .CA∵∠B = 45︒,∴DG =BG .∵∠DCG +∠AMC =∠FAC +∠AMC = 90︒,∴∠DCG =∠FAC .∴∆DCG ∽∆MAC .∴DG∶CG =CM∶AC = 1∶2 ,则BG∶CG = 1∶2 .∵DG ∥AC ,∴BD∶AD = 1∶2 ,而BM∶AC = 1∶2 , B =∠CAD .∴∆BMD ∽∆ACD ,∴∠BMD =∠ACD .而∠ACD =MGM F3 1FM24AMC ,解法五:如图,延长CB 到 E ,使 BE = BC .连接 AE ,延长CD 交 AE 于G ,则 AC = BC = BE ,CE∴AM = CE = 2 .CM AC 1 ∴ Rt ∆ACM ∽ Rt ∆ECA .∴ ∠CAM = ∠E . ∵ ∠CAM + ∠ACF = 90︒ , ∠GCE + ∠ACF = 90︒ , ∴ ∠CAM = ∠GCE .即∠GCE = ∠E .∴ CG = GE . ∵ ∠CAE + ∠E = 90︒ , ∠ACG + ∠GCE = 90︒ ,∴ ∠CAE = ∠ACG ,∴ CG = AG ,从而 AG = GE .又∵ BC = BE ,所以 D 为∆AEC 的重心,∴ BD = 1.而 BM = 1 , ∠B = ∠CAD . AD 2AC 2∴ ∆BMD ∽ ∆ACD ,∴ ∠BMD =∠ACD . 而 ∠AMC = ∠ACF ,∴ ∠BMD = ∠AMC .解法六:如图,过 A 作 AH ⊥ AM ,与 BC 的延长交于 H .HD B∵ ∠1 + ∠2 = 90︒ , ∠1 + ∠AMC = 90︒ , ∴ ∠2 = ∠AMC , ∴ Rt ∆AHC ∽ Rt ∆MAC ,∴ HC = AC= 2 . AC MC而 AC = BC ,∴HC= 2 .BC∵ HA ∥ C D ,∴ AD = HC= 2 .BD BC又∵ AC BM = 2 , ∠CAD = ∠B ,∴ ∆ADC ∽ ∆BDM ,C MFFMAD BG而∠AMC = ∠ACD ,∴ ∠AMC = ∠BMD .解法七:如图,过 D 作 DE ⊥ BM ,垂足为 E .CA∵ ∠CAM + ∠CMA = 90︒ , ∠ECD + ∠CMA = 90︒ , ∴ ∠CAM = ∠ECD , ∴ Rt ∆CAM ∽ Rt ECD ,∴ DE = MC = 1 .CEAC2∵ ∠B = 45︒ , ∠DEB = 90︒ ,∴ DE = BE ,∴ BE = 1. CE 2设 ME = x ,CM = BE = a ,∴a - x = 1 ,∴ x = a. a + x 2 3∴ DE = BE = a - a = 2a ,∴ ME = 1 = MC,3 3 ∴ Rt ∆CAM ∽ Rt ∆EDM , ∴ ∠AMC = ∠BMD .DE 2 AC13.如图所示,已知在等腰直角三角形 ABC 中, ∠BAC 是直角, D 是 AC 上一点, AE ⊥ BD ,AE 的延长线交 BC 于 F ,若∠ADB = ∠FDC ,求证:D 是 AC 的中点.AFC【答案】过C 作CH 垂直于 AC 交 AF 延长线于 H 点;易证∆ABD ≌∆AHC , HC = AD ;进而证明∆FHC ≌∆FDC ,得到 HC = CD ,则 D 为 AC 中点.A14.如图所示,在等边∆ABC 中, DE ∥ BC , O 为∆ADE 的中心, M 为 BE 的中点, 求证OM ⊥ CM .M EDE【答案】如图所示,延长OM 至点 N ,使OM = MN ,连接OA 、OE 、OC 、 BN 、CN .AAD OEO N D EMMBCNB C因为OM = NM , BM = ME , ∠OME = ∠NMB , 故∆BMN ≌ ∆EMO ,则 BN = EO , ∠OEM =∠NBM . 因为 DE ∥ BC ,则∠DEB = ∠CBE , ∠OED = ∠CBN .因为O 为∆ADE 的中心,则OA = OE = BN , ∠OAE = ∠OED = 30︒ = ∠CBN . 因为 AC = BC ,故∆AOC ≌ ∆BNC ,从而OC = CN . 因为OM = MN ,故OM ⊥ CM .【点评】如果具备三角形相似的知识,我们就可以采取下面的解法. 如图所示,取 AE 的中点 N ,连接 MN 、OA 、ON 、OC . 因为O 为∆ADE 的中心,故∠OAN = 30︒ , OA =2ON . 因为 AN = NE , BM = EM ,故 AB = 2MN = AC .因为ON ⊥ AC , MN ∥ AB ,故∠MNE = 60︒ ,因为∠ONM = 30︒ ,故∆OAC ∽ ∆ONM ,∠OMN = ∠OCN ,则O 、M 、C 、N 四点共圆.因为ON ⊥ AC ,故OM ⊥ CM .15.已知 P 为等腰直角∆ABC 的斜边 AB 上任意一点, PE 、PF 分别为 AC 、BC 之垂线,垂足为 E 、 F . M 为 AB 之中点.则 E 、 M 、 F 组成等腰直角三角形.A ECF B【答案】解法一:如图,连接CM ,则CM 为 AB 之中线,亦为 AB 之高.P MAECFB∴ ∠CMA = 90︒ . ∵ ∠PEC = ∠PFC = ∠ECF = 90︒ , ∴ ECFP 为矩形,故 PE = CF . 又∵ ∠A = 45︒ ,∴ ∆AEP 为等腰直角三角形,∴ AE = PE .∴ AE = CF . 又∵ CM = AM , ∠MCF = ∠A = 45︒ , ∴ ∆AEM ≌ ∆CFM ,∴ ∠AME = ∠CMF , EM = FM . ∵ ∠CME + ∠AME = 90︒ ,∴ ∠CME + ∠CMF = 90︒ ,即∠EMF = 90︒ . ∴ ∆EMF 为等腰直角三角形. 解法二:如图,由 M 作 ME ' ⊥ AC , MF ' ⊥ BC ,则显然由于 M 为 AB 之中点, AC = BC , AC ⊥ BC ,AE E'CF F'B∴ ME 'CF ' 为正方形,故 ME ' = MF ' . 又设 ME ' 交 PF 于Q , 则∵ PE ⊥ AC , PF ⊥ BC ,∴ ∠EPF = ∠C = 90︒ .而∠PEE ' = ∠EE 'Q = 90︒ . ∴ EE 'QP 为矩形,故 EE ' = PQ . 同理 FF ' = QM .又∵ PF ∥ AC ,∴ ∠QPM = ∠A = 45︒ . ∴ ∆PQM 为等腰直角三角形, ∴ PQ = QM ,故 EE ' = FF ' .又 ME ' = MF ' , ∠EE 'M = ∠FF 'M = 90︒ . ∴ ∆EE 'M ≌ ∆FF 'M ,∴ ∠EME ' = ∠FMF ' , EM =FM . 又∠E 'MF + ∠FMF ' = 90︒ , ∴ ∠E 'MF + ∠EME ' = 90︒ .即∠EMF = 90︒ ,故∆MEF 为等腰直角三角形.解法三:如图,延长 FM 到Q ,使 MQ = FM ,连接 AQ .PMPMQ2 2 2 A QECFB∵ AM = BM ,∴ A 、 F 、 B 、Q 4 点组成平行四边形. ∴ AQ = FB , AQ ∥ FB .又∵ BC ⊥ AC ,∴ AQ ⊥ AC , ∴ ∠QAE = ∠FCE = 90︒ .又∵ PF ⊥ BC , ∠B = 45︒ ,∴ FP = FB .同理 EP = AE . ∵ ECFP 为矩形,∴ FP = CE , EP = CF ,故 AB .而CM ⊥ AB , ∴ AQ = CE , A E = CF . ∴ Rt ∆AEQ ≌ Rt ∆CFE . ∴ EQ = FE , ∠AQE = ∠CEF , ∠QEA = ∠EFC . ∵ ∠AQE + ∠QEA = 90︒ ,∴ ∠CEF + ∠QEA = 90︒ .故 PF= .QF∴ ∆FEQ 为等腰直角三角形.而 M 为底边之中点,所以∆EMF 亦为等腰直角三角形.解法四:如图,连接CM ,则因为 M 为 AB 之中点,所以CM ⊥ AB ,CM 平分∠ACB , 即∠MCB = 45︒ .由 F 向 MB 引垂线 FQ ,向CM 引垂线 FF ' ,显然 F 'FQM 为矩形.则 FF ' = MQ .AECFB又∵ ∆CF 'F 为等腰直角三角形, CF = 2FF ' = 2MQ . 又∵ PE ⊥ AC , PF ⊥ BC , AC ⊥ BC , ∴ ECFP 为矩形,故 EP = CF = 2MQ . 于是在Rt ∆EPF 和Rt ∆MQF 中, PF = FB =2QF , PF = , EP= ,∴ PF = EP ,QF MQQF MQ∴ ∆EPF ∽ ∆MQF ,故∠EFP =∠MFQ . 又∵ ∠PFM + ∠MFQ = 45︒ , ∵ ∠PFM + ∠EFP = 45︒ ,即 PF = BF .同理∠FEM = 45︒ , ∆EMF 为等腰直角三角形.PMPM QF'E解法五:如图,连接CP 、CM .AECFB∵ PF = BF , ∆ABC 为等腰直角三角形, ∴ ∠BPF = ∠BCM = 45︒ .∴ P 、C 、 F 、 M 4 点共圆.∴ ∠CMF = ∠CPF .又∵ ∠CPF = ∠CEF ,∴ ∠CEF = ∠CMF ,∴ E 、C 、 F 、 M 4 点共圆.∴ ∠MEF = ∠MCF = 45︒ , ∠MFE = ∠MCE = 45︒ ,∴ iEMF 是等腰直角三角形.16.长方形 ABCD 中, AB = 4 , BC = 7 , ∠BAD 的角平分线交 BC 于点 E , EF ⊥ ED 交 AB 于 F ,则 EF = .ADFBEC【解析】由 AB = 4 ,AE 平分∠BAD 可知 BE = AB = CD = 4 .由基本图可知∆BEF ≌∆CDE , 故 EF = DE又 BC = 7 , BE = 4 ,故CE = 3 .由勾股定理可知, DE = 5 . 从而可知 EF = 5 .【答案】517.如图,设∆ABC 和∆CDE 都是正三角形,且∠EBD = 62︒ ,则∠AEB A .124︒ B .122︒ C .120︒ D .118︒的度数是( )ABCD【答案】分析 既然题目这样问,说明这两个角之间必然能找到一定的联系. 解 易知∠ACE = ∠BCD , ∆AEC ≌ ∆BDC ,于是∠EAC = ∠DBC ,从而∠EBD = ∠CBD + ∠CBE = ∠EAC + ∠CBE ,在考虑到∠EAC + ∠AEC + ∠ACE + ∠CEB + ∠ECB + ∠EBD = 360,有:∠BEC + ∠AEC = 360 - 60 - 62 = 360 - ∠AEB 从而∠AEB = 122 ,选B 。
全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。
B、斜边和一锐角对应相等。
C、斜边和一条直角边对应相等。
D、两锐角相等。
2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A. BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600 B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )A. 150°B.40°C.80°D. 90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )A.①③ B.②④ C.②③④ D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等 B.两边和一角对应相等C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50° B.30° C.80° D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。
难点突破——三角形全等证明题练习50道(含详细解析)1.如图所示,90A D ∠=∠=︒,AB DC =,AC ,BD 相交于点M ,求证:(1)ABC DCB ∠=∠;(2)AM DM =.2.如图,点C ,F ,B ,E 在同一条直线上,AC CE ⊥,DF CE ⊥,垂足分别为C ,F ,且AB DE =,CF BE =.求证:A D ∠=∠.3.如图,ABC ∆中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且//BE CF .(1)求证:DE DF =;(2)若在原有条件基础上再添加AB AC =,你还能得出什么结论.(不用证明)(写2个)4.如图,AB AC =,//CD AB ,点E 是AC 上一点,且ABE CAD ∠=∠,延长BE 交AD 于点F .(1)求证:ABE CAD ∆≅∆;(2)如果65ABC ∠=︒,25ABE ∠=︒,求D ∠的度数.5.如图,已知D 为BC 的中点,DE AB ⊥,DF AC ⊥,点E 、F 为垂足,且BE CF =.求证:ABC ∆是等腰三角形.6.已知:如图,AB AE =,C F ∠=∠,EAC BAF ∠=∠.求证:AC AF =.7.如图所示,AB AD =,12∠=∠,添加一个适当的条件,使ABC ADE ∆≅∆(不再添加其它线段,不再标注或使用其他字母).8.如图,BE ,AD 是ABC ∆的高且相交于点P ,点Q 是BE 延长线上的一点.(1)试说明:12∠=∠;(2)若AP BC =,BQ AC =,线段CP 与CQ 会相等吗?请说明理由.9.如图,AB CD =,DE AC ⊥,BF AC ⊥,点E ,F 是垂足,AE CF =,求证:(1)ABF CDE ∆≅∆;(2)//AB CD .10.如图,点C 在线段AB 上,//AD EB ,AC BE =,AD BC =,CF 平分DCE ∠. 求证:CF DE ⊥于点F .11.如图:已知在ABC ∆中,90ACB ∠=︒,1AC BC ==,点D 是AB 上任意一点,AE AB ⊥,且AE BD =,DE 与AC 相交于点F .(1)试判断CDE ∆的形状,并说明理由.(2)是否存在点D ,使AE AF =?如果存在,求出此时AD 的长,如果不存在,请说明理由.12.如图,在ABC ∆中,AB AC =,BD AC ⊥⊥于D ,CE AB ⊥于E .求证:AD AE =.13.如图,点A ,B ,C ,D 在一条直线上,且AC BD =,若12∠=∠,EC FB =. 求证:ACE DBF ∆≅∆.证明:14.已知:如图,点E 是ABC ∆外角CAF ∠平分线上的一点.(1)比大小:BE EC + A B A C+(填“>”、“ <”或“=” ) (2)证明(1)中的结论.15.如图,在ABC ∆中,BD 是边AC 上的中线,BD BC ⊥于点B ,AE BD ⊥交BD 的延长线于点E ,30ABD ∠=︒,求证:2AB BC =.16.如图所示,两个形状相同,大小不同的等腰三角形ABC 与ADE 如图放置,A 为它们共同的顶角顶点,B 、C 、D 在同一条直线上,连接CE .(1)你能在图中找到一对全等三角形吗?证明你的结论;(2)若35BAC ∠=︒,求ECD ∠的度数.17.已知,如图,直线AB BC ⊥,线段AB BC <,点D 在直线AB 上,且AD BC =,AE AB ⊥,且AE BD =,连接DE 、DC ,ADE α∠=.(1)请在下图中补全图形,并写出CDE ∠的度数 (用含α的代数式表示);(2)如图,当点D 在点B 下方,点F 在线段BC 的延长线上,且BD CF =,直线AF 与DC交于点P,试问APD∠的度数是否是定值?若是定值,求出并说明理由.18.已知等腰三角形ABC中,点D为BC中点,点E是BA延长线上一动点,点F是AC延长线上一动点连接DE、DF,且180∠+∠=︒.EDF BAC(1)如图1,若90+=;BAC∠=︒,求证:AE AC AF(2)如图2,若120∠=︒,AE、AC、AF三条线段还满足(1)中的结论吗?若满足,BAC则直接证明;若不满足,请写出结论并证明.19.已知D为ABC⊥,垂足分别为点∆所在平面内一点,且DB DC=,DE AB⊥,DF ACE、F,DE DF=.(1)如图1,当点D在BC边上时,判断ABC∆的形状;并证明你的结论;(2)如图2,当点D在ABC∆内部时,(1)中的结论是否仍然成立?若成立,请证明:若不成立,请举出反例(画图说明,不需证明).20.如图,在Rt ABC∠=︒,点P为AC边上的一点,延长BP至点D,使得AD APC∆中,90=,当AD AB⊥于E.⊥时,过点D作DE AC(1)求证:CBP ABP∠=∠;(2)若4AB BC -=,8AC =.求AB 的长度和DE 的长度.21.如图(1),8A B c m =,AC AB ⊥,BD AB ⊥,6AC BD cm ==.点P 在线段AB 上以2/m s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为()t s(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,判断线段PC 与PQ 满足的关系,并说明理由.(2)如图(2),将图(1)中的AC AB ⊥,BD AB ⊥为改“CAB DBA a ∠=∠=︒”,其它条件不变.设点Q 的运动速度为/xcm s ,是否存在实数x ,使得ACP ∆与BPQ ∆全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.22.如图,AD AC =,1239∠=∠=︒,C D ∠=∠,点E 在线段BC 上.(1)求证:ABC AED ∆≅∆.(2)求AEC ∠的度数.23.已知:如图,点A 、D 、C 、B 在同一条直线上,AD BC =,AE BF =,//AE FB ,求证://CE DF .24.如图,点D 在ABC ∆外部,点C 在DE 边上,BC 与AD 交于点O ,若123∠=∠=∠,AC AE =.求证:(1)B D ∠=∠;(2)ABC ADE ∆≅∆.25.已知:如图,AB AC =,AE AF =,连结BF ,CE ,交于O ,连结AO .求证:(1)B C ∠=∠;(2)AO 平分BAC ∠.26.如图所示,已知ABC ∆中AB AC =,E 、D 、F 分别在AB ,BC 和AC 边上,且BE CD =,BD CF =,过D 作DG EF ⊥于G . 求证:12EG EF =.27.已知在ABC ∆中,AC BC =,分别过A ,B 两点作互相平行的直线AM ,BN ,过点C 的直线分别交直线AM ,BN 于点D ,E .(1)如图1,若AM AB ⊥,求证:CD CE =;(2)如图2,60ABC DEB ∠=∠=︒,判断线段AD ,DC 与BE 之间的关系,并说明理由.28.阅读下列材料,并完成任务.如图,四边形ABCD是一个筝形,其中AB AD=.对角线AC,BD相交于点O,=,BC CD过点O作0M AB⊥,垂足分别为M,N.⊥,ON AD求证:四边形AMON是筝形.29.如图,在ABC∠=∠,AC与BD交于点=,AED∆中AB AC∆中AE AD=,EAD BACO.(1)试确定ADC∠与AEB∠间的数量关系,并说明理由;(2)若65∠的度数.ACB∠=︒,求BDC30.如图,AD为ABC=.求=,FD CD ∆的高,E为AC上一点,BE交AD于F,且有BF AC证:(1)BFD ACD ∆≅∆;(2)BE AC ⊥.31.在等腰OAB ∆和等腰OCD ∆中,OA OB =,OC OD =,连接AC 、BD 交于点M .(1)如图1,若40:AOB COD ∠=∠=︒①AC 与BD 的数量关系为 ;②AMB ∠的度数为 .(2)如图2,若90:AOB COD ∠=∠=︒①判断AC 与BD 之间存在怎样的数量关系?并说明理由; ②求AMB ∠的度数.32.如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,AB BE ⊥,垂足为B ,DE BE ⊥,垂足为E ,且AC DF =,BF CE =.(1)求证:ABC DEF ∆≅∆;(2)若65A ∠=︒,求AGF ∠的度数.33.如图,在ABC ∆中,B C ∠=∠,点D 、E 、F 分别在AB 、BC 、AC 边上,且BE CF =,AD EC AB +=.(1)求证:DE EF =.(2)当36A ∠=︒时,求DEF ∠的度数.34.在ABC ∆中,45ACB ∠=︒,AD BC ⊥垂足为D ,点E 在AD 上,ED BD =,连接CE 并延长交AB 于点F ,连接DF .(1)求证:BAD ECD ∠=∠.(2)求证:45DFE ∠=︒.35.如图,在ABC ∆和BAD ∆中,AC 与BD 相交于点E ,AD BC =,DAB CBA ∠=∠,求证:12∠=∠.36.如图所示,AB AC =,AD AE =,BAC DAE ∠=∠,122∠=︒,228∠=︒, 求3∠的度数.37.如图,在直角坐标系中有一点(5,5)P ,(0,)M m 为y 轴上任意一点,N 为x 轴上任意一点,且90MPN ∠=︒.(1)当5m =时,OM ON +的值为 ;(2)当05m <<时,OM ON +的值是否改变?说明你的理由;(3)探索:当0m <时,OM 与ON 的数量关系为 .38.已知,如图,射线BD 平分锐角ABC ∠,且平分钝角ADC ∠,求证:CD AD =.39.如图所示,BF AC ⊥于点F ,CE AB ⊥于点E ,BF 与CE 交于D ,且BD CD =. 求证:D 在BAC ∠的平分线上.40.如图(1),7A B c m =,AC AB ⊥,BD AB ⊥垂足分别为A 、B ,5AC cm =.点P 在线段AB 上以2/cm s 的速度由点A 向点B 运动,同时,点Q 在射线BD 上运动.它们运动的时间为()t s (当点P 运动结束时,点Q 运动随之结束).(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP ∆与BPQ ∆是否全等,并判断此时线段PC 和线段PQ 的位置关系,请分别说明理由;(2)如图(2),若“AC AB ⊥,BD AB ⊥”改为“60CAB DBA ∠=∠=︒”,点Q 的运动速度为/xcm s ,其他条件不变,当点P 、Q 运动到某处时,有ACP ∆与BPQ ∆全等,求出相应的x 、t 的值.41.如图,在ABC∠,CE平分BCA∠,AD、CE交于点F,B∆中,60∠=︒,AD平分BAC=,连结FG.CD CG(1)求证:FD FG=;(2)线段FG与FE之间有怎样的数量关系,请说明理由;(3)若60B∠≠︒,其他条件不变,则(1)和(2)中的结论是否仍然成立?请直接写出判断结果,不必说明理由.42.已知BF平分ABC∆的外角ABE∠,D为射线BF上一动点.(1)如图所示,若DA DC∠=∠;=,求证:ABC ADC(2)在D点运动的过程中,试比较BA BC+的大小,并说明你的理由.+与DC DA43.如图,在ABC=,∠=︒,BD AC⊥于点D,点E在DB的延长线上,DE BCABC∆中,90=.12∠=∠,求证:DF AB44.如图,在ABC ∆和ADE ∆中,点E 在BC 边上,BAC DAE ∠=∠,B D ∠=∠,AB AD =.求证:AEC C ∠=∠.45.如图,AB AC =,E 、D 分别是AB 、AC 的中点,AF BD ⊥,垂足为点F ,AG CE ⊥,垂足为点G ,试判断AF 与AG 的数量关系,并说明理由.46.如图,90ACB ∠=,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D 、E .(1)求证:ACD CBE ∆≅∆;(2)已知5AD =,3DE =,求BE 的长.47.如图,AE 、BD 是ABM ∆的高,AE ,BD 交于点C ,且A E B E =,BD 平分ABM ∠.(1)求证:2BC AD =;(2)求M DE ∠的度数.48.在ABC∠交AB于D,E,F在AC,BC∠=︒,CD平分ACBA∆中,AB AC=,36上,且108∠=︒.EDF(1)求ADC∠的度数;(2)求证:AE BF BC+=.49.已知:如图,90∠的角平分线上,且点A到点⊥于点E,点A在FOCF∠=︒,AE OC=.B、点C的距离相等.求证:BF EC50.已知:如图,点C、D、B、F在一条直线上,且AB BD=,⊥,AB CD⊥,DE BD =.CE AF求证:(1)ABF CDE∆≅∆;(2)CE AF⊥.难点突破——三角形全等证明题练习50道(含详细解析)参考答案与试题解析一.解答题(共50小题)1.如图所示,90A D ∠=∠=︒,AB DC =,AC ,BD 相交于点M ,求证:(1)ABC DCB ∠=∠;(2)AM DM =.【解答】证明:(1)90A D ∠=∠=︒,ABC ∴∆和DCB ∆都是直角三角形.在Rt ABC ∆和Rt DCB ∆中,BC CB AB DC =⎧⎨=⎩, Rt ABC Rt DCB(HL)∴∆≅∆,ABC DCB ∴∠=∠;(2)Rt ABC Rt DCB ∆≅∆,AC DB ∴=,ACB DBC ∠=∠,MC MB ∴=,AM DM ∴=.2.如图,点C ,F ,B ,E 在同一条直线上,AC CE ⊥,DF CE ⊥,垂足分别为C ,F ,且AB DE =,CF BE =.求证:A D ∠=∠.【解答】证明:AC CE ⊥,DF CE ⊥,90C DFE ∴∠=∠=︒,CF BE =,CB FE ∴=,AB DE =,Rt ACB Rt DFE(HL)∴∆≅∆,A D ∴∠=∠.3.如图,ABC ∆中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且//BE CF .(1)求证:DE DF =;(2)若在原有条件基础上再添加AB AC =,你还能得出什么结论.(不用证明)(写2个)【解答】(1)证明:AD 是ABC ∆的中线, BD CD ∴=,//BE CF ,FCD EBD ∴∠=∠,DFC DEB ∠=∠,在CDE ∆和BDF ∆中,FCD EBD DFC DEB CD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()CDF BDE AAS ∴∆≅∆,DE DF ∴=(2)可以得出AD BC ⊥,BAD CAD ∠=∠.(理由等腰三角形三线合一).4.如图,AB AC =,//CD AB ,点E 是AC 上一点,且ABE CAD ∠=∠,延长BE 交AD 于点F .(1)求证:ABE CAD ∆≅∆;(2)如果65ABC ∠=︒,25ABE ∠=︒,求D ∠的度数.【解答】(1)证明://CD AB ,BAE ACD ∴∠=∠,ABE CAD ∠=∠,AB AC =,()ABE CAD ASA ∴∆≅∆;(2)解:AB AC =,65ABC ACB ∴∠=∠=︒,180180656550BAC ABC ACB ∴∠=︒-∠-∠=︒-︒-︒=︒, 又25ABE CAD ∠=∠=︒,502575BAD BAC CAD ∴∠=∠+∠=︒+︒=︒, //AB CD ,180********D BAD ∴∠=︒-∠=︒-︒=︒.5.如图,已知D 为BC 的中点,DE AB ⊥,DF AC ⊥,点E 、F 为垂足,且BE CF =.求证:ABC ∆是等腰三角形.【解答】证明:D 为BC 的中点,BD CD ∴=,DE AB ⊥,DF AC ⊥,90BED CFD ∴∠=∠=︒,在Rt BED ∆和Rt CFD ∆中,BD CD BE CF =⎧⎨=⎩,Rt BED Rt CFD(HL)∴∆≅∆, B C ∴∠=∠,AB AC ∴=,ABC ∴∆是等腰三角形.6.已知:如图,AB AE =,C F ∠=∠,EAC BAF ∠=∠.求证:AC AF =.【解答】证明:EAC BAF ∠=∠, BAC EAF ∴∠=∠,在ABC ∆和AEF ∆中,BAC EAF C F AB AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABC AEF AAS ∴∆≅∆,AC AF ∴=.7.如图所示,AB AD =,12∠=∠,添加一个适当的条件,使ABC ADE ∆≅∆(不再添加其它线段,不再标注或使用其他字母).【解答】解:条件为AC AE =,理由是: 12∠=∠,12DAC DAC ∴∠+∠=∠+∠, BAC DAE ∴∠=∠,在ABC ∆和ADE ∆中AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩()ABC ADE SAS ∴∆≅∆.8.如图,BE ,AD 是ABC ∆的高且相交于点P ,点Q 是BE 延长线上的一点.(1)试说明:12∠=∠;(2)若AP BC =,BQ AC =,线段CP 与CQ 会相等吗?请说明理由.【解答】证明:(1)BE ,AD 是ABC ∆的高 190BCA ∴∠+∠=︒,290BCA ∠+=︒, 12∴∠=∠,(2)AP BC =,12∠=∠,BQ AC =, ()APC BCQ SAS ∴∆≅∆CP CQ ∴=.9.如图,AB CD =,DE AC ⊥,BF AC ⊥,点E ,F 是垂足,AE CF =,求证:(1)ABF CDE ∆≅∆;(2)//AB CD .【解答】证明:(1)AE CF =, AE EF CF EF ∴+=+,即AF CE =. 又BF AC ⊥,DE AC ⊥, 90AFB CED ∴∠=∠=︒.在Rt ABF ∆与Rt CDE ∆中,AB CD AF CE =⎧⎨=⎩, Rt ABF Rt CDE(HL)∴∆≅∆;(2)Rt ABF Rt CDE ∆≅∆, C A ∴∠=∠,//AB CD ∴.10.如图,点C 在线段AB 上,//AD EB ,AC BE =,AD BC =,CF 平分DCE ∠. 求证:CF DE ⊥于点F .【解答】证明://AD BE , A B ∴∠=∠,在ACD ∆和BEC ∆中AD BC A B AC BE =⎧⎪∠=∠⎨⎪=⎩,()ACD BEC SAS ∴∆≅∆, DC CE ∴=, CF 平分DCE ∠,CF DE ∴⊥.11.如图:已知在ABC ∆中,90ACB ∠=︒,1AC BC ==,点D 是AB 上任意一点,AE AB ⊥,且AE BD =,DE 与AC 相交于点F .(1)试判断CDE ∆的形状,并说明理由.(2)是否存在点D ,使AE AF =?如果存在,求出此时AD 的长,如果不存在,请说明理由.【解答】解:(1)CDE ∆是等腰直角三角形.理由如下: 90ACB ∠=︒,AC BC =, 45B BAC ∴∠=∠=︒,AE AB ⊥,904545CAE ∴∠=︒-︒=︒,B CAE ∴∠=∠,在ACE ∆和BCD ∆中,AE BDB CAE AC BC=⎧⎪∠=∠⎨⎪=⎩,()ACE BCD SAS ∴∆≅∆,CD CE ∴=,ACE BCD ∠=∠,90ACD BCD ACB ∠+∠=∠=︒,90DCE ACD ACE ∴∠=∠+∠=︒,CDE ∴∆是等腰直角三角形;(2)存在1AD =.理由如下:AE AF =,45CAE ∠=︒,1(18045)67.52AEF AFE ∴∠=∠=︒-︒=︒,9067.522.5ADE ∴∠=︒-︒=︒,CDE ∆是等腰直角三角形,45CDE ∴∠=︒,22.54567.5ADC ∴∠=︒+︒=︒,在ACD ∆中,1804567.567.5ACD ∠=︒-︒-︒=︒, ACD ADC ∴∠=∠,1AD AC ∴==.12.如图,在ABC ∆中,AB AC =,BD AC ⊥⊥于D ,CE AB ⊥于E .求证:AD AE =.【解答】证明:AB AC =,ABC ACB ∴∠=∠,BD AC ⊥,CE AB ⊥,90BDC CEB ∴∠=∠=︒,在BCE ∆和CBD ∆中,BEC CDB EBC DCB BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()DBC ECB AAS ∴∆≅∆,CD BE ∴=,AB AC =,AD AE ∴=.13.如图,点A ,B ,C ,D 在一条直线上,且AC BD =,若12∠=∠,EC FB =. 求证:ACE DBF ∆≅∆.证明: 12∠=∠,FBD ECA ∴∠=∠,FB CE =,BD AC =,()DBF ACE SAS ∴∆≅∆.【解答】证明:12∠=∠,FBD ECA ∴∠=∠,FB CE =,BD AC =,()DBF ACE SAS ∴∆≅∆.故答案为:12∠=∠,FBD ECA ∴∠=∠,FB CE =,BD AC =,()DBF ACE SAS ∴∆≅∆.14.已知:如图,点E 是ABC ∆外角CAF ∠平分线上的一点.(1)比大小:BE EC+(填“>”、“<”或“=”)+>AB AC(2)证明(1)中的结论.【解答】解:(1)结论:BE EC AB AC+>+.故答案为>.(2)理由:在AF上截取AH,使得AH AC=.AC AE∠=∠,AE AE=,CAF HAE=,∴∆≅∆,EAC EAH SAS()∴=,EC EH+>,EB EH BH∴+>+.EB EC AB AC15.如图,在ABC⊥于点B,AE BD∆中,BD是边AC上的中线,BD BC⊥交BD的延长线于点E,30=.AB BCABD∠=︒,求证:2【解答】证明:BD是AC上的中线,∴=,AD DCBD BC⊥,AE BD⊥,EBC AEB∴∠=∠=︒,90又ADE CDB∠=∠,∴∆≅∆,ADE CDB AAS()AE CB ∴=,90AEB ∠=︒,30ABD ∠=︒,2AE AB ∴=,即2AB BC =.16.如图所示,两个形状相同,大小不同的等腰三角形ABC 与ADE 如图放置,A 为它们共同的顶角顶点,B 、C 、D 在同一条直线上,连接CE .(1)你能在图中找到一对全等三角形吗?证明你的结论;(2)若35BAC ∠=︒,求ECD ∠的度数.【解答】解:(1)能,ABD ACE ∆≅∆,理由如下: ABC ∆和ADE ∆是两个形状相同,大小不同的等腰三角形, BAC DAE ∴∠=∠,AB AC =,AD AE =,BAD CAE ∴∠=∠,在BAD ∆和CAE ∆中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴∆≅∆;(2)ABD ACE ∆≅∆,B ACE ∴∠=∠,ACE ECD B BAC ∠+∠=∠+∠,35ECD BAC ∴∠=∠=︒.17.已知,如图,直线AB BC ⊥,线段AB BC <,点D 在直线AB 上,且AD BC =,AE AB ⊥,且AE BD =,连接DE 、DC ,ADE α∠=.(1)请在下图中补全图形,并写出CDE ∠的度数 290α-︒或902α︒-或90︒ (用含α的代数式表示);(2)如图,当点D 在点B 下方,点F 在线段BC 的延长线上,且BD CF =,直线AF 与DC交于点P ,试问APD ∠的度数是否是定值?若是定值,求出并说明理由.【解答】解:(1)如图1,点D 在点B 上方时,点E 在点A 右侧,AD BC =,DAE DBC ∠=∠,AE BD =, ()ADE BCD SAS ∴∆≅∆ADE BCD α∴∠==∠,90BDC AED α∠=∠=︒-, 290CDE ADE BDC α∴∠=∠-∠=-︒, 点D 在点B 上方时,点E 在点A 左侧, 90CDE ADE BDC ∠=∠+∠=︒;如图11-,点D 在点B 下方时,点E 在点A 右侧,AD BC =,DAE DBC ∠=∠,AE BD =, ()ADE BCD SAS ∴∆≅∆ADE BCD α∴∠==∠,90BDC AED α∠=∠=︒-, 902EDC BDC ADE α∴∠=∠-∠=︒-,点D 在点B 下方时,点E 在点A 左侧, 90CDE ADE BDC ∴∠=∠+∠=︒;故答案为:290α-︒或902α︒-或90︒;(2)APD ∠的度数是45︒,理由是:如图2,过F 作FM x ⊥轴于F ,使FM BC =,连接CM ,DM ,AD BC =,AD FM ∴=,AD x ⊥轴,//AD FM ∴,∴四边形ADM F 是平行四边形,//AF DM ∴,PDM APD ∴∠=∠,FM BC =,90CFM DBC ∠=∠=︒,CF BD =, ()CFM DBC SAS ∴∆≅∆,BCD CMF ∴∠=∠,DC CM =,90FCM CMF ∠+∠=︒,90FCM BCD ∴∠+∠=︒,90DCM ∴∠=︒,DCM ∴∆是等腰直角三角形,45CDM ∴∠=︒,45APD CDM ∴∠=∠=︒.18.已知等腰三角形ABC 中,点D 为BC 中点,点E 是BA 延长线上一动点,点F 是AC 延长线上一动点连接DE 、DF ,且180EDF BAC ∠+∠=︒.(1)如图1,若90BAC ∠=︒,求证:AE AC AF +=;(2)如图2,若120BAC ∠=︒,AE 、AC 、AF 三条线段还满足(1)中的结论吗?若满足,则直接证明;若不满足,请写出结论并证明.【解答】(1)证明:连接AD ,设AF 交DE 于G ,如图1所示: 90BAC ∠=︒,AB AC =,45B ∴∠=︒,点D 为BC 中点,12AD BC BD CD ∴===,45BAD CAD B ∠=∠=︒=∠,AD BC ⊥, 180EDF BAC ∠+∠=︒,180EAC BAC ∠+∠=︒, EDF EAC ∴∠=∠,AGE DGF ∠=∠,BED AFD ∴∠=∠,在BDE ∆和ADF ∆中,B CAD BED AFD BD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BDE ADF AAS ∴∆≅∆,BE AF ∴=,AB AC =,BE AE AB =+,AE AC AF ∴+=;(2)解:不满足(1)中的结论,12AC AE AF +=;理由如下: 连接AD ,取AC 的中点G ,连接DG ,如图2所示: 120BAC ∠=︒,AB AC =,30ACB ∴∠=︒,60EAC ∠=︒,点D 为BC 中点,AD BC ∴⊥,60CAD ∠=︒,12DG AC AG CG ∴===,120DAE ∠=︒, ADG ∴∆是等边三角形,AD DG ∴=,60AGD ADG EDF ∠=∠=︒=∠, 120DGF DAE ∴∠=︒=∠,ADE GDF ∠=∠, 同(1)得:AED GFD ∠=∠,在ADE ∆和GDF ∆中,DAE DGF AED GFD AD GD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADE GDF AAS ∴∆≅∆,AE GF ∴=,AG GF AF +=, ∴12AC AE AF +=;19.已知D 为ABC ∆所在平面内一点,且DB DC =,DE AB ⊥,DF AC ⊥,垂足分别为点E 、F ,DE DF =.(1)如图1,当点D 在BC 边上时,判断ABC ∆的形状;并证明你的结论;(2)如图2,当点D 在ABC ∆内部时,(1)中的结论是否仍然成立?若成立,请证明:若不成立,请举出反例(画图说明,不需证明).【解答】解:(1)结论:ABC ∆是等腰三角形. 理由:DE AB ⊥,DF AC ⊥,90BED CFD ∴∠=∠=︒.在Rt EBD ∆与Rt FCD ∆中,DE DF DB DC =⎧⎨=⎩, Rt EBD Rt FCD(HL)∴∆≅∆,B C ∴∠=∠AB AC ∴=,ABC ∴∆是等腰三角形.(2)当点D 在ABC ∆内部时,(1)中的结论仍然成立. 理由:如图2,DE AB ⊥,DF AC ⊥, 90BED CFD ∴∠=∠=︒,在Rt EBD ∆与Rt FCD ∆中,DE DF DB DC =⎧⎨=⎩, Rt EBD Rt FCD(HL)∴∆≅∆,EBD FCD ∴∠=∠.DB DC =,DBC DCB ∴∠=∠,EBD DBC FCD DCB ∴∠+∠=∠+∠, 即ABC ACB ∠=∠,AB AC ∴=,ABC ∴∆是等腰三角形.20.如图,在Rt ABC ∆中,90C ∠=︒,点P 为AC 边上的一点,延长BP 至点D ,使得AD AP =,当AD AB ⊥时,过点D 作DE AC ⊥于E .(1)求证:CBP ABP ∠=∠;(2)若4AB BC -=,8AC =.求AB 的长度和DE 的长度.【解答】(1)证明:90C ∠=︒, 90CBP BPC ∴∠+∠=︒, AD AB ⊥,90PBA BDA ∴∠+∠=︒, AD AP =,BDA DPA BPC ∴∠=∠=∠, CBP ABP ∴∠=∠;(2)解:设AB x =,4AB BC -=,4BC x ∴=-,在Rt ABC ∆中,由勾股定理得:222(4)8x x -+=, 解得:10x =,6BC ∴=,10AB =;作PF AB ⊥于F ,如图所示:在BCP ∆和BFP ∆中,90CBP ABP C BFP BP BP ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()BCP BFP AAS ∴∆≅∆6BC BF ∴==,DE AC ⊥,90EAD ADE PAF EAD ∴∠+∠=︒=∠+∠,PAF ADE ∴∠=∠,在PAF ∆和ADE ∆中,PFA AED PAF ADE PA AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()PAF ADE AAS ∴∆≅∆,1064DE AF AB BF ∴==-=-=.21.如图(1),8A B c m =,AC AB ⊥,BD AB ⊥,6AC BD cm ==.点P 在线段AB 上以2/m s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为()t s(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,判断线段PC 与PQ 满足的关系,并说明理由.(2)如图(2),将图(1)中的AC AB ⊥,BD AB ⊥为改“CAB DBA a ∠=∠=︒”,其它条件不变.设点Q 的运动速度为/xcm s ,是否存在实数x ,使得ACP ∆与BPQ ∆全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.【解答】解:(1)ACP BPQ ∆≅∆,AC AB ⊥,BD AB ⊥90A B ∴∠=∠=︒2AP BQ ==6BP ∴=BP AC ∴=,在ACP ∆和BPQ ∆中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,ACP BPQ ∴∆≅∆,C QPB ∴∠=∠,90APC C ∠+∠=︒,90APC QPB ∴∠+∠=︒,PC PQ ∴⊥;(2)存在x 的值,使得ACP ∆与BPQ ∆全等,①若ACP BPQ ∆≅∆,则AC BP =,AP BQ =,可得:682t =-,2t xt =解得:2x =,1t =;②若ACP BQP ∆≅∆,则AC BQ =,AP BP =,可得:6xt =,282t t =-解得:3x =,2t =.22.如图,AD AC =,1239∠=∠=︒,C D ∠=∠,点E 在线段BC 上.(1)求证:ABC AED ∆≅∆.(2)求AEC ∠的度数.【解答】(1)证明:1239∠=∠=︒,12CAE CAE ∴∠+∠=∠+∠,即BAC EAD ∠=∠,在ABC ∆和AED ∆中,BAC EAD AC AD C D ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ABC AED ASA ∴∆≅∆.(2)解:由(1)得::ABC AED ∆≅∆.AB AE ∴=,11(1801)(18039)70.522B AEB ∴∠=∠=︒-∠=︒-︒=︒, 13970.5109.5AEC B ∴∠=∠+∠=︒+︒=︒., 23.已知:如图,点A 、D 、C 、B 在同一条直线上,AD BC =,AE BF =,//AE FB ,求证://CE DF .【解答】证明:AD BC =,AD DC BC DC ∴+=+,AC BD ∴=,//AE BF ,A B ∴∠=∠,在ACE ∆和BDF ∆中,,,,AC BD A B AE BF =⎧⎪∠=∠⎨⎪=⎩()ACE BDF SAS ∴∆≅∆.ACE BDF ∴∠=∠.//CE DF ∴.24.如图,点D 在ABC ∆外部,点C 在DE 边上,BC 与AD 交于点O ,若123∠=∠=∠,AC AE =.求证:(1)B D ∠=∠;(2)ABC ADE ∆≅∆.【解答】证明:(1)13∠=∠,13DAC DAC ∴∠+∠=∠+∠,即BAC DAE ∠=∠,1803E ACE ∠=∠︒-∠-∠,1802ACB ACE ∠=︒-∠-∠,23∠=∠,ACE ACE ∠=∠,ACB E ∴∠=∠,在ABC ∆与ADE ∆中BAC DAE AC AEE ACB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABC ADE ASA ∴∆≅∆,B D ∴∠=∠.(2)由(1)可得ABC ADE ∆≅∆.25.已知:如图,AB AC =,AE AF =,连结BF ,CE ,交于O ,连结AO .求证:(1)B C ∠=∠;(2)AO 平分BAC ∠.【解答】证明:(1)在ABF ∆和ACE ∆中,AB AC BAF CAE AF AE =⎧⎪∠=∠⎨⎪=⎩,()ABF ACE SAS ∴∆≅∆,B C ∴∠=∠;(2)AB AC =,AE AF =,BE CF ∴=,在BOE ∆和COF ∆中,B C BOE COF BE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BOE COF AAS ∴∆≅∆,OB OC ∴=,在ABO ∆和ACO ∆中,AB AC B C OB OC =⎧⎪∠=∠⎨⎪=⎩,()ABO ACO SAS ∴∆≅∆,OAB OAC ∴∠=∠,即AO 平分BAC ∠.26.如图所示,已知ABC ∆中AB AC =,E 、D 、F 分别在AB ,BC 和AC 边上,且BE CD =,BD CF =,过D 作DG EF ⊥于G . 求证:12EG EF =.【解答】证明:连接DE 、DF ,如右图所示,AB AC =,B C ∴∠=∠,在EBD ∆和DCF ∆中,BE CD B C BD CF =⎧⎪∠=∠⎨⎪=⎩,()EBD DCF SAS ∴∆≅∆,DE DF ∴=,DG EF ⊥,DG ∴是等腰DEF ∆的中线,12EG EF ∴=.27.已知在ABC ∆中,AC BC =,分别过A ,B 两点作互相平行的直线AM ,BN ,过点C 的直线分别交直线AM ,BN 于点D ,E .(1)如图1,若AM AB ⊥,求证:CD CE =;(2)如图2,60ABC DEB ∠=∠=︒,判断线段AD ,DC 与BE 之间的关系,并说明理由.【解答】(1)证明:如图1,延长AC 交BN 于点F ,AC BC =,CAB CBA ∴∠=∠,又AB AM ⊥,90BAM ∴∠=︒,又//AM BN ,180BAM ABN ∴∠+∠=︒,90ABN ∴∠=︒,90BAF AFB ∴∠+∠=︒,90ABC CBF ∠+∠=︒,CBF AFB ∴∠=∠,BC CF ∴=,AC FC ∴=,又//AM BN ,DAF AFB ∴∠=∠,在ADC ∆和FEC ∆中,DAC EFC AC FC ACD FCE ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ADC FEC ASA ∴∆≅∆,DC EC ∴=;(2)解:AD DC BE +=;理由如下:如图2,在EB 上截取EH EC =,连接CH ,AC BC =,60ABC ∠=︒,ABC ∴∆为等边三角形,60DEB ∠=︒,CHE ∴∆是等边三角形,60CHE ∴∠=︒,60HCE ∠=︒,120BHC ∴∠=︒,//AM BN ,180ADC BEC ∴∠+∠=︒,120ADC ∴∠=︒,60DAC DCA ∴∠+∠=︒,又180DCA ACB BCH HCE ∠+∠+∠+∠=︒,60DCA BCH ∴∠+∠=︒,DAC BCH ∴∠=∠,在DAC ∆与HCB ∆中,DAC HCB ADC CHB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()DAC HCB AAS ∴∆≅∆,AD CH ∴=,DC BH =,又CH CE HE==,∴=+=+,BE BH HE DC AD即AD DC BE+=.28.阅读下列材料,并完成任务.如图,四边形ABCD是一个筝形,其中AB AD=.对角线AC,BD相交于点O,=,BC CD过点O作0M AB⊥,ON AD⊥,垂足分别为M,N.求证:四边形AMON是筝形.【解答】证明:在ABC ∆和ADC ∆中AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩,()ABC ADC SSS ∴∆≅∆,BAC DAC ∴∠=∠,又OM AB ⊥,ON AD ⊥,垂足分别为M ,N ,OM ON ∴=;90AMO ANO ∠=∠=︒,9090BAC DAC ∴︒-∠=︒-∠,AOM AON ∴∠=∠,即OA 平分MON ∠,又AM OM ⊥,AN ON ⊥,AM AN ∴=∴四边形AMON 是筝形.29.如图,在ABC ∆中AB AC =,AED ∆中AE AD =,EAD BAC ∠=∠,AC 与BD 交于点O .(1)试确定ADC ∠与AEB ∠间的数量关系,并说明理由;(2)若65ACB ∠=︒,求BDC ∠的度数.【解答】解:(1)ADC AEB ∠=∠,理由如下:BAC EAD ∠=∠BAC EAC EAD EAC ∴∠-∠=∠-∠即:BAE CAD ∠=∠在ABE ∆和ACD ∆中AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩()ABE ACD SAS ∴∆≅∆ADC AEB ∴∠=∠(2)BOC ∠是ABO ∆和DCO ∆的外角BOC ABD BAC ∴∠=∠+∠,BOC ACD BDC ∠=∠+∠ABD BAC ACD BDC ∴∠+∠=∠+∠ABD ACD ∠=∠BAC BDC ∴∠=∠65ACB ∠=︒,AB AC =65ABC ACB ∴∠=∠=︒180180656550BAC ABC ACB ∴∠=︒-∠-∠=︒-︒-︒=︒50BDC BAC ∴∠=∠=︒30.如图,AD 为ABC ∆的高,E 为AC 上一点,BE 交AD 于F ,且有BF AC =,FD CD =.求证:(1)BFD ACD ∆≅∆;(2)BE AC ⊥.【解答】证明:(1)AD 为ABC ∆的边BC 上的高,BDF ∴∆和ADC ∆为直角三角形.90BDF ADC ∴∠=∠=︒.在Rt BFD ∆和Rt ACD ∆中,BF AC FD CD=⎧⎨=⎩, Rt ∴△Rt ACD(HL)BFD ∆≅∆;(2)BDF ADC ∆≅∆,DBF DAC ∴∠=∠.AFE ∠与BFD ∠是对顶角,90BDF AEF ∴∠=∠=︒,BE AC ∴⊥.31.在等腰OAB ∆和等腰OCD ∆中,OA OB =,OC OD =,连接AC 、BD 交于点M .(1)如图1,若40:AOB COD ∠=∠=︒①AC 与BD 的数量关系为 AC BD = ;②AMB ∠的度数为 .(2)如图2,若90:AOB COD ∠=∠=︒①判断AC 与BD 之间存在怎样的数量关系?并说明理由;②求AMB ∠的度数.【解答】解:(1)①AOB COD ∠=∠,AOB AOD COD AOD ∴∠+∠=∠+∠,BOD AOC ∴∠=∠,在BOD ∆和AOC ∆中,OB OA BOD AOC OD OC =⎧⎪∠=∠⎨⎪=⎩,()BOD AOC SAS ∴∆≅∆,AC BD ∴=;故答案为:AC BD =,②BOD AOC ∆≅∆,OBD OAC ∴∠=∠,40AOB ∠=︒,180********OAB OBA AOB ∴∠+∠=︒-∠=︒-︒=︒,又OAB OBA OAB ABD OBD ∠+∠=∠+∠+∠140OAB OBA OAB ABD OAC ∴∠+∠=∠+∠+∠=︒,140MAB ABM ∴∠+=︒,在ABM ∆中,180AMB MAB ABM ∠+∠+=︒,40AMB ∴∠=︒;故答案为:40︒;(2)①AC BD =,理由如下:90AOB COD ∠=∠=︒,AOB AOD COD AOD ∴∠+∠=∠+∠,BOD AOC ∴∠=∠,在BOD ∆和AOC ∆中,OB OA BOD AOC OD OC =⎧⎪∠=∠⎨⎪=⎩,()BOD AOC SAS ∴∆≅∆,BD AC ∴=;②BOD AOC ∆≅∆,OBD OAC ∴∠=∠,又90OAB OBA ∠+∠=︒,ABO ABM OBD ∠=∠+∠,MAB MAO OAB ∠=∠+∠,90MAB MBA ∴∠+∠=︒, 又在AMB ∆中,180AMB ABM BAM ∠+∠+∠=︒,180()1809090AMB ABM BAM ∴∠=︒-∠+∠=︒-︒=︒.32.如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,AB BE ⊥,垂足为B ,DE BE ⊥,垂足为E ,且AC DF =,BF CE =.(1)求证:ABC DEF ∆≅∆;(2)若65A ∠=︒,求AGF ∠的度数.【解答】(1)证明:AB BE ⊥,90B ∴∠=︒,DE BE ⊥,90E ∴∠=︒,BF CE =,BF CF CE CF ∴+=+,即CB EF =,在Rt ABC ∆和Rt DEF ∆中,AC DF BC EF=⎧⎨=⎩, Rt ABC Rt DEF(HL)∴∆≅∆(2)解:65A ∠=︒,AB BE ⊥,906525ACB ∴∠=︒-︒=︒,由(1)知Rt ABC Rt DEF ∆≅∆,25ACB DFE ∴∠=∠=︒,50AGF ACB DFE ∴∠=∠+∠=︒33.如图,在ABC ∆中,B C ∠=∠,点D 、E 、F 分别在AB 、BC 、AC 边上,且BE CF =,AD EC AB +=.(1)求证:DE EF =.(2)当36A ∠=︒时,求DEF ∠的度数.【解答】(1)证明:AD EC AB +=,AD BD AB +=BD EC ∴=,在BDE ∆和CEF ∆中BD EC B C BE CF =⎧⎪∠=∠⎨⎪=⎩,()BDE CEF SAS ∴∆≅∆,DE EF ∴=;(2)解:ABC ∆中,36A ∠=︒,1(18036)722B C ∴∠=∠=︒-︒=︒,由(1)知:BDE CEF ∆≅∆BDE CEF ∴∠=∠,又DEF CEF B BDE ∠+∠=∠+∠,72DEF B ∴∠=∠=︒.34.在ABC ∆中,45ACB ∠=︒,AD BC ⊥垂足为D ,点E 在AD 上,ED BD =,连接CE 并延长交AB 于点F ,连接DF .(1)求证:BAD ECD ∠=∠.(2)求证:45DFE ∠=︒.【解答】证明:(1)AD 是ABC ∆的高,45ACB ∠=︒,90ADB CDE ∴∠=∠=︒,ACD ∆是等腰直角三角形,AD CD ∴=,在ABD ∆和CED ∆中,AD CD ADB CDE DE DB =⎧⎪∠=∠⎨⎪=⎩,()ABD CED SAS ∴∆≅∆,BAD ECD ∴∠=∠;(2)如图,在EC 上截取EG BF =,ABD CED ∆≅∆,B CED ∴∠=∠,在BDF ∆和EDG ∆中,EG BF B CED DE DB =⎧⎪∠=∠⎨⎪=⎩,()BDF EDG SAS ∴∆≅∆,DF DG ∴=,BDF EDG ∠=∠,90FDG FDE EDG FDE BDF ADB ∴∠=∠+∠=∠+∠=∠=︒,DFG ∴∆是等腰直角三角形,45DFE ∴∠=︒.35.如图,在ABC ∆和BAD ∆中,AC 与BD 相交于点E ,AD BC =,DAB CBA ∠=∠,求证:12∠=∠.【解答】证明:在ABD ∆和BAC ∆中,AD BC DAB CBA AB BA =⎧⎪∠=∠⎨⎪=⎩,ABD BAC ∴∆≅∆()SAS ,34∴∠=∠,DAB CBA ∠=∠,12∴∠=∠.36.如图所示,AB AC =,AD AE =,BAC DAE ∠=∠,122∠=︒,228∠=︒, 求3∠的度数.【解答】解:BAC DAE ∠=∠,BAD CAE ∴∠=∠,在ABD ∆与ACE ∆中,1AD AE CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴∆≅∆;228ABD ∴∠=∠=︒;31ABD ∠=∠+∠,122∠=︒,350∴∠=︒.37.如图,在直角坐标系中有一点(5,5)P ,(0,)M m 为y 轴上任意一点,N 为x 轴上任意一点,且90MPN ∠=︒.(1)当5m =时,OM ON +的值为 10 ;(2)当05m <<时,OM ON +的值是否改变?说明你的理由;(3)探索:当0m <时,OM 与ON 的数量关系为 .【解答】解:(1)作PA y ⊥轴于A ,PB x ⊥轴于B ,如图1所示:(5,5)P ,5PA PB OA OB ∴====,(0,5)A ∴,当5m =时,(0,5)M ,A ∴与M 重合,B 与N 重合,5ON OH ∴==,10OM ON ∴+=;故答案为:10;(2)当05m <<时,OM ON +的值不改变,理由如下:作PA y ⊥轴于A ,PB x ⊥轴于B ,如图2所示:则90APB ∠=︒,5PA PB ==,90MPN ∠=︒,APM BPN ∴∠=∠,在APM ∆和BPN ∆中,90PAM PBN PA PB APM BPN∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,()APM BPN ASA ∴∆≅∆,AM BN ∴=,10OM ON OA AM OB BN OA OB ∴+=-++=+=;(3)当0m <时,OM 与ON 的数量关系为10OM ON =-,理由如下: 作PA y ⊥轴于A ,PB x ⊥轴于B ,如图3所示: 同(2)得:()APM BPN ASA ∆≅∆,AM BN ∴=,10OM AM OA BN OA ON OB OA ON ∴=-=-=--=-; 故答案为:10OM ON =-.38.已知,如图,射线BD 平分锐角ABC ∠,且平分钝角ADC ∠,求证:CD AD =.【解答】证明:射线BD 平分锐角ABC ∠,且平分钝角ADC ∠, 12∴∠=∠,34∠=∠,ADB CDB ∴∠=∠,在CBD ∆和ABD ∆中,21BD BD CDB ADB ∠=∠⎧⎪=⎨⎪∠=∠⎩,()CBD ADB ASA ∴∆≅∆,CD AD ∴=.39.如图所示,BF AC ⊥于点F ,CE AB ⊥于点E ,BF 与CE 交于D ,且BD CD =. 求证:D 在BAC ∠的平分线上.【解答】证明:BF AC ⊥于点F ,CE AB ⊥于点E , 90BED CFD ∴∠=∠=︒,在BDE ∆和CDF ∆中,BED CFD BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BDE CDF AAS ∴∆≅∆,DE DF ∴=,D ∴在BAC ∠的平分线上.40.如图(1),7A B c m =,AC AB ⊥,BD AB ⊥垂足分别为A 、B ,5AC cm =.点P 在线段AB 上以2/cm s 的速度由点A 向点B 运动,同时,点Q 在射线BD 上运动.它们运动的时间为()t s (当点P 运动结束时,点Q 运动随之结束).(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP ∆与BPQ ∆是否全等,并判断此时线段PC 和线段PQ 的位置关系,请分别说明理由;(2)如图(2),若“AC AB ⊥,BD AB ⊥”改为“60CAB DBA ∠=∠=︒”,点Q 的运动速度为/xcm s ,其他条件不变,当点P 、Q 运动到某处时,有ACP ∆与BPQ ∆全等,求出相应的x 、t 的值.【解答】解:(1)ACP BPQ ∆≅∆, AC AB ⊥,BD AB ⊥90A B ∴∠=∠=︒2AP BQ ==,5BP ∴=,BP AC ∴=,在ACP ∆和BPQ ∆中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,ACP BPQ ∴∆≅∆;C BPQ ∴∠=∠,90C APC ∠+∠=︒,90APC BPQ ∴∠+∠=︒,90CPQ ∴∠=︒,PC PQ ∴⊥;(2)存在x 的值,使得ACP ∆与BPQ ∆全等, ①若ACP BPQ ∆≅∆,则AC BP =,AP BQ =,可得:572t =-,2t xt = 解得:2x =,1t =;②若ACP BQP ∆≅∆,则AC BQ =,AP BP =,可得:5xt =,272t t =- 解得:207x =,74t =.41.如图,在ABC ∆中,60B ∠=︒,AD 平分BAC ∠,CE 平分BCA ∠,AD 、CE 交于点F ,CD CG =,连结FG .(1)求证:FD FG =;(2)线段FG 与FE 之间有怎样的数量关系,请说明理由;(3)若60B ∠≠︒,其他条件不变,则(1)和(2)中的结论是否仍然成立?请直接写出判断结果,不必说明理由.【解答】(1)证明:EC 平分ACB ∠, FCD FCG ∴∠=∠,CG CD =,CF CF =,()CFD CFG SAS ∴∆≅∆,FD FG ∴=.(2)解:结论:FG FE =.理由:60B ∠=︒,120BAC BCA ∴∠+∠=︒, AD 平分BAC ∠,CE 平分BCA ∠,1()602ACF FAC BCA BAC ∴∠+∠=∠+∠=︒, 120AFC ∴∠=︒,60CFD AFE ∠=∠=︒, CFD CFG ∆≅∆,60CFD CFG ∴∠=∠=︒,60AFG AFE ∴∠=∠=︒,。
C .△APE ≌△APFD .AP PE PF =+ 2.下列说法中:①如果两个三角形可以依据“AAS ”来判定全等,那么一定也可以依据“ASA ”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是( )A .①和②B .②和③C .①和③D .①②③3.如图8, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( ) A .1个 B .2个 C .3个 D .4个4.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )A .形状相同B .周长相等C .面积相等D .全等5.如图9,AD AE =,= = =100 =70BD CE ADB AEC BAE ︒︒,,∠∠∠,下列结论错误的是( )A .△ABE ≌△ACDB .△ABD ≌△ACEC .∠DAE =40°D .∠C =30°6.已知:如图10,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F ,则图中共有全等三角形( )A .5对B .4对C .3对D .2对7.将一张长方形纸片按如图11所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( ) A .60° B .75° C .90° D .95°8.根据下列已知条件,能惟一画出△ABC 的是( )A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =6三、用心想一想(本大题共69分) 1.(本题8分)请你用三角板、圆规或量角器等工具,画∠POQ =60°,在它的边OP 上截取OA =50mm ,OQ 上截取OB =70mm ,连结AB ,画∠AOB 的平分线与AB 交于点C ,并量出AC 和OC 的长 .(结果精确到1mm ,不要求写画法).2.(本题10分)已知:如图12,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE BF =. 求证:(1)AF CE =;(2)AB CD ∥.A DC B 图8 E FA D OC B 图9 A DE C B 图10F G A E C 图11 B A ′ E ′DAD EC B图12F则∠BAC= °.3.把两根钢条AA?、BB?的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5厘米,则槽宽为米.4.如图,∠A=∠D,AB=CD,则△≌△,根据是.5.如图,在△ABC和△ABD中,∠C=∠D=90,若利用“AAS”证明△ABC≌△ABD,则需要加条件或;若利用“HL”证明△ABC≌△ABD,则需要加条件,或.6.△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC= .7.工人师傅砌门时,如图所示,常用木条EF固定矩形木框ABCD,使其不变形,这是利用,用菱形做活动铁门是利用四边形的。
(苏科版)八年级上册数学《第1章全等三角形》专题全等三角形压轴题训练(30题)1.如图,△ABC中,AB=AC,D为AC边上一点,E为AB延长线上一点,且CD=BE,DE与BC相交于点F.(1)求证:DF=EF.(2)过点F作FG⊥DE,交线段CE于点G,若CE⊥AC,CD=4,S=5,求EG的长.△EFG【分析】(1)过点D作DH∥AB交BC于点H,根据等腰三角形的性质及平行线的性质得到∠BEF=∠HDF,∠DHC=∠DCH,则DH=CD,结合∠BFE=∠HFD,即可利用AAS判定△BEF≌△HDF,根据全等三角形的性质即可得解;(2)根据三角形的面积公式求解即可.【解答】(1)过点D作DH∥AB交BC于点H,∵AB=AC,∴∠ABC=∠ACB,∵DH∥AB,∴∠DHC=∠ABC,∴∠DHC=∠ACB=∠DCH,∴DH=CD,∵CD=BE,∴DH=BE,∵DH∥AB,∴∠BEF=∠HDF,在△BEF和△HDF中,∠BFE=∠HFD∠BEF=∠HDFBE=DH,∴△BEF≌△HDF(AAS),∴DF=EF;(2)连接DG,∵DF=EF,FG⊥DE,∴S△DFG =S△EFG=5,∴S△DEG=10,∵CE⊥AC,CD=4,∴S△DEG =12EG•CD=12EG×4,∴12EG×4=10,∴EG=5.【点评】此题考查了全等三角形的判定与性质,利用AAS判定△BEF≌△HDF是解题的关键.2.如图,四边形ABCD中,AB=BC=2CD,AB∥CD,∠C=90°,E是BC的中点,AE与BD相交于点F,连接DE.(1)求证:△ABE≌△BCD;(2)判断线段AE与BD的数量关系及位置关系,并说明理由;【分析】(1)由平行线的性质得出∠ABE+∠C=180°,得出∠ABE=90°=∠C,再证出BE=CD,由SAS证明△ABE≌△BCD即可;(2)由全等三角形的性质得出AE=BD,证出∠ABF+∠BAE=90°,得出∠AFB=90°,即可得出结论.【解答】(1)证明:∵AB∥CD,∴∠ABE+∠C=180°,∵∠C=90°,∴∠ABE=90°=∠C,∵E是BC的中点,∴BC=2BE,∵BC=2CD,∴BE=CD,在△ABE和△BCD中,AB=BC∠ABE=∠C BE=CD,∴△ABE≌△BCD(SAS);(2)解:AE=BD,AE⊥BD,理由如下:由(1)得:△ABE≌△BCD,∴AE=BD,∵∠BAE=∠CBD,∠ABF+∠CBD=90°,∴∠ABF+∠BAE=90°,∴∠AFB=90°,∴AE⊥BD.【点评】本题考查了全等三角形的判定与性质、直角三角形的性质等知识;证明三角形全等是解题的关键.3.如图1,在等腰直角三角形ABC中,AB=AC,∠BAC=90°,点P为BC边上的一个动点,连接AP,以AP为直角边,A为直角顶点,在AP右侧作等腰直角三角形PAD,连接CD.(1)当点P在线段BC上时(不与点B重合),求证:△BAP≌△CAD;(2)当点P在线段BC的延长线上时(如图2),试猜想线段BP和CD的数量关系与位置关系分别是什么?请给予证明.【分析】(1)证得∠BAP=∠CAD,根据SAS可证明△BAP≌△CAD;(2)可得∠BAP=∠CAD,由SAS可证明△BAP≌△CAD,可得BP=CD,∠B=∠ACD,则结论得证.【解答】(1)证明:∵∠BAC=∠PAD=90°,∴∠BAC﹣∠PAC=∠PAD﹣∠PAC,即:∠BAP=∠CAD,在△BAP和△CAD中AB=AC∠BAP=∠CAD,PA=DA∴△BAP≌△CAD(SAS);(2)猜想:BP=CD,BP⊥CD.证明:∵∠BAC=∠PAD=90°,∴∠BAC+∠PAC=∠PAD+∠PAC,即:∠BAP=∠CAD,在△BAP和△CAD中AB=AC∠BAP=∠CAD,PA=DA∴△BAP≌△CAD(SAS),∴BP=CD(全等三角形的对应边相等),∠B=∠ACD(全等三角形的对应角相等),∵∠B+∠ACB=90°,∴∠ACD+∠ACB=90°,即:BP⊥CD.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,根据同角的余角相等求出两边的夹角相等是证明三角形全等的关键.4.(2023春•市南区期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,E为AC边上一点,连接BE与AD交于点F,G为△ABC外一点,满足∠ACG=∠ABE,∠FAG=∠BAC,连接EG.(1)求证:△ABF≌△ACG;(2)求证:BE=CG+EG.【分析】(1)根据已知条件可得∠BAD=∠CAG,然后利用ASA即可证明△ABF≌△ACG;(2)结合(1)的结论,再证明△AEF≌△AEG,即可解决问题.【解答】(1)证明:∵∠BAC=∠FAG,∴∠BAC﹣∠CAD=∠FAG﹣∠CAD,∴∠BAD=∠CAG,在△ABF和△ACG中,∠BAD=∠CAGAB=AC,∠ABF=∠ACG∴△ABF≌△ACG(ASA);(2)证明:∵△ABF≌△ACG,∴AF=AG,BF=CG,∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵∠BAD=∠CAG,∴∠CAD=∠CAG,在△AEF和△AEG中,AF=AG∠FAE=∠GAE,AE=AE∴△AEF≌△AEG(SAS).∴EF=EG,∴BE=BF+FE=CG+EG.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是得到△AEF≌△AEG.5.(2022秋•新宾县期中)如图(1)所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD.(1)求证:EG=FG.(2)若将△DEC的边EC沿AC方向移动,变为图(2)时,其余条件不变,上述结论是否成立?请说明理由.【分析】(1)先利用HL判定Rt△ABF≌Rt△CDE,得出BF=DE;再利用AAS判定△BFG≌△DEG,从而得出GE=GF;(2)结论仍然成立,同理可以证明得到.【解答】解:(1)证明:∵DE⊥AC,BF⊥AC,∴∠DEF=∠BFE=90°.∵AE=CF,AE+EF=CF+EF.即AF=CE.在Rt△ABF和Rt△CDE中,AB=CDAF=CE,∴Rt△ABF≌Rt△CDE(HL),∴BF=DE.在△BFG和△DEG中,∵∠BFG=∠DEG ∠BGF=∠DGE BF=DE,∴△BFG≌△DGE(AAS),∴GE=GF;(2)结论依然成立.理由:∵DE⊥AC,BF⊥AC,∴∠BFA=∠DEC=90°∵AE=CF∴AE﹣EF=CF﹣EF,即AF=CE,在Rt△ABF和Rt△CDE中,AB=CDAF=CE,∴Rt△ABF≌Rt△CDE(HL),∴DE=BF在△BFG和△DEG中,∵∠BFG=∠DEG ∠BGF=∠DGE BF=DE,∴△BFG≌△DGE(AAS),∴GE=GF.【点评】本题考查三角形全等的判定与性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.(2023春•市南区期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,E为AC边上一点,连接BE与AD交于点F,G为△ABC外一点,满足∠ACG=∠ABE,∠FAG=∠BAC,连接EG.(1)求证:△ABF≌△ACG;(2)求证:BE=CG+EG.【分析】(1)根据已知条件可得∠BAD=∠CAG,然后利用ASA即可证明△ABF≌△ACG;(2)结合(1)的结论,再证明△AEF≌△AEG,即可解决问题.【解答】(1)证明:∵∠BAC=∠FAG,∴∠BAC﹣∠CAD=∠FAG﹣∠CAD,∴∠BAD=∠CAG,在△ABF和△ACG中,∠BAD=∠CAGAB=AC,∠ABF=∠ACG∴△ABF≌△ACG(ASA);(2)证明:∵△ABF≌△ACG,∴AF=AG,BF=CG,∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵∠BAD=∠CAG,∴∠CAD=∠CAG,在△AEF和△AEG中,AF=AG∠FAE=∠GAE,AE=AE∴△AEF≌△AEG(SAS).∴EF=EG,∴BE=BF+FE=CG+EG.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是得到△AEF≌△AEG.7.(2022秋•忠县期末)在△ABC中,点D、E分别在AB、AC边上,设BE与CD相交于点F.(1)如图①,设∠A=60°,BE、CD分别平分∠ABC、∠ACB,证明:DF=EF.(2)如图②,设BE⊥AC,CD⊥AB,点G在CD的延长线上,连接AG、AF;若∠G=∠6,BD=CD,证明:GD=DF.【分析】(1)在BC上截取BM=BD,连接FM,证明△BFD≌△BFM,△ECF≌△MCF,进而可以解决问题;(2)根据已知条件证明△BDF≌△CDA,进而可以解决问题.【解答】证明:(1)如图,在BC上截取BM=BD,连接FM,∵∠A=60,∴∠BFC=90°+60°÷2=120°,∴∠BFD=60°,∵BE平分∠ABC,∴∠1=∠2,在△BFD和△BFM中,BD=BM∠1=∠2,BF=BF∴△BFD≌△BFM(SAS),∴∠BFM=∠BFD=60°,DF=MF,∴∠CFM=120°﹣60°=60°,∵∠CFE=∠BFD=60°,∴∠CFM=∠CFE,∵CD平分∠ACB,∴∠3=∠4,又CF=CF,在△ECF和△MCF中,∠CFE=∠CFMFC=FC,∠3=∠4∴△ECF≌△MCF(ASA),∴EF=MF,∴DF=EF;(2)∵BE⊥AC,CD⊥AB,∴∠BDF=∠CDA=90°,∴∠1+∠BFD=90°,∠3+∠CFE=90°,∠BFD=∠CFE,∴∠1=∠3,∵BD=CD,在△BDF和△CDA中,∠BDF=∠CDABD=CD,∠1=∠3∴△BDF≌△CDA(ASA),∴DF=DA,∵∠ADF=90°,∴∠6=45°,∵∠G=∠6,∴∠5=45°∴∠G=∠5,∴GD=DA,∴GD=DF.【点评】本题属于三角形的综合题,考查了全等三角形的判定与性质,角平分线的性质,解决本题的关键是掌握全等三角形的判定与性质.8.(2023春•宣汉县校级期末)已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分别为D,E,(1)如图1,把下面的解答过程补充完整,并在括号内注明理由.①线段CD和BE的数量关系是:CD=BE;②请写出线段AD,BE,DE之间的数量关系并证明.解:①结论:CD=BE.理由:∵AD⊥CM,BE⊥CM,∴∠ACB=∠BEC=∠ADC=90°,∴∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD= 在△ACD和△CBE中,( )∴△ACD≌△CBE,( )∴CD=BE.②结论:AD=BE+DE.理由:∵△ACD≌△CBE,∴ ∵CE=CD+DE=BE+DE,∴AD=BE+DE.(2)如图2,上述结论②还成立吗?如果不成立,请写出线段AD,BE,DE之间的数量关系.并说明理由.【分析】(1)根据同角的余角相等,全等三角形的判定和性质即可解决问题;(2)结论:DE﹣BE=AD,只要证明△ACD≌△CBE即可解决问题;【解答】解:(1)∵AD⊥CM,BE⊥CM,∴∠ACB=∠BEC=∠ADC=90°,∴∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE在△ACD和△CBE中,(∠ADC=∠BEC ∠ACD=∠CBE AC=BC)∴△ACD≌△CBE,(AAS)∴CD=BE.②结论:AD=BE+DE.理由:∵△ACD≌△CBE,∴AD=CE∵CE=CD+DE=BE+DE,∴AD=BE+DE.故答案为:∠CBE,∠ADC=∠BEC∠ACD=∠CBEAC=BC,AAS,AD=CE.(2)不成立,结论:DE﹣BE=AD.理由:∵AD⊥CM,BE⊥CM,∴∠ACB=∠BEC=∠ADC=90°,∴∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE在△ACD和△CBE中,∠ADC=∠BEC∠ACD=∠CBEAC=BC,∴△ACD≌△CBE,(AAS)∴AD=CE,CD=BE,∴DE﹣BE=DE﹣DC=CE=AD.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形的全等条件,灵活运用知识解决问题.9.如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F分别在BC、CD上,且∠EAF=1 2∠BAD,求证:DF=EF﹣BE.【分析】由边角边证明△ADF≌△ABH得AF=AH,∠DAF=∠BAH,同理可得△HAE≌△FAE,其性质得HE=EF,最后由线段和差和等式的性质得DF=EF﹣BE.【解答】证明:在CB的延长线上取BH=DF,如图所示:∵∠ABE+∠ABH=180°,∠ABE+∠D=180°,∴∠ABH=∠D,在△ADF和△ABH中,AD=AB∠D=∠ABHDF=BH,∴△ADF≌△ABH(SAS),∴AF=AH,∠DAF=∠BAH,∴∠BAD=∠HAF,∵∠EAF=12∠BAD,∴∠EAF=∠HAE=12∠HAF,在△HAE和△FAE中,AH=AF∠HAE=∠FAEAE=AE,∴△HAE≌△FAE(SAS),∴HE=EF,又∵HE=HB+BE,HB=DF,∴EF=BE+DF,∴DF=EF﹣BE.【点评】本题综合考查了全等三角形的判定与性质,角平分线的定义,同角的补角相等,线段的和差和等量代换等知识点,重点掌握全等三角形的判定与性质,难点是构建全等三角形和角平分线.10.在Rt△ABC中,∠ABC=90°,点D是CB延长线上一点,点E是线段AB上一点,连接DE.AC=DE,BC=BE.(1)求证:AB=BD;(2)BF平分∠ABC交AC于点F,点G是线段FB延长线上一点,连接DG,点H是线段DG上一点,连接AH交BD于点K,连接KG.当KB平分∠AKG时,求证:AK=DG+KG.【分析】(1)证明Rt△ACB≌Rt△DEB即可解决问题;(2)作BM平分∠ABD交AK于点M,证明△BMK≌△BGK,△ABM≌△DBG,即可解决问题.【解答】证明:(1)在Rt△ACB和Rt△DEB中,AC=DEBC=BE,∴Rt△ACB≌Rt△DEB(HL),∴AB=BD,(2)如图:作BM平分∠ABD交AK于点M,∵BM平分∠ABD,KB平分∠AKG,∴∠ABM=∠MBD=45°,∠AKB=∠BKG,∵∠ABF=∠DBG=45°∴∠MBD=∠GBD,在△BMK和△BGK中,∠MBD=∠GBDBK=BK,∠AKB=∠BKG∴△BMK≌△BGK(ASA),∴BM=BG,MK=KG,在△ABM和△DBG中,AB=BD∠ABM=∠DBG,BM=BG∴△ABM≌△DBG(SAS),∴AM=DG,∵AK=AM+MK,∴AK=DG+KG.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是得到△BMK≌△BGK.11.(2023春•余江区期末)如图,大小不同的两块三角板△ABC和△DEC直角顶点重合在点C处,AC=BC,DC=EC,连接AE、BD,点A恰好在线段BD上.(1)找出图中的全等三角形,并说明理由;(2)当AD=AB=4cm,则AE的长度为 cm.(3)猜想AE与BD的位置关系,并说明理由.【分析】(1)根据SAS证明△CBD≌△CAE即可;(2)根据全等三角形的性质解答即可;(3)根据全等三角形的性质和垂直的定义解答即可.【解答】解:(1)△CBD≌△CAE,理由如下:∵∠ACB=∠DCE=90°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△CBD与△CAE中,BC=AC∠BCD=∠ACE,DC=EC∴△CBD≌△CAE(SAS);(2)∵△CBD≌△CAE,∴BD=AE=AD+AB=4+4=8(cm),故答案为:8;(3)AE⊥BD,理由如下:AE与CD相交于点O,在△AOD与△COE中,∵△CBD≌△CAE,∴∠ADO=∠CEO,∵∠AOD=∠COE,∴∠OAD=∠OCE=90°,∴AE⊥BD.【点评】此题考查全等三角形的判定和性质,关键是根据SAS得出△CBD与△CAE全等解答.12.如图①点A、B、C、D在同一直线上,AB=CD,作CE⊥AD,BF⊥AD,且AE=DF.(1)证明:EF平分线段BC;(2)若△BFD沿AD方向平移得到图②时,其他条件不变,(1)中的结论是否仍成立?请说明理由.【分析】(1)由AB=CD,利用等式的性质得到AC=BD,再由AE=DF,利用HL得到直角三角形ACE 与直角三角形DBF全等,利用全等三角形对应边相等得到EC=BF,再利用AAS得到三角形ECG与三角形FBG全等,利用全等三角形对应边相等得到BG=CG,即可得证;(2)(1)中的结论成立,理由为:由AC=DB,利用等式的性质得到AC=BD,再由AE=DF,利用HL 得到直角三角形ACE与直角三角形DBF全等,利用全等三角形对应边相等得到EC=BF,再利用AAS 得到三角形ECG与三角形FBG全等,利用全等三角形对应边相等得到BG=CG,即可得证.【解答】(1)证明:∵CE⊥AD,BF⊥AD,∴∠ACE=∠DBF=90°,∵AB=CD,∴AB+BC=BC+CD,即AC=DB,在Rt△ACE和Rt△DBF中,AE=DFAC=DB,∴Rt△ACE≌Rt△DBF(HL),∴CE=FB,在△CEG和△BFG中,∠ECG=∠FBG=90°∠EGC=∠BGF,EC=FB∴△CEG≌△BFG(AAS),∴CG=BG,即EF平分线段BC;(2)(1)中结论成立,理由为:证明:∵CE⊥AD,BF⊥AD,∴∠ACE=∠DBF=90°,∵AB=CD,∴AB﹣BC=CD﹣BC,即AC=DB,在Rt△ACE和Rt△DBF中,AE=DFAC=DB,∴Rt△ACE≌Rt△DBF(HL),∴CE=FB,在△CEG和△BFG中,∠ECG=∠FBG=90°∠EGC=∠BGF,EC=FB∴△CEG≌△BFG(AAS),∴CG=BG,即EF平分线段BC.【点评】此题考查了全等三角形的判定与性质,以及平移的性质,熟练掌握全等三角形的判定与性质是解本题的关键.13.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时①请说明△ADC≌△CEB的理由;②请说明DE=AD+BE的理由;(2)当直线MN绕点C旋转到图2的位置时,DE、AD、BE具有怎样的等量关系?请直接在横线上写出这个等量关系: .(3)当直线MN绕点C旋转到图3的位置时,DE、AD、BE具有怎样的等量关系?请直接在横线上写出这个等量关系: .【分析】(1)①由已知推出∠ADC=∠BEC=90°,因为∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE,根据AAS即可得到答案;②由①得到AD=CE,CD=BE,即可求出答案;(2)结论:DE=AD﹣BE.与(1)证法类似可证出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD =CE,CD=BE,代入已知即可得到答案.(3)结论:DE=BE﹣AD.证明方法类似.【解答】解:(1)①证明:如图1中,∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,∠CDA=∠BEC∠DAC=∠ECB,AC=BC∴△ADC≌△CEB(AAS).②证明:由(1)知:△ADC≌△CEB,∴AD=CE,CD=BE,∵DC+CE=DE,∴AD+BE=DE.(2)结论:DE=AD﹣BE.理由:如图2中,∵BE⊥EC,AD⊥CE,∴∠ADC=∠BEC=90°,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACE=90°,∴∠ACD=∠EBC,在△ADC和△CEB中,∠ACD=∠CBE∠ADC=∠BEC,AC=BC∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∴DE=EC﹣CD=AD﹣BE.(3)结论:DE=BE﹣AD.理由如下:如图3中,∵∠ACB=90°,∴∠ACD+∠BCE=90°∵AD⊥MN,BE⊥MN,∴∠ADC=∠CED=90°,∴∠ACD+∠DAC=90°,∴∠DAC=∠ECB,在△ACD和△CBE中,∠ADC=∠CEB∠DAC=∠ECB,AC=CB∴△ACD≌△CBE(AAS),∴AD=CE,CD=BE,∴DE=CD﹣CE=BE﹣AD.故答案为DE=AD﹣BE,DE=BE﹣AD.【点评】本题主要考查了邻补角的意义,全等三角形的性质和判定等知识点,能根据已知证出符合全等的条件是解此题的关键,题型较好,综合性比较强.14.已知:在△AOB和△COD中,OA=OB,OC=OD.(1)如图①,若∠AOB=∠COD=60°.①求证:AC=BD.②求∠APB的度数.(2)如图②,若∠AOB=∠COD=α,∠APD的大小为 (直接写出结果,不证明).【分析】(1)①根据已知先证明∠AOC=∠BOD,再由SAS证明△AOC≌△BOD,所以AC=BD.②由△AOC≌△BOD,可得∠OAC=∠OBD,再结合图形,利用角的和差,可得∠APB=60°.(2)由(1)小题的证明可知,∠APB=α,则可得出答案.【解答】(1)①证明:∵∠AOB=∠COD=60°,∴∠AOB+∠BOC=∠COD+∠BOC,∴∠AOC=∠BOD,在△AOC和△BOD中,AO=BO∠AOC=∠BOD,OC=OD∴△AOC≌△BOD(SAS),∴AC=BD;②解:∵△AOC≌△BOD,∴∠OAC=∠OBD,∴∠OAC+∠AOB=∠OBD+∠APB,∴∠OAC+60°=∠OBD+∠APB,∴∠APB=60°;(2)解:由(1)可知:△AOC≌△BOD(SAS),∴∠OAC=∠OBD,∴∠OAC+∠AOB=∠OBD+∠APB,∴∠OAC+α=∠OBD+∠APB,∴∠APB=α,∴∠APD=180°﹣α.故答案为:180°﹣α.【点评】本题主要考查了全等三角形的判定和性质,正确运用全等三角形的性质是解题的关键.15.(1)已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由.【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)利用∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,得出∠CAE=∠ABD,进而得出△ADB≌△CEA即可得出答案.【解答】证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中∠ABD=∠CAE∠BDA=∠CEA,AB=AC∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)结论DE=BD+CE仍然成立,理由是:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中∠ABD=∠CAE∠BDA=∠CEAAB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;得出∠CAE=∠ABD是解题关键.16.已知:如图AC∥BD,AE和BE分别平分∠CAB和∠DBA,CD过点E.求证:(1)AE⊥BE;(2)AB=AC+BD.【分析】(1)首先证明∠CAB+∠DBA=180°,再利用角平分线的性质证明∠EAB=12∠CAB,∠EBA=12∠DBA,可得到∠EAB+∠EBA=90°,进而可证出AE⊥BE;(2)首先在AB上截取AF=AC,连接EF,证明△CAE≌△FAE,可证出∠CEA=∠FEA,可得到∠FEB =∠DEB,再证明△DEB≌△FEB,可得到BD=BF,即可证出AB=AC+BD.【解答】证明:(1)∵AC∥BD,∴∠CAB+∠DBA=180°又∵AE和BE分别平分∠CAB和∠DBA,∴∠EAB=12∠CAB,∠EBA=12∠DBA,∴∠EAB+∠EBA=12(∠CAB+∠DBA)=90°,∴AE⊥BE(2)在AB上截取AF=AC,连接EF,在△CAE和△FAE中AC=AF∠CAE=∠FAE AE=AE,∴△CAE≌△FAE,则∠CEA=∠FEA,又∠CEA+∠BED=∠FEA+∠FEB=90°,∴∠FEB=∠DEB,∵BE平分∠DBA,∴∠DBE=∠FBE,在△DEB和△FEB中∠DEB=∠FEB EB=EB∠DBE=∠FBE,∴△DEB≌△FEB(ASA),∴BD=BF,又∵AF=AC,∴AB=AF+FB=AC+BD.【点评】此题主要考查了垂直,角平分线,以及三角形全等的判定和性质,证明三角形全等是证明线段和角相等的重要手段.17.问题情境:如图①,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D.可知:∠BAD=∠C(不需要证明);(1)特例探究:如图②,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN的边AM、AN 上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;(2)归纳证明:如图③,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;(3)拓展应用:如图④,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为24,则△ACF与△BDE的面积之和为 .(直接写出结果)【分析】(1)证明∠ABD=∠CAF,利用AAS定理证明;(2)根据三角形的外角的性质证明∠ABE=∠CAF,∠BAE=∠FCA,利用ASA定理证明;(3)根据CD=2BD,求出△ABD的面积,根据全等三角形的性质计算即可.【解答】(1)证明:如图②,∵CF⊥AE,BD⊥AE,∠MAN=90°,∴∠BDA=∠AFC=90°,∴∠ABD+∠BAD=90°,∠ABD+∠CAF=90°,∴∠ABD=∠CAF,在△ABD和△CAF中,∠ADB=∠CFA∠ABD=∠CAF,AB=AC∴△ABD≌△CAF(AAS);(2)证明:如图③,∵∠1=∠2=∠BAC,∠1=∠BAE+∠ABE,∠BAC=∠BAE+∠CAF,∠2=∠FCA+∠CAF,∴∠ABE=∠CAF,∠BAE=∠FCA,在△ABE和△CAF中,∠ABE =∠CAF AB =AC ∠BAE =∠ACF,∴△ABE ≌△CAF (ASA );(3)解:如图④,∵△ABC 的面积为24,CD =2BD ,∴△ABD 的面积是:13×24=8,由(2)可知,△ABE ≌△CAF ,∴△ACF 与△BDE 的面积之和等于△ABE 与△BDE 的面积之和,即等于△ABD 的面积是8,故答案为:8.【点评】本题考查的是三角形的知识的综合应用,掌握全等三角形的判定定理和性质定理、三角形的面积公式是解题的关键.18.在△ABC 中,AB =AC ,D 是直线BC 上一点,以AD 为一条边在AD 的右侧作△ADE ,使AE =AD ,∠DAE =∠BAC ,连接DE ,CE .(1)如图,当点D 在BC 延长线上移动时,求证:BD =CE .(2)设∠BAC =α,∠DCE =β.①当点D 在线段BC 的延长线上移动时,α与β之间有什么数量关系?请说明理由.②当点D 分别在线段BC 上、线段BC 的反向延长线上移动时,α与β之间有什么数量关系?请说明理由.【分析】(1)根据SAS 证△BAD ≌△CAE ,可得结论;(2)①由△BAD ≌△CAE ,推出∠B =∠ACE ,根据三角形外角性质求出即可;②α+β=180°或α=β,根据三角形外角性质求出即可.【解答】(1)证明:∵∠DAE =∠BAC ,∴∠DAE +∠CAD =∠BAC +∠CAD ,∴∠BAD=∠CAE,在△BAD和△CAE中,AB=AC∠BAD=∠CAE,AD=AE∴△BAD≌△CAE(SAS),(2)解:①当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β,理由是:由(1)知△BAD≌△CAE,∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;②分三种情况:i)当D在线段BC上时,如图2,α+β=180°,理由是:同理可证明:△ABD≌△ACE(SAS),∴∠ADB=∠AEC,∠ABC=∠ACE,∵∠ADC+∠ADB=180°,∴∠ADC+∠AEC=180°,∴∠DAE+∠DCE=180°,∵∠BAC=∠DAE=α,∠DCE=β,∴α+β=180°,ii)当点D在线段BC反向延长线上时,如图3,α=β.如图3,同理可证明:△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠ACE=∠ACD+∠DCE,∠ABD=∠ACD+∠BAC,∴∠ACD+∠DCE=∠ACD+∠BAC,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;ii)当点D在线段BC的延长线上时,如图1,α=β.综上,当点D在BC上移动时,α=β或α+β=180°.【点评】本题是三角形的综合题,考查了全等三角形的性质和判定,三角形的外角性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.(2023春•新市区期末)在△ABC中,∠ACB=90°,AC=BC,D是直线AB上一点(点D不与点A、B重合),连接DC并延长到E,使得CE=CD,过点E作EF⊥直线BC,交直线BC于点F.(1)如图1,当点D为线段AB上的任意一点时,用等式表示线段EF、CF、AC的数量关系,并证明;(2)如图2,当点D为线段BA的延长线上一点时,依题意补全图2,猜想线段EF、CF、AC的数量关系是否发生改变,并证明;(3)如图3,当点D在线段AB的延长线上时,直接写出线段EF、CF、AC之间的数量关系.【分析】(1)过D作DH⊥CB于H,由“AAS”可证△FEC≌△HDC,可得CH=FC,DH=EF,可得结论;(2)过D作DH⊥CB于H,由“AAS”可证△FEC≌△HDC,可得CH=FC,DH=EF,可得结论.(3)过D作DH⊥CB交CB的延长线于H,由“AAS”可证△FEC≌△HDC,可得CH=FC,DH=EF,可得结论.【解答】解:(1)结论:AC=EF+FC.理由如下:过D作DH⊥CB于H,∴∠DHC=∠DHB=90°,∵EF⊥CF,∴∠EFC=∠DHC=90°,在△FEC和△HDC中,∠EFC=∠DHC=90°∠FCE=∠DCH,EC=DC∴△FEC≌△HDC(AAS),∴CH=FC,DH=EF,∵∠ACB=90°,AC=BC,∴∠B=45°,∵∠DHB=90°,∴∠B=∠HDB=45°,∴DH=HB=EF,∵BC=CB+HB,∴AC=FC+EF;(2)依题意补全图形,结论:AC=EF﹣CF,理由如下:过D作DH⊥CB交BC的延长线于H,∵EF⊥CF,∴∠EFC=∠DHC=90°,在△FEC和△HDC中,∠FCE=∠DCH∠EFC=∠DHC=90°,EC=DC∴△FEC≌△HDC(AAS),∴CH=FC,DH=EF,∵∠DHB=90°,∴∠B=∠HDB=45°,∴DH=HB=EF,∵BC=HB﹣CH,∴AC=EF﹣CF;(3)AC=CF﹣EF.如图3,过D作DH⊥CB交CB的延长线于H,同理可证△FEC≌△HDC(AAS),∴CH=FC,DH=EF,∵∠DHB=90°,∴∠B=∠HDB=45°,∴DH=HB=EF,∵BC=CH﹣BH,∴AC=CF﹣EF.【点评】本题是三角形综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.20.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为 ,线段CF、BD的数量关系为 ;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F 不重合),并说明理由.【分析】(1)当点D在BC的延长线上时①的结论仍成立.由正方形ADEF的性质可推出△DAB≌△FAC,所以CF=BD,∠ACF=∠ABD.结合∠BAC=90°,AB=AC,得到∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)当∠ACB=45°时,过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,可推出∠ACB=∠AGC,所以AC=AG,由(1)①可知CF⊥BD.【解答】证明:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90度.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC =90°﹣45°=45°,∴∠ACB =∠AGC =45°,∴AC =AG ,∵∠DAG =∠FAC (同角的余角相等),AD =AF ,∴△GAD ≌△CAF ,∴∠ACF =∠AGC =45°,∠BCF =∠ACB +∠ACF =45°+45°=90°,即CF ⊥BC .【点评】本题考查三角形全等的判定和直角三角形的判定,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.(2022春•沙坪坝区校级期中)如图,在△ABC 中,∠ABC 、∠ACB 的平分线交于点D ,延长BD 交AC 于E ,G 、F 分别在BD 、BC 上,连接DF 、GF ,其中∠A =2∠BDF ,GD =DE .(1)当∠A =80°时,求∠EDC 的度数;(2)求证:CF =FG +CE .【分析】(1)方法一:先求∠ABC 和∠ACB 的和为100°,再根据角平分线求∠DBC +∠DCB =50°,再根据外角即可解决问题;方法二:在BC 上取点M ,使CM =CE ,证明△CDE ≌△CDM (SAS ),可得DE =DM ,∠DEC =∠DMC ,∠EDC =∠MDC ,证明∠BDM =180°―12∠ABC ﹣∠DMB =180°―12∠ABC ﹣∠AEB =∠A =80°,进而可以解决问题.(2)结合(1)然后证明△DGF≌△DMF(SAS),可得GF=MF,进而可以解决问题.【解答】(1)解:方法一:∵∠A=80°,∴∠ABC+∠ACB=100°,∵BE平分∠ABC、CD平分∠ACB,∴∠DBC+∠DCB=50°,∴∠EDC=∠DBC+∠DCB=50°;方法二:如图,在BC上取点M,使CM=CE,∵CD平分∠ACB,∴∠ACD=∠BCD,在△CDE和△CDM中,CE=CM∠ECD=∠MCDCD=CD,∴△CDE≌△CDM(SAS),∴DE=DM,∠DEC=∠DMC,∠EDC=∠MDC,∵GD=DE,∴GD=MD,∵∠DEC+∠AEB=180°,∠DMC+∠DMF=180°,∴∠AEB=∠DMF,∵BE平分∠ABC,∴∠ABE=∠CBE=12∠ABC,∴∠BDM=180°―12∠ABC﹣∠DMB=180°―12∠ABC﹣∠AEB=∠A=80°,∴∠EDM=100°,∴∠EDC=50°;(2)证明:∵∠A=2∠BDF,∴∠BDM=2∠BDF,∴∠FDM=∠BDF,在△DGF和△DMF中,DG=DM∠GDF=∠MDF,DF=DF∴△DGF≌△DMF(SAS),∴GF=MF,∴CF=CM+FM=CE+GF.∴CF=FG+CE.【点评】本题考查了全等三角形的判定与性质,角平分线的定义,解决本题的关键是根据题意准确作出辅助线得到△DGF≌△DMF.22.(2022秋•大同月考)已知△ABC和△CDE中,CA=CB,CD=CE,∠ACB=∠DCE=α,AE与BD交于点F.(1)如图1.当α=90°时.求证:①△ACE≌△BCD;②AE⊥BD;(2)如图2.当α=60°时,直接写出∠AFB的度数为 ;(3)如图3,直接写出∠AFD的度数为 (用含α的式子表示).【分析】(1)先根据等角的余角相等得到∠ACE=∠BCD,再根据等腰直角三角形的性质得AC=BC,EC=DC,于是可根据“SAS”判断△ACE≌△BCD,然后根据相似三角形的性质得到∠CAE=∠CBD,根据三角形的内角和即可得到结论;(2)由已知条件得到∠ACE=∠BCD,推出△ACE≌△BCD(SAS),根据全等三角形的性质得到∠CAE =∠CBD,推出A,B,F,C四点共圆,根据圆周角定理即可得到结论.(3)由已知条件得到∠ACE=∠BCD,推出△ACE≌△BCD(SAS),根据全等三角形的性质得到∠CAE =∠CBD即可得到结论.【解答】证明:(1)∵∠ACB=∠DCE=90°,∴∠ACB+∠BCE=∠DCE+∠BCE,即∠ACE=∠BCD,又∵△ABC和△ECD都是等腰直角三角形∴AC=BC,EC=DC,在△ACE和△BCD中,AC=BC∠ACE=∠BCD,CE=CD∴△ACE≌△BCD(SAS),∴∠CAE=∠CBD,∵∠CAE+∠EAB+∠ABC=90°,∴∠CBD+∠EAB+∠ABC=90°,∴∠AFB=90°,∴AE⊥BD;(2)∵∠ACB=∠DCE=60°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,即∠ACE=∠BCD,在△ACE和△BCD中,AC=BC∠ACE=∠BCD,CE=CD∴△ACE≌△BCD(SAS),∴∠CAE=∠CBD,∵∠CAE+∠EAB+∠ABC=120°,∴∠CBD+∠EAB+∠ABC=120°,∴∠AFB=∠ACB=60°;故答案为:60°;(3))∵∠ACB=∠DCE=α,∴∠ACB+∠BCE=∠DCE+∠BCE即∠ACE=∠BCD,在△ACE和△BCD中,AC=BC∠ACE=∠BCD,CE=CD∴△ACE≌△BCD(SAS),∴∠CAE=∠CBD,∵∠CAE+∠EAB+∠ABC=180°﹣α,∴∠CBD+∠EAB+∠ABC=180°﹣α∴∠AFB=∠ACB=α,∴∠AFD=180°﹣α.故答案为:180°﹣α.【点评】本题考查了全等三角形的判定与性质:判断三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应角相等,对应边相等.23.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.【分析】(1)我们已知了三角形BED和CAB全等,那么DE=AF+CF,因此只要求出EF=CF就能得出本题所求的结论,可通过全等三角形来实现,连接BF,那么证明三角形BEF和BCF全等就是解题的关键,这两三角形中已知的条件有BE=BC,一条公共边,根据斜边直角边定理,这两个直角三角形就全等了,也就得出EF=CF,也就能证得本题的结论了;(2)解题思路和辅助线的作法与(1)完全一样;(3)结论不成立.结论:AF=DE+EF.同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AF=AC+FC=DE+EF.【解答】(1)证明:连接BF(如图①),∵△ABC≌△DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.在Rt△BFC和Rt△BFE中,BF=BFBC=BE∴Rt△BFC≌Rt△BFE(HL).∴CF=EF.又∵AF+CF=AC,∴AF+EF=DE.(2)解:画出正确图形如图②∴(1)中的结论AF+EF=DE仍然成立;(3)不成立.结论:AF=DE+EF.证明:连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,∴△BCF和△BEF是直角三角形,在Rt△BCF和Rt△BEF中,BC=BEBF=BF,∴△BCF≌△BEF(HL),∴CF=EF;∵△ABC≌△DBE,∴AC=DE,∴AF=AC+FC=DE+EF.【点评】本题考查了全等三角形的判定和性质,通过构建全等三角形来得出简单的线段相等是解题的关键.24.(2023春•沙坪坝区校级期中)如图,在△ABC和△DCE中,∠ACB=90°,CA=CB,∠DCE=90°,CD=CE.(1)如图1,当点D在BC上时,CB=10,AE=4,则S四边形ABDE= ;(2)如图2,当B、C、E三点共线时,D在AC上,连接BD、AE,F是AD的中点,过点A作AG∥BD,交BF的延长线于点G,求证:AG=AE且AG⊥AE;(3)如图3,B、C、E三点共线,且∠DBE=15°,将线段AE绕点A以每秒10°的速度逆时针旋转,同时线段BE绕点E以每秒20°的速度顺时针旋转180°后立即以相同速度回转,设转动时间为t秒,当BE回到出发时的位置时同时停止旋转,则在转动过程中.当BE和AE互相平行或者垂直时,请直接写出此时t的值.【分析】(1)根据S四边形ABDE =S△ABC﹣S△DCE,求解即可.(2)如图2中,延长BD交AE于T.证明△BCD≌△ACE(SAS),推出BD=AE,∠CBD=∠CAE,推出BD⊥AE,证明△AFG≌△DFB(AAS),推出AG=BD,可得结论.(3)从开始到结束出现平行,垂直,平行,平行四种情形,分别构建方程求解即可.【解答】(1)解:如图1中,∵CA=CB=10,AE=4,∴CE=CD=AC﹣AE=10﹣4=6,∴S四边形ABDE =S△ABC﹣S△DCE=12×10×10―12×6×6=32,故答案为:32.(2)证明:如图2中,延长BD 交AE 于T .∵∠BCD =∠ACE =90°,BC =AC ,DC =EC ,∴△BCD ≌△ACE (SAS ),∴BD =AE ,∠CBD =∠CAE ,∵∠BDC =∠ADT ,∴∠BCD =∠ATD =90°,∴BD ⊥AE ,∵AG ∥BD ,∴∠G =∠FBD ,∵AF =FD ,∠AFG =∠DFB ,∴△AFG ≌△DFB (AAS ),∴AG =BD ,∴AG =AE ,∵AG ∥BD ,BD ⊥AE ,∴AG ⊥AE .(3)由题意,第一次平行时,10t =75°﹣20t ,解得t =52,第一次垂直时,10t +20t ﹣75°=90°,解得t =112,第二次平行时,20t ﹣75°+10t =180°.解得y =516,第三次平行时,105°﹣(20t ﹣180°)+10t =180°,解得t =212,综上所述,满足条件的t 的值为52或112或516或212.【点评】本题属于四边形综合题,考查了全等三角形的判定和性质,平行线的判定和性质,三角形的面。
1、 如图,在ABC ∆中,AB BC =,90ABC ∠=。
F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。
求证:AE CF =.2、 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。
求证:2AC AE =.3、 如图,在ABC ∆中,AB AC >,12∠=∠,P 为AD 上任意一点。
求证:AB AC PB PC ->-。
4、如图,BD 、CE 分别是ABC ∆的边AC 、AB 上的高,F 、G 分别是线段DE 、BC 的中点求证:DE FG ⊥5、如图所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E,交AD 于点F ,求证:∠ADC=∠BDE6、如图,在锐角ABC ∆中,已知C ABC ∠=∠2,ABC ∠的平分线BE 与AD 垂直,垂足为D ,若cm BD 4=,求AC 的长参考答案1、 思路分析:可以利用全等三角形来证明这两条线段相等,关键是要找到这两个三角形.以线段AE 为边的ABE ∆绕点B 顺时针旋转90到CBF ∆的位置,而线段CF 正好是CBF ∆的边,故只要证明它们全等即可。
解答过程:90ABC ∠=,F 为AB 延长线上一点∴90ABC CBF ∠=∠=在ABE ∆与CBF ∆中AB BC ABC CBF BE BF =⎧⎪∠=∠⎨⎪=⎩∴ABE CBF ∆≅∆(SAS)∴AE CF =。
解题后的思考:利用旋转的观点,不但有利于寻找全等三角形,而且有利于找对应边和对应角。
小结:利用三角形全等证明线段或角相等是重要的方法,但有时不容易找到需证明的三角形。
这时我们就可以根据需要利用平移、翻折和旋转等图形变换的观点来寻找或利用辅助线构造全等三角形。
2、 思路分析:要证明“2AC AE =”,不妨构造出一条等于2AE 的线段,然后证其等于AC 。
【中考数学难点】三角形全等专项练习题一、选择题1、如图4-1-12,A 在DE 上,F 在AB 上,且AC=CE ,∠1=∠2=∠3,则DE 的长等于( )A. DCB. BCC. ABD. AE+AC2、如图4-1-13,在凸四边形ABCD 中,AC 平分∠BAD ,过点C 作CE ⊥AB于E ,并且AE=21(AB+AD),那么∠ABC 与∠ADC 的关系是( )A ∠ABC=∠ADCB ∠ABC+∠ADC=180°C ∠ABC+∠ADC=150°D ∠ABC≠∠ADC3、如图4-1-14,在Rt △ABC 中,∠BAC=90°,AB=AC ,D 为AC 上的中点,AE ⊥BD 交BC 于E ,连接ED.若∠BDE=α,则∠ADB 的大小是( )A αB αο-90C αο2190-D αο2145+4、考查下列命题:(1)全等三角形的对应边上的中线、高、角平分线对应相等;(2)两边和其中一边的中线(或第三边上的中线)对应相等的两个三角形全等;(3)两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;(4)两边和其中一边上的高(或第三边上的高)对应相等的两个三角形全等.其中正确命题的个数是()A 4个B 3个C 2.个D 1个5、在△ABC中,已知∠CAB=60°,D、E分别是边AB、AC上的点,且∠AED=60°,ED+DB=CE,∠CDB=2∠CDE,则∠DCB=()A 15°B 20°C 25°D 30°6、已知△ABC的两条高线的长分别为5和20,若第三条高线的长也是整数,则第三条高线的最大值为()A 5B 6C 7D 8二、填空7、如图4-1-15,AD∥BC,∠1=∠2,∠3=∠4,AD=4,BC=2,那么AB=__________.8、如图4-1-16,在梯形ABCD 中,AB ∥CD ,AD=BC ,AB=10,CD=4,延长BD 至E ,使DE=BD ,作EF ⊥AB 于F ,则AF=__________.9、如图4-1-17,D 为等边三角形ABC 内一点,DB=DA ,BP=AB ,∠DBP=∠DBC ,则∠BPD=___________.10、已知锐角△ABC 的三个内角满足∠A>∠B>∠C ,用α表示∠A —∠B 、∠B —∠C 以及90°—∠A 中的最小者,则α的最大值是____________.11、已知a 、b 、c 为△ABC 的三边,且满足442222b a c b c a -=-,试判断△ABC 的形状,先阅读下列解题过程:解: 442222b a c b c a -=-, ①∴))(()(2222222b a b a b a c -+=-. ②∴222b a c +=. ③∴△ABC 为直角三角形. ④问:(1)上述推理过程中,出现错误的一步是_____________;(2)本题的正确结论是_____________.12、如图4-1-18,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于P,PQ=2004,则BP=_____________.三、解答题1∠A.求证:BE=CF.13、如图4-1-19,在△ABC中,∠FBC=∠ECB=214、如图4-1-20,已知∠1=∠2,EF⊥AD于P,交BC延长线于M,1(∠ACB—∠B).求证:∠M=215、如图4-1-21,已知在△ABC中,AB=AC,∠A=100°,∠B的平分线交AC于D,求证:AD+BD=BC.16、如图4-1-22,△ABC中,D是BC的中点,DE⊥DF,试判断BE+CF 与EF的大小关系,并证明你的结论.17、如图4-1-23,在四边形ABCD中,已知∠BAD=60°,∠ABC=90°,∠BCD=120°,对角线AC、BD交于点S,且DS=2SB,P为AC的中点,求证:(1)∠PBD=30°;(2)AD=DC.18、在四边形ABCD中,已知AB=a,AD=b,且BC=DC,对角线平分∠BAD,问a与b的大小符合什么条件时,有∠B+∠D=180°?请画出图形并证明你的结论.19、如图4-1-24,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.20、(1)操作发现:如图4-1-25①,D是等边△ABC边AB上一动点(点D与点B不重合),连接DC,以DC为边在BC边上方作等边△DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你的结论.(2)类比猜想:如图4-1-25②,当动点D运动至等边△ABC边BA 的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(3)深入探究:Ⅰ、如图4-1-25③,当动点D在等边△ABC边BA上运动时(点D与点B不重合),连接DC,以DC为边在BC边上方、下方分别作等边△DCF和等边△DCF’,连接AF、BF’,探究AF、BF’与AB有何数量关系?并证明你探究的结论.Ⅱ、如图4-1-25④,当动点D在等边△ABC边BA延长线上运动时,其他作法与图③相同.Ⅰ中的结论是否成立?若若不成立,是否有新的结论?并证明你的结论.。
全等三角形的的性质与判定难题50道1.边长为a 的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),⋯,按此方式依次操作,则第6个正六边形的边长为( )A .511()32a ⨯B .511()23a ⨯C .611()32a ⨯D .611()23a ⨯2.如图,在等边ABC ∆中,点D ,E 分别在边BC ,AC 上,且//DE AB ,过点E 作EF DE ⊥,交BC 的延长线于点F ,(1)求F ∠的度数;(2)若3CD =,求DF 的长.3.数学课上,李老师出示了如下的题目:“在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED EC =,如图,试确定线段AE 与DB 的大小关系,并说明理由”. 小敏与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论当点E 为AB 的中点时,如图1,确定线段AE 与DB 的大小关系,请你直接写出结论:AEDB (填“>”,“ <”或“=” ). (2)特例启发,解答题目解:题目中,AE 与DB 的大小关系是:AE DB (填“>”,“ <”或“=” ).理由如下:如图2,过点E 作//EF BC ,交AC 于点F .(请你完成以下解答过程) (3)拓展结论,设计新题在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =.若ABC ∆的边长为1,2AE =,求CD 的长(请你直接写出结果).4.如图,过等边ABC ∆的边AB 上一点P ,作P E A C ⊥于E ,Q 为BC 延长线上一点,且PA CQ =,连PQ 交AC 边于D . (1)求证:PD DQ =;(2)若ABC ∆的边长为1,求DE 的长.5.如图所示,已知等边ABC ∆的边长为a ,P 是ABC ∆内一点,//PD AB ,//PE BC ,//PF AC ,点D 、E 、F 分别在BC 、AC 、AB 上,猜想:PD PE PF ++= ,并证明你的猜想.6.如图,已知ABC ∆和CDE ∆均为等边三角形,且点B 、C 、D 在同一条直线上,连接AD 、BE ,交CE 和AC 分别于G 、H 点,连接GH .(1)请说出AD BE =的理由; (2)试说出BCH ACG ∆≅∆的理由;(3)试猜想:CGH ∆是什么特殊的三角形,并加以说明.7.如图,已知ABC ∆是边长为6cm 的等边三角形,动点P ,Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速运动,其中点P 运动的速度是1/cm s ,点Q 运动的速度是2/cm s ,当点Q 运动到点C 时,P ,Q 都停止运动.(1)出发后运动2s 时,试判断BPQ ∆的形状,并说明理由;那么此时PQ 和AC 的位置关系呢?请说明理由;(2)设运动时间为t ,BPQ ∆的面积为S ,请用t 的表达式表示S .8.已知:在等边ABC ∆中,点D 、E 、F 分别为边AB 、BC 、AC 的中点,点G 为直线BC 上一动点,当点G 在CB 延长线上时,有结论“在直线EF 上存在一点H ,使得DGH ∆是等边三角形”成立(如图①),且当点G 与点B 、E 、C 重合时,该结论也一定成立. 问题:当点G 在直线BC 的其它位置时,该结论是否仍然成立?请你在下面的备用图②③④中,画出相应图形并证明相关结论.9.已知点C 为线段AB 上一点,分别以AC 、BC 为边在线段AB 同侧作ACD ∆和BCE ∆,且CA CD =,CB CE =,ACD BCE ∠=∠,直线AE 与BD 交于点F ,(1)如图1,若60ACD ∠=︒,则AFB ∠= ;如图2,若90ACD ∠=︒,则AFB ∠= ;如图3,若120ACD ∠=︒,则AFB ∠= ;(2)如图4,若ACD α∠=,则AFB ∠= (用含α的式子表示);(3)将图4中的ACD ∆绕点C 顺时针旋转任意角度(交点F 至少在BD 、AE 中的一条线段上),变成如图5所示的情形,若ACD α∠=,则AFB ∠与α的有何数量关系?并给予证明.10.如图1,ABC ∆为等边三角形,面积为S .1D 、1E 、1F 分别是ABC ∆三边上的点,且11112AD BE CF AB ===,连接11D E 、11E F 、11F D ,可得△111D E F 是等边三角形,此时△11AD F 的面积114S S =,△111D E F 的面积114S S =. (1)当2D 、2E 、2F 分别是等边ABC ∆三边上的点,且22213AD BE CF AB ===时如图2,①求证:△222D E F 是等边三角形;②若用S 表示△22AD F 的面积2S ,则2S = ;若用S 表示△222D E F 的面积2S ',则2S '= .(2)按照上述思路探索下去,并填空:当n D 、n E 、n F 分别是等边ABC ∆三边上的点,11n n n AD BE CF AB n ===+时,(n 为正整数)△n n n D E F 是 三角形;若用S 表示△n n AD F 的面积n S ,则n S = ;若用S 表示△n n n D E F 的面积n S ',则n S '= .11.如图,在等边ABC ∆的三边上分别取点D 、E 、F ,使AD BE CF ==. (1)试说明DEF ∆是等边三角形;(2)连接AE 、BF 、CD ,两两相交于点P 、Q 、R ,则PQR ∆为何种三角形?试说明理由.12.如图所示,一个六边形的六个内角都是120︒,其中连续四边的长依次是1、9、9、5.求这个六边形的周长.13.如图,已知D 是ABC ∆的边BC 上的一点,CD AB =,BDA BAD ∠=∠,AE 是ABD ∆的中线.(1)若60B ∠=︒,求C ∠的值; (2)求证:AD 是EAC ∠的平分线.14.如图,ABC ∆为等边三角形,BD 平分ABC ∠交AC 于点D ,//DE BC 交AB 于点E . (1)求证:ADE ∆是等边三角形.(2)求证:12AE AB =.15.如图.在等边ABC ∆中,ABC ∠与ACB ∠的平分线相交于点O ,且//OD AB ,//OE AC . (1)试判定ODE ∆的形状,并说明你的理由;(2)线段BD 、DE 、EC 三者有什么关系?写出你的判断过程.16.如图,ABC ∆是等边三角形,DF AB ⊥,DE CB ⊥,EF AC ⊥,求证:DEF ∆是等边三角形.17.用三根火柴棒可以搭成一个等边三角形,你能用9根火柴搭出5个等边三角形吗? 18.如图,ABC ∆是等边三角形,AD 是高,并且AB 恰好是DE 的垂直平分线. 求证:ADE ∆是等边三角形.19.如图,60AOB ∠=︒,OC 平分AOB ∠,C 为角平分线上一点,过点C 作CD OC ⊥,垂足为C ,交OB 于点D ,//CE OA 交OB 于点E . (1)判断CED ∆的形状,并说明理由;(2)若3OC=,求CD的长.20.如图,在ABC∆中,AB AC=,120BAC∠=︒,D、F分别为AB、AC的中点,且DE AB⊥,FG AC⊥,点E、G在BC上,18BC cm=,求线段EG的长.(提示:需要添加辅助线)21.已知,如图,ABC∆是正三角形,D,E,F分别是各边上的一点,且AD BE CF==.请你说明DEF∆是正三角形.22.如图所示,DEF∆是等边三角形,且123∠=∠=∠,试问:ABC∆是等边三角形吗?请说明理由.23.如图,ABC∆为等边三角形,BD平分ABC∠,//DE BC.(1)求证:ADE∆是等边三角形;(2)求证:12AE AB=.24.如图ABC∆是等边三角形(1)如图①,//∆是等边三角形;DE BC,分别交AB、AC于点D、E.求证:ADE(2)如图②,ADE∆仍是等边三角形,点B在ED的延长线上,连接CE,判断BEC∠的度数及线段AE、BE、CE之间的数量关系,并说明理由.25.如图,E是AOB⊥,C、D是垂足,连接CD ∠的平分线上一点,EC OB⊥,ED OA交OE于点F,若60∠=︒.AOB(1)求证:OCD∆是等边三角形;(2)若5EF=,求线段OE的长.26.如图,ABCBCD CBE∠=∠=︒,BAC∆中,60∠=︒,点D、E分别在AB、AC上,30 BE、CD相交于点O,OG BC+=.OE OD OG⊥于点G,求证:227.如图,在ABC∠=∠=︒,EBC E∠,60∆中,AB AC=,D、E是ABC∆内两点,AD平分BAC若30=,则BC=cm.DE cmBE cm=,228.如图,已知ABC=,∆为等边三角形,D为BC延长线上的一点,CE平分ACD∠,CE BD 求证:ADE∆为等边三角形.29.如图,ABC∆∠=︒,DE与ABC ∆为等边三角形,D为BC边上一点,以AD为边作60ADE的外角平分线CE交于点E,连接AE,且CE BD∆是等边三角形.=.求证:ADE30.如图,在ABC+=.求ABD∠=︒,BD DC AB ∆中,AB AC=,D是三角形外一点,且60证:60∠=︒.ACD31.如图,在等边ABCOD AB,//OE AC.∠与ACB∠的平分线相交于点O,且//∆中,ABC(1)求证:ODE∆是等边三角形.(2)线段BD、DE、EC三者有什么数量关系?写出你的判断过程.(3)数学学习不但要能解决问题,还要善于提出问题.结合本题,在现有的图形上,请提出两个与“直角三角形”有关的问题.(只要提出问题,不需要解答)32.已知:如图,在ABC∠=︒,BD是中线,延长BC至点E,使C E C D=.A=,60∆中,AB AC求证:DB DE=.33.如图,ABD∆和BCD∆均是边长为2的等边三角形,E、F分别是AD、CD上的两个动点,且满足2+=.AE CF(1)求证:BDE BCF∆≅∆;(2)判断BEF∆的形状,并说明理由.34.已知:如图,四边形ABCD中,AB BC CD DA a∠=︒,M为BC上====,120BAD的点(M不与B、C重合),若AMN∆有一角等于60︒.(1)当M 为BC 中点时,则ABM ∆的面积为 (结果用含a 的式子表示); (2)求证:AMN ∆为等边三角形;(3)设AMN ∆的面积为S ,求出S 的取值范围(结果用含a 的式子表示).35.如图,点O 是等边ABC ∆内一点,110AOB ∠=︒,BOC α∠=,将B O C ∆绕点C 按顺时针方向旋转60︒得ADC ∆,连接OD . (1)COD ∆是什么三角形?说明理由;(2)若21AO n =+,21AD n =-,2(OD n n =为大于1的整数),求α的度数; (3)当α为多少度时,AOD ∆是等腰三角形?36.已知:如图,ABC ∆、CDE ∆都是等边三角形,AD 、BE 相交于点O ,点M 、N 分别是线段AD 、BE 的中点. (1)求证:AD BE =; (2)求DOE ∠的度数;(3)求证:MNC ∆是等边三角形.37.已知:在AOB ∆和COD ∆中,OA OB =,OC OD =.(1)如图①,若60AOB COD ∠=∠=︒,求证:①AC BD =②60APB ∠=︒.(2)如图②,若A O B C O D α∠=∠=,则AC 与BD 间的等量关系式为 ,APB ∠的大小为 (直接写出结果,不证明)38.如图,ABC ∆是等边三角形,D 是AC 上一点,BD CE =,12∠=∠,试判断ADE ∆形状,并证明你的结论.39.等边ABC ∆边长为6,P 为BC 上一点,含30︒、60︒的直角三角板60︒角的顶点落在点P 上,使三角板绕P 点旋转.(1)如图1,当P 为BC 的三等分点,且PE AB ⊥时,判断EPF ∆的形状;(2)在(1)问的条件下,FE 、PB 的延长线交于点G ,如图2,求EGB ∆的面积; (3)在三角板旋转过程中,若2CF AE ==,()CF BP ≠,如图3,求PE 的长.40.为了使同学们更好地解答本题,我们提供了思路点拨,你可以依照这个思路填空,并完成本题解答的全过程,当然你也可以不填空,只需按照解答的一般要求,进行解答即可. 如图,已知AB AD =,60BAD ∠=︒,120BCD ∠=︒,延长BC ,使C E C D =,连接DE ,求证:BC DC AC +=. 思路点拨:(1)由已知条件AB AD=,60BAD∠=︒,可知:ABD∆是三角形;(2)同理由已知条件120BCD∠=︒得到DCE∠=,且CE CD=,可知;(3)要证BC DC AC+=,可将问题转化为两条线段相等,即=;(4)要证(3)中所填写的两条线段相等,可以先证明⋯.请你完成证明过程:41.已知ABC∆是等边三角形,点P是AC上一点,PE BC⊥于点E,交AB于点F,在CB 的延长线上截取BD PA=,PD交AB于点I,PA nPC=.(1)如图1,若1n=,则EBBD=,FIED=;(2)如图2,若60EPD∠=︒,试求n和FIED的值;(3)如图3,若点P在AC边的延长线上,且3n=,其他条件不变,则EBBD=.(只写答案不写过程)42.如图ABC∆为等边三角形,直线//a AB,D为直线BC上任一动点,将一60︒角的顶点置于点D处,它的一边始终经过点A,另一边与直线a交于点E.(1)若D恰好在BC的中点上(如图1)求证:ADE∆是等边三角形;(2)若D为直线BC上任一点(如图2),其他条件不变,上述(1)的结论是否成立?若成立,请给予证明;若不成立,请说明理由.43.如图,在等边ABC=,点P从点C出发沿CB边向点B点以2/cm s的速AB cm∆中,9度移动,点Q点从B点出发沿BA边向A点以5/cm s速度移动.P、Q两点同时出发,它们移动的时间为t秒钟.(1)你能用t表示BP和BQ的长度吗?请你表示出来.(2)请问几秒钟后,PBQ∆为等边三角形?(3)若P、Q两点分别从C、B两点同时出发,并且都按顺时针方向沿ABC∆三边运动,请问经过几秒钟后点P与点Q第一次在ABC∆的哪条边上相遇?44.如图:在ABC⊥于Q.==,AE CD∆中,AB BC AC=,AD与BE相交于点P,BQ AD求证:①ADC BEA∆≅∆;②2=.BP PQ45.如图1,点B是线段AD上一点,ABC∆分别是等边三角形,连接AE和CD.∆和BDE(1)求证:AE CD=;(2)如图2,点P、Q分别是AE、CD的中点,试判断PBQ∆的形状,并证明.46.如图:已知ABC∆是等边三角形,D、E、F分别是AB、AC、BC边的中点,M是直线BC上的任意一点,在射线EF上截取EN,使EN FM=,连接DM、MN、DN.(1)如图①,当点M在点B左侧时,请你按已知要求补全图形,并判断DMN∆是怎样的特殊三角形(不要求证明);(2)请借助图②解答:当点M在线段BF上(与点B、F不重合),其它条件不变时,(1)中的结论是否依然成立?若成立,请证明;若不成立,请说明理由;(3)请借助图③解答:当点M在射线FC上(与点F不重合),其它条件不变时,(1)中的结论是否仍然成立?不要求证明.47.如图,ABC∆是等边三角形,点D、E、F分别是线段AB、BC、CA上的点,(1)若AD BE CF∆是等边三角形吗?试证明你的结论;==,问DEF(2)若DEF∆是等边三角形,问AD BE CF==成立吗?试证明你的结论.48.如图,已知ABC=,连∆为等边三角形,延长BC到D,延长BA到E,并且使AE BD 接CE,DE.求证:EC ED=.49.如图,已知ABC ∆与ACD ∆都是边长为2的等边三角形,如图有一个60︒角的三角板绕着点A 旋转分别交BC 、CD 于点P 、Q 两点(不与端点重合). (1)试说明:PAQ ∆是等边三角形; (2)求四边形APCQ 的面积;(3)填空:当BP = 时,APQ S ∆最小.50.如图,A 、B 、C 三点在同一直线上,ABM ∆和BCN ∆是正三角形,P 是AN 中点,Q 是CM 中点.求证:BPQ ∆是正三角形.全等三角形的的性质与判定难题50道参考答案与试题解析一.选择题(共1小题)1.边长为a 的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),⋯,按此方式依次操作,则第6个正六边形的边长为( )A .511()32a ⨯B .511()23a ⨯C .611()32a ⨯D .611()23a ⨯【解答】解:连接AD 、DF 、DB . 六边形ABCDEF 是正六边形,ABC BAF AFE ∴∠=∠=∠,AB AF =,120E C ∠=∠=︒,EF DE BC CD ===, 30EFD EDF CBD BDC ∴∠=∠=∠=∠=︒, 120AFE ABC ∠=∠=︒, 90AFD ABD ∴∠=∠=︒,在Rt ABD ∆和RtAFD 中 AF ABAD AD =⎧⎨=⎩Rt ABD Rt AFD(HL)∴∆≅∆, 1120602BAD FAD ∴∠=∠=⨯︒=︒,60120180FAD AFE ∴∠+∠=︒+︒=︒, //AD EF ∴,G 、I 分别为AF 、DE 中点,////GI EF AD ∴,60FGI FAD ∴∠=∠=︒,六边形ABCDEF 是正六边形,QKM ∆是等边三角形, 60EDM M ∴∠=︒=∠,ED EM ∴=,同理AF QF =, 即AF QF EF EM ===, 等边三角形QKM 的边长是a ,∴第一个正六边形ABCDEF 的边长是13a ,即等边三角形QKM 的边长的13,过F 作FZ GI ⊥于Z ,过E 作EN GI ⊥于N , 则//FZ EN , //EF GI ,∴四边形FZNE 是平行四边形,13EF ZN a ∴==,11112236GF AF a a ==⨯=,60FGI ∠=︒(已证), 30GFZ ∴∠=︒,11212GZ GF a ∴==,同理112IN a =, 1111123122GI a a a a ∴=++=,即第二个等边三角形的边长是12a ,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是1132a ⨯;同理第第三个等边三角形的边长是1122a ⨯,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是111322a ⨯⨯;同理第四个等边三角形的边长是111222a ⨯⨯,第四个正六边形的边长是11113222a ⨯⨯⨯;第五个等边三角形的边长是11112222a ⨯⨯⨯,第五个正六边形的边长是1111132222a ⨯⨯⨯⨯;第六个等边三角形的边长是1111122222a ⨯⨯⨯⨯,第六个正六边形的边长是111111322222a ⨯⨯⨯⨯⨯, 即第六个正六边形的边长是511()32a ⨯,故选:A .二.解答题(共49小题)2.如图,在等边ABC ∆中,点D ,E 分别在边BC ,AC 上,且//DE AB ,过点E 作EF DE ⊥,交BC 的延长线于点F ,(1)求F ∠的度数;(2)若3CD =,求DF 的长.【解答】解:(1)ABC ∆是等边三角形,60B ∴∠=︒, //DE AB ,60EDC B ∴∠=∠=︒,EF DE ⊥,90DEF ∴∠=︒,9030F EDC ∴∠=︒-∠=︒;(2)60ACB ∠=︒,60EDC ∠=︒,EDC∴∆是等边三角形.∴==,ED DC3∠=︒,F90∠=︒,30DEF∴==.DF DE263.数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED EC=,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE =DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作//EF BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED EC∆的边=.若ABC 长为1,2AE=,求CD的长(请你直接写出结果).【解答】解:(1)故答案为:=.(2)过E作//EF BC交AC于F,等边三角形ABC,∴∠=∠=∠=︒,AB AC BC==,ABC ACB A60AFE ACB∴∠=∠=︒,60∠=∠=︒,AEF ABC60即60∠=∠=∠=︒,AEF AFE A∴∆是等边三角形,AEFAE EF AF ∴==,60ABC ACB AFE ∠=∠=∠=︒,120DBE EFC ∴∠=∠=︒,60D BED FCE ECD ∠+∠=∠+∠=︒,DE EC =,D ECD ∴∠=∠,BED ECF ∴∠=∠,在DEB ∆和ECF ∆中DEB ECF DBE EFC DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,DEB ECF ∴∆≅∆,BD EF AE ∴==,即AE BD =,故答案为:=.(3)解:1CD =或3,理由是:分为两种情况:①如图1过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,则//AM EN ,ABC ∆是等边三角形,1AB BC AC ∴===,AM BC ⊥, 1122BM CM BC ∴===, DE CE =,EN BC ⊥,2CD CN ∴=,//AM EN ,AMB ENB ∴∆∆∽, ∴AB BM BE BN=, ∴11221BN=-, 12BN ∴=, 13122CN ∴=+=, 23CD CN ∴==;②如图2,作AM BC ⊥于M ,过E 作EN BC ⊥于N ,则//AM EN ,ABC ∆是等边三角形,1AB BC AC ∴===,AM BC ⊥,1122BM CM BC ∴===, DE CE =,EN BC ⊥,2CD CN ∴=,//AM EN , ∴AB BM AE MN=, ∴1122MN=, 1MN ∴=,11122CN ∴=-=,21CD CN ∴==,即3CD =或1.4.如图,过等边ABC ∆的边AB 上一点P ,作P E A C ⊥于E ,Q 为BC 延长线上一点,且PA CQ =,连PQ 交AC 边于D .(1)求证:PD DQ =;(2)若ABC ∆的边长为1,求DE 的长.【解答】(1)证明:如图,过P 做//PF BC 交AC 于点F ,AFP ACB ∴∠=∠,FPD Q ∠=∠,PFD QCD ∠=∠ABC ∆为等边三角形,60A ACB ∴∠=∠=︒,60A AFP ∴∠=∠=︒,APF ∴∆是等边三角形;AP PF =,AP CQ =,PF CQ ∴=PFD QCD ∴∆≅∆,PD DQ ∴=.(2)APF ∆是等边三角形,PE AC ⊥,AE EF ∴=,PFD QCD ∆≅∆,CD DF ∴=,12DE EF DF AC =+=, 1AC =,12DE =. 5.如图所示,已知等边ABC ∆的边长为a ,P 是ABC ∆内一点,//PD AB ,//PE BC ,//PF AC ,点D 、E 、F 分别在BC 、AC 、AB 上,猜想:PD PE PF ++= a ,并证明你的猜想.【解答】解:PD PE PF a ++=.理由如下:如图,延长EP 交AB 于G ,延长FP 交BC 于H ,//PE BC ,//PF AC ,ABC ∆是等边三角形,60PGF B ∴∠=∠=︒,60PFG A ∠=∠=︒,PFG ∴∆是等边三角形,同理可得PDH ∆是等边三角形,PF PG ∴=,PD DH =,又//PD AB ,//PE BC ,∴四边形BDPG是平行四边形,∴=,PG BD∴++=++==.PD PE PF DH CH BD BC a故答案为a.6.如图,已知ABC∆均为等边三角形,且点B、C、D在同一条直线上,连接AD、∆和CDEBE,交CE和AC分别于G、H点,连接GH.(1)请说出AD BE=的理由;(2)试说出BCH ACG∆≅∆的理由;(3)试猜想:CGH∆是什么特殊的三角形,并加以说明.【解答】解:(1)ABC∆均为等边三角形∆和CDE=∴=,EC DCAC BC∠=∠=︒ACB ECD60∴∠=∠ACD ECBACD BCE∴∆≅∆∴=;AD BE(2)ACD BCE∆≅∆∴∠=∠CBH CAGACB ECD∠=∠=︒,点B、C、D在同一条直线上60∴∠=∠=∠=︒ACB ECD ACG60又AC BC=ACG BCH∴∆≅∆;(3)CGH∆是等边三角形,理由如下:ACG BCH∆≅∆∴=(全等三角形的对应边相等)CG CH又60∠=︒ACG∴∆是等边三角形(有一内角为60度的等腰三角形为等边三角形);CGH7.如图,已知ABC∆是边长为6cm的等边三角形,动点P,Q同时从A、B两点出发,分别沿AB、BC方向匀速运动,其中点P运动的速度是1/cm s,cm s,点Q运动的速度是2/当点Q运动到点C时,P,Q都停止运动.(1)出发后运动2s时,试判断BPQ∆的形状,并说明理由;那么此时PQ和AC的位置关系呢?请说明理由;(2)设运动时间为t,BPQ∆的面积为S,请用t的表达式表示S.【解答】解:(1)BPQ∆是等边三角形,//PQ AC,(2分)运动至2s时,2AP=,4BQ=,BP AB AP BQ∴=-==(4分)4又ABC∆是边长为6cm的等边三角形∴∠=︒B60∴∆是等边三角形(6分)BPQ∴∠=∠=︒60BPQ A∴.//PQ AC(2)过Q作QH AB⊥于H,=,30∠=︒,BQHBQ t2∴=,QH=.(10分)BH t=-BP t6213(6)3(6)2S t t t t ∴=-=-=+. (12分)8.已知:在等边ABC ∆中,点D 、E 、F 分别为边AB 、BC 、AC 的中点,点G 为直线BC上一动点,当点G 在CB 延长线上时,有结论“在直线EF 上存在一点H ,使得DGH ∆是等边三角形”成立(如图①),且当点G 与点B 、E、C 重合时,该结论也一定成立. 问题:当点G 在直线BC 的其它位置时,该结论是否仍然成立?请你在下面的备用图②③④中,画出相应图形并证明相关结论.【解答】证明:连接DE 、EF 、DF .(1)当点G 在线段BE 上时,如图①,在EF 上截取EH 使EH BG =.D 、E 、F 是等边ABC ∆三边中点,DEF ∴∆、DBE ∆也是等边三角形且12DE AB BD ==. 在DBG ∆和DEH ∆中,60DB DE DBG DEH BG EH =⎧⎪∠=∠=︒⎨⎪=⎩,()DBG DEH SAS ∴∆≅∆,DG DH ∴=.BDG EDH ∴∠=∠.60BDE GDE BDG ∠=∠+∠=︒,60GDH GDE EDH ∴∠=∠+∠=︒∴在直线EF 上存在点H 使得DGH ∆是等边三角形.(2)当点G 在射线EC 上时,如图②,在EF 上截取EH 使EH BG =.由(1)可证DBG DEH ∆≅∆.DG DH ∴=,BDG EDH ∠=∠.60BDE BDG EDG ∠=∠-∠=︒,60GDH EDH EDG ∴∠=∠-∠=︒.∴在直线EF 上存在点H 使得DGH ∆是等边三角形.(3)当点G 在BC 延长线上时,如图③,与(2)同理可证,结论成立.综上所述,点G 在直线BC 上的任意位置时,该结论成立.9.已知点C 为线段AB 上一点,分别以AC 、BC 为边在线段AB 同侧作ACD ∆和BCE ∆,且CA CD =,CB CE =,ACD BCE ∠=∠,直线AE 与BD 交于点F ,(1)如图1,若60ACD ∠=︒,则AFB ∠= 120︒ ;如图2,若90ACD ∠=︒,则AFB ∠= ;如图3,若120ACD ∠=︒,则AFB ∠= ;(2)如图4,若ACDα∠=(用含α的式子表示);∠=,则AFB(3)将图4中的ACD∆绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若ACDα∠与α的有何数量关系?并给予∠=,则AFB证明.【解答】解:(1)如图1,CA CD∠=︒,ACD=,60所以ACD∆是等边三角形.∠=∠=︒,ACD BCE=,60CB CE所以ECB∆是等边三角形.AC DC∠=∠+∠,BCD BCE DCE∠=∠+∠,=,ACE ACD DCE又ACD BCE∠=∠,∴∠=∠.ACE BCDAC DC=,=,CE BC∴∆≅∆.ACE DCB∴∠=∠.EAC BDC∠是ADFAFB∆的外角.∴∠=∠+∠=∠+∠+∠=∠+∠+∠=∠+∠=︒AFB ADF FAD ADC CDB FAD ADC EAC FAD ADC DAC120.如图2,AC CD=,∠=∠=︒,EC CBACE DCB=,90∴∆≅∆.ACE DCB∴∠=∠,AEC DBC又FDE CDB∠=︒,DCB∠=∠,9090EFD ∴∠=︒.90AFB ∴∠=︒.如图3,ACD BCE ∠=∠,ACD DCE BCE DCE ∴∠-∠=∠-∠.ACE DCB ∴∠=∠.又CA CD =,CE CB =,ACE DCB ∴∆≅∆.EAC BDC ∴∠=∠.180180(180)120BDC FBA DCB ACD ∠+∠=︒-∠=︒--∠=︒, 120FAB FBA ∴∠+∠=︒.60AFB ∴∠=︒.故填120︒,90︒,60︒.(2)ACD BCE ∠=∠,ACD DCE BCE DCE ∴∠+∠=∠+∠.ACE DCB ∴∠=∠.CAE CDB ∴∠=∠.DFA ACD ∴∠=∠.180180180AFB DFA ACD α∴∠=︒-∠=︒-∠=︒-.(3)180AFB α∠=︒-;证明:ACD BCE α∠=∠=,则ACD DCE BCE DCE ∠+∠=∠+∠, 即ACE DCB ∠=∠.在ACE ∆和DCB ∆中AC DC ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩,则()ACE DCB SAS ∆≅∆.则CBD CEA ∠=∠,由三角形内角和知EFB ECB α∠=∠=. 180180AFB EFB α∠=︒-∠=︒-.10.如图1,ABC ∆为等边三角形,面积为S .1D 、1E 、1F 分别是ABC ∆三边上的点,且11112AD BE CF AB ===,连接11D E 、11E F 、11F D ,可得△111D E F 是等边三角形,此时△11AD F 的面积114S S =,△111D E F 的面积114S S =. (1)当2D 、2E 、2F 分别是等边ABC ∆三边上的点,且22213AD BE CF AB ===时如图2,①求证:△222D E F 是等边三角形; ②若用S 表示△22AD F 的面积2S ,则2S = 29S ;若用S 表示△222D E F 的面积2S ',则2S '= .(2)按照上述思路探索下去,并填空:当n D 、n E 、n F 分别是等边ABC ∆三边上的点,11n n n AD BE CF AB n ===+时,(n 为正整数)△n n n D E F 是 三角形;若用S 表示△n n AD F 的面积n S ,则n S = ;若用S 表示△n n n D E F 的面积n S ',则n S '= .【解答】解:(1)①ABC ∆为等边三角形,AB BC AC ∴==,60A B ∠=∠=︒,(1分) 由已知得213AD AB =,213BE BC =,213CF AC =223AF AC ∴=,223BD AB = 22AD BE ∴=,22AF BD =(2分)△22AD F ≅△22BE D (3分) 2222D E F D ∴=同理可证△22AD F ≅△22CF E 2222F D E F =(4分) 222222D E E F F D ∴==∴△222D E F 为等边三角形;(5分)②229S S =;(6分)221393S S S S '=-⨯=(7分)(2)由(1)可知:△n n n D E F 等边三角形;(8分)由(1)的方法可知:229S S =,3316S S =,2(1)n n S S n ⋯=+;(9分) 213S S '=,232711621n n n S S S S n n '-+'=⋯=++.(10分) 11.如图,在等边ABC ∆的三边上分别取点D 、E 、F ,使AD BE CF ==. (1)试说明DEF ∆是等边三角形;(2)连接AE 、BF 、CD ,两两相交于点P 、Q 、R ,则PQR ∆为何种三角形?试说明理由.【解答】证明:(1)ABC ∆是等边三角形, AB BC AC ∴==, AD BE CF ==,AF BD ∴=,在ADF ∆和BED ∆中,AD BEA B AF BD =⎧⎪∠=∠⎨⎪=⎩,()ADF BED SAS ∴∆≅∆,DF DE ∴=,同理DE EF =,DE DF EF ∴==. DEF ∴∆是等边三角形;(2)PQR ∆是等边三角形, 理由:由(1)证得ADF BED ∆≅∆,BD AF ∴=,在ABF ∆与CBD ∆中,AB BC BAC CBD AF BD =⎧⎪∠=∠⎨⎪=⎩,ABF CBD ∴∆≅∆, ABF BCD ∴∠=∠, 60ABF CBF ∠+∠=︒, 60CBF BCD ∴∠+∠=︒,60RPQ FBC BCD ∠=∠+∠=︒,同理60PQR PRQ ∠=∠=︒, PQR ∴∆是等边三角形.12.如图所示,一个六边形的六个内角都是120︒,其中连续四边的长依次是1、9、9、5.求这个六边形的周长.【解答】解:如图,延长并反向延长AB ,CD ,EF ,两两相交于点G 、H 、I , 六边形ABCDEF 的每个内角都是120︒,60G H I ∴∠=∠=∠=︒,60GCB GBC ∠=∠=︒, GHI ∴∆,GBC ∆是等边三角形, 同理:HAF ∆,DEI ∆是等边三角形,9BG GC BC ∴===,5DE DI EI ===, 99523GI GC CD DI ∴=++=++=, 23GH GI HI ∴===, 13AH GH BG AB ∴=--=,13AF AH FH ∴===, 5EF HI EI FH ∴=--=,∴六边形ABCDEF 的周长113559942AB AF EF DE CD BC =+++++=+++++=.13.如图,已知D 是ABC ∆的边BC 上的一点,CD AB =,BDA BAD ∠=∠,AE 是ABD ∆的中线.(1)若60B ∠=︒,求C ∠的值; (2)求证:AD 是EAC ∠的平分线.【解答】(1)解:60B ∠=︒,BDA BAD ∠=∠, 60BAD BDA ∴∠=∠=︒,AB AD ∴=,CD AB =, CD AD ∴=, DAC C ∴∠=∠,2BDA DAC C C ∴∠=∠+∠=∠, 60BAD ∠=︒, 30C ∴∠=︒;(2)证明:延长AE 到M ,使EM AE =,连接DM ,在ABE ∆和MDE ∆中, EM AE AEB MED BE DE =⎧⎪∠=∠⎨⎪=⎩, ABE MDE ∴∆≅∆,B MDE ∴∠=∠,AB DM =,ADC B BAD MDE BDA ADM ∠=∠+∠=∠+∠=∠, 在MAD ∆与CAD ∆,DM CD ADM ADC AD AD =⎧⎪∠=∠⎨⎪=⎩,MAD CAD ∴∆≅∆, MAD CAD ∴∠=∠,AD ∴是EAC ∠的平分线.14.如图,ABC ∆为等边三角形,BD 平分ABC ∠交AC 于点D ,//DE BC 交AB 于点E . (1)求证:ADE ∆是等边三角形. (2)求证:12AE AB =.【解答】证明:(1)ABC ∆为等边三角形, 60A ABC C ∴∠=∠=∠=︒. //DE BC ,60AED ABC ∴∠=∠=︒,60ADE C ∠=∠=︒.ADE ∴∆是等边三角形.(2)ABC ∆为等边三角形, AB BC AC ∴==.BD 平分ABC ∠,12AD AC ∴=.ADE ∆是等边三角形, AE AD ∴=.12AE AB ∴=. 15.如图.在等边ABC ∆中,ABC ∠与ACB ∠的平分线相交于点O ,且//OD AB ,//OE AC . (1)试判定ODE ∆的形状,并说明你的理由;(2)线段BD 、DE 、EC 三者有什么关系?写出你的判断过程.【解答】解:(1)ODE ∆是等边三角形, 其理由是:ABC ∆是等边三角形, 60ABC ACB ∴∠=∠=︒,(2分) //OD AB ,//OE AC ,60ODE ABC ∴∠=∠=︒,60OED ACB ∠=∠=︒(3分)ODE ∴∆是等边三角形;(4分)(2)答:BD DE EC ==,其理由是:OB 平分ABC ∠,且60ABC ∠=︒, 30ABO OBD ∴∠=∠=︒,(6分) //OD AB ,30BOD ABO ∴∠=∠=︒, DBO DOB ∴∠=∠,DB DO ∴=,(7分) 同理,EC EO =, DE OD OE ==,BD DE EC ∴==.(8分) 16.如图,ABC ∆是等边三角形,DF AB ⊥,DE CB ⊥,EF AC ⊥,求证:DEF ∆是等边三角形.【解答】证明:ABC∆是等边三角形,ABC ACB CAB∠=∠=∠=︒,∴==,60AB AC BC⊥,DE CBDF AB⊥,⊥,EF AC∴∠=∠=∠=︒,DAB ACF CBE90∴∠=∠=∠=︒,FAC BCE DBA30∴∠=∠=∠=︒-︒-︒=︒,D E F180903060∴==,DF DE EFDEF∴∆是等边三角形,17.用三根火柴棒可以搭成一个等边三角形,你能用9根火柴搭出5个等边三角形吗?【解答】解:等边三角形各边长相等,故按照上图搭出图形,即为9根火柴搭出5个等边三角形.18.如图,ABC∆是等边三角形,AD是高,并且AB恰好是DE的垂直平分线.求证:ADE∆是等边三角形.【解答】证明:A在DE的垂直平分线上,∴=,AE AD∴∆是等腰三角形,ADE⊥,AB DE90ADE BAD ∴∠=︒-∠,AD BD ⊥,90B BAD ∴∠=︒-∠,由90ADE BAD ∠=︒-∠,90B BAD ∠=︒-∠,得:60B ADE ∠=∠=︒,ADE ∴∆是等边三角形.19.如图,60AOB ∠=︒,OC 平分AOB ∠,C 为角平分线上一点,过点C 作CD OC ⊥,垂足为C ,交OB 于点D ,//CE OA 交OB 于点E . (1)判断CED ∆的形状,并说明理由; (2)若3OC =,求CD 的长.【解答】解:(1)CED ∆是等边三角形,理由如下: OC 平分AOB ∠,60AOB ∠=︒, 30AOC COE ∴∠=∠=︒, //CE OA ,30AOC COE OCE ∴∠=∠=∠=︒,60CED ∠=︒, CD OC ⊥, 90OCD ∴∠=︒, 60EDC ∴∠=︒, CED ∴∆是等边三角形;(2)CED ∆是等边三角形, CD CE ED ∴==,又COE OCE ∠=∠, OE EC ∴=, CD ED OE ∴==,设CD x =,则2OD x =,在Rt OCD ∆中,根据勾股定理得:2294x x +=,解得:x =则CD =.20.如图,在ABC ∆中,AB AC =,120BAC ∠=︒,D 、F 分别为AB 、AC 的中点,且DE AB ⊥,FG AC ⊥,点E 、G 在BC 上,18BC cm =,求线段EG 的长.(提示:需要添加辅助线)【解答】解:如图,连接AE 、AGD 为AB 中点,ED AB ⊥, EB EA ∴=,ABE ∴∆为等腰三角形,又30B EAB ∠=∠=︒, 30BAE ∴∠=︒, 60AEG ∴∠=︒,同理可证:60AGE ∠=︒, AEG ∴∆为等边三角形, AE EG AG ∴==,又AE BE =,AG GC =,BE EG GC ∴==,又18()BE EG GC BC cm ++==, 6()EG cm ∴=.21.已知,如图,ABC ∆是正三角形,D ,E ,F 分别是各边上的一点,且AD BE CF ==.请你说明DEF ∆是正三角形.【解答】解:ABC==,∆为等边三角形,且AD BE CF∴==,AE BF CD又60∠=∠=∠=︒,A B CADE BEF CFD SAS∴∆≅∆≅∆,()∴==,DE EF FD∴∆是等边三角形.DEF22.如图所示,DEF∆是等边三角形,且123∆是等边三角形吗?请∠=∠=∠,试问:ABC说明理由.【解答】解:ABC∆是等边三角形,理由:DEF∆是等边三角形,∴∠=︒,DEF60∴∠=︒,BEC120BCE∴∠+∠=︒,260∠=∠,23BCE∴∠+∠=︒,360ACB∴∠=︒,60同理60∠=∠=︒,ABC BACABC ∴∆是等边三角形.23.如图,ABC ∆为等边三角形,BD 平分ABC ∠,//DE BC .(1)求证:ADE ∆是等边三角形;(2)求证:12AE AB =.【解答】证明:(1)ABC ∆为等边三角形,60A ABC ACB ∴∠=∠=∠=︒,//DE BC ,60AED ABD ∴∠=∠=︒,60ADE ACB ∴∠=∠=︒,A AED ADE ∴∠=∠=∠,ADE ∴∆是等边三角形;(2)ADE ∆是等边三角形AD AE ∴=ABC ∆为等边三角形,AB AC ∴= BD 平分ABC ∠,D ∴是AC 的中点(三线合一)1122AD AC AB ==, 12AE AB ∴=. 24.如图ABC ∆是等边三角形(1)如图①,//DE BC ,分别交AB 、AC 于点D 、E .求证:ADE ∆是等边三角形;(2)如图②,ADE ∆仍是等边三角形,点B 在ED 的延长线上,连接CE ,判断BEC ∠的度数及线段AE 、BE 、CE 之间的数量关系,并说明理由.【解答】(1)证明:ABC ∆是等边三角形,60B C ∴∠=∠=︒,//DE BC ,60ADE B ∴∠=∠=︒,60AED C ∠=∠=︒,ADE ∴∆是等边三角形;(2)解:AE CE BE +=.60BAD DAC ∠+∠=︒,60CAE DAC ∠+∠=︒,BAD CAE ∴∠=∠,在BAD ∆和CAE ∆中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,BAD CAE ∴∆≅∆,BD CE ∴=,120AEC ADB ∠=∠=︒,BE BD DE AE CE ∴=+=+,CE BD DE ==,30EBC ∴∠=︒,60BEC ∴∠=︒.25.如图,E 是AOB ∠的平分线上一点,EC OB ⊥,ED OA ⊥,C 、D 是垂足,连接CD交OE 于点F ,若60AOB ∠=︒.(1)求证:OCD ∆是等边三角形;(2)若5EF =,求线段OE 的长.【解答】解:(1)点E 是AOB ∠的平分线上一点,EC OB ⊥,ED OA ⊥,垂足分别是C ,D ,DE CE ∴=,在Rt ODE ∆与Rt OCE ∆中,DE CE OE OE =⎧⎨=⎩Rt ODE Rt OCE(HL)∴∆≅∆,OD OC ∴=,60AOB ∠=︒,OCD ∴∆是等边三角形;(2)OCD ∆是等边三角形,OF 是COD ∠的平分线,OE DC ∴⊥,60AOB ∠=︒,30AOE BOE ∴∠=∠=︒,60ODF ∠=︒,ED OA ⊥,30EDF ∴∠=︒,210DE EF ∴==,220OE DE ∴==.26.如图,ABC ∆中,60BAC ∠=︒,点D 、E 分别在AB 、AC 上,30BCD CBE ∠=∠=︒,BE 、CD 相交于点O ,OG BC ⊥于点G ,求证:2OE OD OG +=.【解答】证明:延长OE 至点M ,使OM OC =,连接CM ,30BCD CBE ∠=∠=︒,OB OC ∴=,303060MOC ∠=︒+︒=︒,OM OC =,OMC ∴∆为等边三角形,CM OC OB ∴==,60M ∠=︒,DBO MCE ∴∠=∠,在BOD ∆和CME ∆中,DBO MCE BO CMDOB M ∠=∠⎧⎪=⎨⎪∠=∠⎩, BOD MCE ∴∆≅∆,DO EM ∴=,OE OD OM OB ∴+==,在Rt OBG ∆中,30OBG ∠=︒,OG BC ⊥,2OG OB ∴=,2OE OD OG ∴+=.27.如图,在ABC ∆中,AB AC =,D 、E 是ABC ∆内两点,AD 平分BAC ∠,60EBC E ∠=∠=︒,若30BE cm =,2DE cm =,则BC = 32 cm .【解答】解:延长ED交BC于M,延长AD交BC于N,∠,AB AC=,AD平分BAC=,AN BC∴⊥,BN CN∠=∠=︒,EBC E60∴∆为等边三角形,BEMEFD∴∆为等边三角形,DE=,30BE=,2∴=,28DM∆为等边三角形,BEMEMB∴∠=︒,60⊥,AN BC∴∠=︒,90DNM∴∠=︒,30NDM∴=,NM14∴=,16BN∴==,BC BN232故答案为32.28.如图,已知ABC=,∠,CE BD ∆为等边三角形,D为BC延长线上的一点,CE平分ACD 求证:ADE∆为等边三角形.【解答】证明:ABC ∆为等边三角形,60B ACB ∴∠=∠=︒,AB AC =,即120ACD ∠=︒, CE 平分ACD ∠,1260∴∠=∠=︒,在ABD ∆和ACE ∆中,1AB AC B BD CE =⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴∆≅∆,AD AE ∴=,BAD CAE ∠=∠,又60BAC ∠=︒,60DAE ∴∠=︒,ADE ∴∆为等边三角形.29.如图,ABC ∆为等边三角形,D 为BC 边上一点,以AD 为边作60ADE ∠=︒,DE 与ABC ∆的外角平分线CE 交于点E ,连接AE ,且CE BD =.求证:ADE ∆是等边三角形.【解答】解:过D 作//DG AC 交AB 于G ,则13∠=∠,GDB ∆为等边三角形,120AGD DCE ∠=∠=︒,AG DC =.又60ADE ACE ∠=∠=︒,ACE ECF ∠=∠,12∴∠=∠,31∴∠=∠.在AGD ∆和DCE ∆中,31AGD DCE AG DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AGD DCE AAS ∴∆≅∆,AD DE ∴=,60ADE ∠=︒,ADE ∴∆是等边三角形.30.如图,在ABC ∆中,AB AC =,D 是三角形外一点,且60ABD ∠=︒,BD DC AB +=.求证:60ACD ∠=︒.【解答】证明:延长BD 至E ,使CD DE =,连接AE ,AD ,BD CD AB +=,BE BD DE =+,BE AB ∴=,60ABD ∠=︒,ABE ∴∆是等边三角形,AE AB AC ∴==,60E ∠=︒,在ACD ∆和ADE ∆中,AC AE CD DE AD AD =⎧⎪=⎨⎪=⎩,()ACD ADE SSS ∴∆≅∆,60ACD E ∴∠=∠=︒.31.如图,在等边ABC ∆中,ABC ∠与ACB ∠的平分线相交于点O ,且//OD AB ,//OE AC .(1)求证:ODE ∆是等边三角形.(2)线段BD 、DE 、EC 三者有什么数量关系?写出你的判断过程.(3)数学学习不但要能解决问题,还要善于提出问题.结合本题,在现有的图形上,请提出两个与“直角三角形”有关的问题.(只要提出问题,不需要解答)【解答】(1)证明:ABC ∆是等边三角形,60ABC ACB ∴∠=∠=︒,//OD AB ,//OE AC ,60ODE ABC ∴∠=∠=︒,60OED ACB ∠=∠=︒,ODE ∴∆是等边三角形;。
1.如图,已知等边△ABC ,P 在AC 延长线上一点,以PA 为边作等边△APE,EC 延长线交BP 于M ,连接AM,求证:(1)BP=CE ; (2)试证明:EM-PM=AM.2、点C 为线段AB 上一点,△ACM, △CBN 都是等边三角形,线段AN,MC 交于点E ,BM,CN 交于点F 。
求证: (1)AN=MB.(2)将△ACM 绕点C 按逆时针方向旋转一定角度,如图②所示,其他条件不变,(1)中的结论是否依然成立? (3)AN 与BM 相交所夹锐角是否发生变化。
3.已知,如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AN AM =;(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立.22题PB EA B A B N CN 图①图②4、如图1,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断ABC △与AEG △面积之间的关系,并说明理由.5、如图所示,已知△ABC 和△BDE 都是等边三角形,且A 、B 、D 三点共线.下列结论:①AE=CD ;②BF=BG ;③HB 平分∠AHD ;④∠AHC=60°,⑤△BFG 是等边三角形;⑥FG ∥AD .其中正确的有( ) A .3个 B .4个 C .5个 D .6个6. 如图所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .AG FC BDE (图1) ABCD EFDCB A7、已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F . 当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.8.已知AC//BD,∠CAB 和∠DBA 的平分线EA 、EB 与CD 相交于点E. 求证:AB=AC+BD.9.如图1,BD 是等腰ABC Rt Δ的角平分线, 90=∠BAC .(1)求证BC =AB +AD ; (2)如图2,BD AF ⊥于F ,BD CE ⊥交延长线于E ,求证:BD =2CE ;A E C F BD图1图3ADFECBADBCE图2FAD FE图十一4321P A BC 10、已知,如图1,在四边形ABCD 中,BC >AB ,AD=DC ,BD 平分∠ABC 。
全等三角形难题集锦1.已知△ABC中,∠ABC=45°,CD⊥XXX于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G。
1)证明BF=AC;2)证明CE=BF/2;3)推导CE与BC的大小关系。
2.已知△ABC为等边三角形,点D为直线BC上的一动点,以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF。
1)当点D在边BC上时,证明BD=CF和AC=CF+CD;2)当点D在边BC的延长线上时,AC≠CF+CD,AC、CF、CD之间存在什么数量关系;3)当点D在边BC的延长线上时,补全图形并直接写出AC、CF、CD之间的数量关系。
3.在△ABC中,BC边在直线l上,AC⊥BC,且AC=BC。
△EFP的边FP也在直线l上,XXX与XXX重合,且EF=FP。
1)通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;2)将△EFP沿直线l向左平移到图中的位置时,猜想并写出BQ与AP所满足的数量关系和位置关系,并证明猜想;3)将△EFP沿直线l向左平移到图中的位置时,EP的延长线交AC的延长线于点Q,猜想并说明BQ与AP的数量关系和位置关系是否仍然成立。
4.△AOB,△COD均为等腰直角三角形,∠AOB=∠COD=90º。
1)在图1中,证明AC与BD相等且垂直;2)当△COD绕点O顺时针旋转到图2的位置时,AC与BD不相等且不垂直;3)当△COD绕点O顺时针旋转到图3的位置时,AC与BD不相等但仍然垂直。
复“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知在△ABC中,AB=AC,P是△ABC内部任意一点,将AP绕A顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP,则BQ=CP.”XXX是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP之后,将点P移到等腰三角形ABC之外,原题中的条件不变,发现“BQ=CP”仍然成立,请你就图②给出证明.解答:1)由已知得,∠QAP=∠BAC。
全等三角形证明题精选一.解答题(共30小题)1.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.2.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.3.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.4.如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.5.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.6.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.7.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.8.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.9.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.10.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.11.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.13.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.14.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.15.如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.16.如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.18.已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.19.已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.(1)你添加的条件是:;(2)证明:.20.如图,AB=AC,AD=AE.求证:∠B=∠C.21.如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.22.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.23.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:24.如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.(要求:写出证明过程中的重要依据)25.如图,已知AB=DC,AC=DB.求证:∠1=∠2.26.如图,D、E分别为△ABC的边AB、AC上的点,BE与CD相交于O点.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:命题的条件是和,命题的结论是和(均填序号);(2)证明你写出的命题.27.如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形并任选其中一对给予证明.28.如图所示,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边上的中点.求证:AE=DE.29.如图,给出下列论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.30.已知:如图,∠ACB=90°,AC=BC,CD是经过点C的一条直线,过点A、B分别作AE⊥CD、BF⊥CD,垂足为E、F,求证:CE=BF.全等三角形证明题精选参考答案与试题解析一.解答题(共30小题)1.(2016•连云港)四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.【分析】(1)根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理即可得到结论;(2)如图,连接AC交BD于O,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的性质即可得到结论.【解答】证明:(1)∵BE=DF,∴BE﹣EF=DF﹣EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE与Rt△CBF中,,∴Rt△ADE≌Rt△CBF;(2)如图,连接AC交BD于O,∵Rt△ADE≌Rt△CBF,∴∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形,∴AO=CO.【点评】本题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.2.(2016•曲靖)如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.【分析】(1)首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;(2)根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案.【解答】(1)证明:在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)解:∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB==4,∴CB=4+5=9.【点评】此题主要考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.3.(2016•孝感)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.【分析】要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.【解答】证明;∵BD⊥AC于点D,CE⊥AB于点E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.【点评】本题考查全等三角形的判定和性质,解题的关键是明确题意,找出所求问题需要的条件.4.(2016•湘西州)如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.【分析】(1)由点O是线段AB和线段CD的中点可得出AO=BO,CO=DO,结合对顶角相等,即可利用全等三角形的判定定理(SAS)证出△AOD≌△BOC;(2)结合全等三角形的性质可得出∠A=∠B,依据“内错角相等,两直线平行”即可证出结论.【解答】证明:(1)∵点O是线段AB和线段CD的中点,∴AO=BO,CO=DO.在△AOD和△BOC中,有,∴△AOD≌△BOC(SAS).(2)∵△AOD≌△BOC,∴∠A=∠B,∴AD∥BC.【点评】本题考查了全等三角形的判定与性质以及平行线的判定定理,解题的关键是:(1)利用SAS证出△AOD≌△BOC;(2)找出∠A=∠B.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等,结合全等三角形的性质找出相等的角,再依据平行线的判定定理证出两直线平行即可.5.(2016•云南)如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.【分析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE,根据全等三角形的性质:得出结论.【解答】证明:∵点C是AE的中点,∴AC=CE,在△ABC和△CDE中,,∴△ABC≌△CDE,∴∠B=∠D.【点评】本题考查了全等三角形的判定和性质,全等三角形的判定方法:SSS,SAS,ASA,AAS,直角三角形还有HL.6.(2016•宁德)如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.【分析】根据平行线的性质找出∠ADE=∠BAC,借助全等三角形的判定定理ASA证出△ADE≌△BAC,由此即可得出AE=BC.【解答】证明:∵DE∥AB,∴∠ADE=∠BAC.在△ADE和△BAC中,,∴△ADE≌△BAC(ASA),∴AE=BC.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题的关键.7.(2016•十堰)如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.【分析】欲证明AF=DF只要证明△ABF≌△DEF即可解决问题.【解答】证明:∵AB∥CD,∴∠B=∠FED,在△ABF和△DEF中,,∴△ABF≌△DEF,∴AF=DF.【点评】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握全等三角形的判断和性质,熟练掌握平行线的性质,属于基础题,中考常考题型.8.(2016•武汉)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.【分析】证明它们所在的三角形全等即可.根据等式的性质可得BC=EF.运用SSS证明△ABC与△DEF全等.【解答】证明:∵BE=CF,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF,∴AB∥DE.【点评】本题考查了全等三角形的性质和判定.全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等.9.(2016•昆明)如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.【分析】根据平行线的性质得出∠A=∠ECF,∠ADE=∠CFE,再根据全等三角形的判定定理AAS得出△ADE≌△CFE,即可得出答案.【解答】证明:∵FC∥AB,∴∠A=∠ECF,∠ADE=∠CFE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS),∴AE=CE.【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理SSS、SAS、ASA、AAS、HL是解题的关键.10.(2016•衡阳)如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.【分析】求出AD=BC,根据ASA推出△AED≌△BFC,根据全等三角形的性质得出即可.【解答】证明:∵AC=BD,∴AC+CD=BD+CD,∴AD=BC,在△AED和△BFC中,,∴△AED≌△BFC(ASA),∴DE=CF.【点评】本题考查了全等三角形的性质和判定的应用,能求出△AED≌△BFC是解此题的关键,注意:全等三角形的对应边相等.11.(2016•重庆)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.【分析】根据CE∥DF,可得∠ACE=∠D,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.【解答】证明:∵CE∥DF,∴∠ACE=∠D,在△ACE和△FDB中,,∴△ACE≌△FDB(SAS),∴AE=FB.【点评】此题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.12.(2016•南充)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.【分析】(1)由SAS证明△ABD≌△ACE,得出对应边相等即可(2)证出∠BAN=∠CAM,由全等三角形的性质得出∠B=∠C,由AAS证明△ACM≌△ABN,得出对应角相等即可.【解答】(1)证明:在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;(2)证明:∵∠1=∠2,∴∠1+∠DAE=∠2+∠DAE,即∠BAN=∠CAM,由(1)得:△ABD≌△ACE,∴∠B=∠C,在△ACM和△ABN中,,∴△ACM≌△ABN(ASA),∴∠M=∠N.【点评】本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键.13.(2016•恩施州)如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.【分析】通过全等三角形(Rt△CBE≌Rt△BCD)的对应角相等得到∠ECB=∠DBC,则AB=AC.【解答】证明:∵BE⊥AC,CD⊥AB,∴∠CEB=∠BDC=90°.∵在Rt△CBE与Rt△BCD中,,∴Rt△CBE≌Rt△BCD(HL),∴∠ECB=∠DBC,∴AB=AC.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.14.(2016•重庆)如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.【分析】根据两直线平行,内错角相等可得∠BAC=∠ECD,再利用“边角边”证明△ABC和△CED全等,然后根据全等三角形对应角相等证明即可.【解答】证明:∵AB∥CD,∴∠BAC=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴∠B=∠E.【点评】本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形全等的判定方法并找出两边的夹角是解题的关键.15.(2016•湖北襄阳)如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.【分析】(1)先证明△DEB≌△DFC得∠B=∠C由此即可证明.(2)先证明AD⊥BC,再在RT△ADC中,利用30°角性质设CD=a,AC=2a,根据勾股定理列出方程即可解决问题.【解答】(1)证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∠DEB=∠DFC=90°,在RT△DEB和RT△DFC中,,∴△DEB≌△DFC,∴∠B=∠C,∴AB=AC.(2)∵AB=AC,BD=DC,∴AD⊥BC,在RT△ADC中,∵∠ADC=90°,AD=2,∠DAC=30°,∴AC=2CD,设CD=a,则AC=2a,∵AC2=AD2+CD2,∴4a2=a2+(2)2,∵a>0,∴a=2,∴AC=2a=4.【点评】本题考查全等三角形的判定和性质、直角三角形30°性质、勾股定理等知识,解题的关键是正确寻找全等三角形,记住直角三角形30°角所对的直角边等于斜边的一半,属于中考常考题型.16.(2016•吉安校级一模)如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.【分析】根据全等三角形的性质得到CD=AF,证明∴△DGC≌△AGF,根据全等三角形的性质和角平分线的判定得到∠CBG=∠FBG,根据三角形内角和定理计算即可.【解答】解:∵Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∴BC=BF,BD=BA,∴CD=AF,在△DGC和△AGF中,,∴△DGC≌△AGF,∴GC=GF,又∠ACB=∠DFB=90°,∴∠CBG=∠FBG,∴∠GBF=(90°﹣28°)÷2=31°.【点评】本题考查的是全等三角形的性质角平分线的判定,掌握全等三角形的对应边相等、对应角相等是解题的关键.17.(2016•武汉校级四模)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.【分析】由垂直的定义可得到∠C=∠D,结合条件和公共边,可证得结论.【解答】证明:∵AC⊥BC,BD⊥AD,∴∠C=∠D=90,在Rt△ACB和Rt△BDA中,,∴△ACB≌△BDA(HL).【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.18.(2016•济宁二模)已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.【分析】求出BC=FE,∠ACB=∠DFE,根据SAS推出全等即可.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=FE,∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).【点评】本题考查了全等三角形的判定定理的应用,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.19.(2016•诏安县校级模拟)已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.(1)你添加的条件是:∠MAB=∠NCD;(2)证明:在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN(ASA)..【分析】判定两个三角形全等的一般方法有:ASA、SSS、SAS、AAS、HL,所以可添加条件为∠MAB=∠NCD,或BM=DN或∠ABM=∠CDN.【解答】解:(1)你添加的条件是:①∠MAB=∠NCD;(2)证明:在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN(ASA),故答案为:∠MAB=∠NCD;在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN(ASA).【点评】本题考查三角形全等的性质和判定方法,判定两个三角形全等的一般方法有:ASA、SSS、SAS、AAS、HL(在直角三角形中).判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.20.(2016•屏东县校级模拟)如图,AB=AC,AD=AE.求证:∠B=∠C.【分析】要证∠B=∠C,可利用判定两个三角形全等的方法“两边和它们的夹角对应相等的两个三角形全等”证△ABE≌△ACD,然后由全等三角形对应边相等得出.【解答】证明:在△ABE与△ACD中,,∴△ABE≌△ACD(SAS),∴∠B=∠C.【点评】本题主要考查了两个三角形全等的其中一种判定方法,即“边角边”判定方法.观察出公共角∠A是解决本题的关键.21.(2016•沛县校级一模)如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.【分析】易证△BED≌△CFD,根据全等三角形对应边相等的性质即可解题.【解答】解:∵BE⊥AE,CF⊥AE,∴∠BED=∠CFD=90°,在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴BE=CF.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中找出全等三角形并证明是解题的关键.22.(2016•福州)一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.23.(2012•漳州)在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E 在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:可以为①②③;结论:④.(均填写序号)证明:【分析】此题可以分成三种情况:情况一:题设:①②③;结论:④,可以利用SAS定理证明△ABC≌△DEF;情况二:题设:①③④;结论:②,可以利用AAS证明△ABC ≌△DEF;情况三:题设:②③④;结论:①,可以利用ASA证明△ABC≌△DEF,再根据全等三角形的性质可推出结论.【解答】情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.【点评】此题主要考查了全等三角形的判定与性质,此题为开放性题目,需要同学们有较强的综合能力,熟练应用全等三角形的全等判定才能正确解答.24.(2009•大连)如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.(要求:写出证明过程中的重要依据)【分析】因为BE=CF,利用等量加等量和相等,可证出BC=EF,再证明△ABC≌△DEF,从而得出AC=DF.【解答】证明:∵BE=CF,∴BE+EC=CF+EC(等量加等量和相等).即BC=EF.在△ABC和△DEF中,AB=DE,∠B=∠1,BC=EF,∴△ABC≌△DEF(SAS).∴AC=DF(全等三角形对应边相等).【点评】解决本题要熟练运用三角形的判定和性质.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.25.(2006•平凉)如图,已知AB=DC,AC=DB.求证:∠1=∠2.【分析】探究思路:因为△ABO与△DCO有一对对顶角,要证∠1=∠2,只要证明∠A=∠D,把问题转化为证明△ABC≌△DCB,再围绕全等找条件.【解答】证明:在△ABC和△DCB中∵,∴△ABC≌△DCB.∴∠A=∠D.又∵∠AOB=∠DOC,∴∠1=∠2.【点评】本题是全等三角形的判定,性质的综合运用,可以由探究题目的结论出发,找全等三角形,再寻找判定全等的条件.26.(2006•佛山)如图,D、E分别为△ABC的边AB、AC上的点,BE与CD相交于O点.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:命题的条件是①和③,命题的结论是②和④(均填序号);(2)证明你写出的命题.【分析】本题实际是考查全等三角形的判定,根据条件可看出主要是围绕三角形ABE和ACD 全等来求解的.已经有了一个公共角∠A,只要再知道一组对应角和一组对应边相等即可得出三角形全等的结论.可根据这个思路来进行选择和证明.【解答】解:(1)命题的条件是①和③,命题的结论是②和④.(2)已知:D,E分别为△ABC的边AB,AC上的点,且AB=AC,∠ABE=∠ACD.求证:OB=OC,BE=CD.证明如下:∵AB=AC,∠ABE=∠ACD,∠BAC=∠CAB,∴△ABE≌△ACD.∴BE=CD.又∠BCD=∠ACB﹣∠ACD=∠ABC﹣∠ABE=∠CBE,∴△BOC是等腰三角形.∴OB=OC.【点评】本题主要考查了全等三角形的判定,要注意的是AAA和SSA是不能判定三角形全等的.27.(2005•安徽)如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形并任选其中一对给予证明.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.做题时从已知结合全等的判定方法开始思考,做到由易到难,不重不漏.【解答】解:此图中有三对全等三角形.分别是:△ABF≌△DEC、△ABC≌△DEF、△BCF≌△EFC.证明:∵AB∥DE,∴∠A=∠D.又∵AB=DE、AF=DC,∴△ABF≌△DEC.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.28.(2004•昆明)如图所示,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边上的中点.求证:AE=DE.【分析】利用已知条件易证△AEB≌△DEC,从而得出AE=DE.【解答】证明:∵AD∥BC,∠B=∠C,∴梯形ABCD是等腰梯形,∴AB=DC,在△AEB与△DEC中,,∴△AEB≌△DEC(SAS),∴AE=DE.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.29.(2004•淮安)如图,给出下列论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.【分析】可以有三个真命题:(1)②③⇒①,可由ASA证得△ADE≌△BCE,所以DE=EC;(2)①③⇒②,可由SAS证得△ADE≌△BCE,所以∠1=∠2;(3)①②⇒⑧,可由ASA证得△ADE≌△BCE,所以AE=BF,∠3=∠4.【解答】解:②③⇒①证明如下:∵∠3=∠4,∴EA=EB.在△ADE和△BCE中,∴△ADE≌△BCE.∴DE=EC.①③⇒②证明如下:∵∠3=∠4,∴EA=EB,在△ADE和△BCE中,,∴△ADE≌△BCE,∴∠1=∠2.①②⇒⑧证明如下:在△ADE和△BCE中,∴△ADE≌△BCE.∴AE=BE,∠3=∠4.【点评】本题考查了全等三角形的判定和性质;题目是一道开放型的问题,选择有多种,可以采用多次尝试法,证明时要选择较为简单的进行证明.30.(2011•通州区一模)已知:如图,∠ACB=90°,AC=BC,CD是经过点C的一条直线,过点A、B分别作AE⊥CD、BF⊥CD,垂足为E、F,求证:CE=BF.【分析】根据AE⊥CD,BF⊥CD,求证∠BCF+∠B=90°,可得∠ACF=∠B,再利用(AAS)求证△BCF≌△CAE即可.【解答】证明:∵AE⊥CD,BF⊥CD∴∠AEC=∠BFC=90°∴∠BCF+∠B=90°∵∠ACB=90°,∴∠BCF+∠ACF=90°∴∠ACF=∠B在△BCF和△CAE中∴△BCF≌△CAE(AAS)∴CE=BF.【点评】此题主要考查全等三角形的判定与性质这一知识点,解答此题的关键是利用(AAS)求证△BCF≌△CAE,要求学生应熟练掌握.。
第十二章 全等三角形第Ⅰ卷(选择题 共30 分)一、选择题(每小题3分,共30分) 1.下列说法正确的是( )A.形状相同的两个三角形全等 B 。
面积相等的两个三角形全等 C 。
完全重合的两个三角形全等 D.所有的等边三角形全等2。
如图所示,a ,b ,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( )3.如图所示,已知△ABE≌△ACD ,∠1=∠2,∠B=∠C,下列不正确的等式是( )A 。
AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE4。
在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后仍不一定能保证△ABC≌△A /B /C /,则补充的这个条件是( )A .BC=B /C / B .∠A=∠A / C .AC=A /C /D .∠C=∠C /5。
如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( )A.△ACE≌△BCD B。
△BGC≌△AFC C 。
△DCG≌△ECF D.△ADB≌△CEA 6. 要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线BF 上取两第3题图第5题图第2题图第6题图ABCD点C,D ,使CD=BC ,再作出BF 的垂线DE,使A,C ,E 在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC≌△ABC 最恰当的理由是( )A.边角边 B 。
角边角 C 。
边边边 D 。
边边角7。
已知:如图所示,AC=CD ,∠B=∠E=90°,AC⊥CD,则不正确的结论是( )A .∠A 与∠D 互为余角B .∠A=∠2C .△ABC≌△CED D.∠1=∠28. 在△ABC 和△FED 中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件( ) A 。
全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )A.120°B.125°C.127°D.104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.5、如图,已知AB=CD,AC=BD,求证:∠A=∠D.6、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.7、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定(SAS)1、如图1,AB∥CD,AB=CD,BE=DF,则图中有多少对全等三角形( )A.3B.4C.5D.6CBA 2、如图2,AB=AC ,AD=AE ,欲证△ABD ≌△ACE ,可补充条件( ) A.∠1=∠2 B.∠B=∠C C.∠D=∠E D.∠BAE=∠CAD3、如图3,AD=BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( ) A.AB ∥CD B.AD ∥BC C.∠A=∠C D.∠ABC=∠CDA4、如图4,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD=________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,已知△ABC 中,AB=AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC , ∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,∵____________________________, ∴△ABD ≌△ACD ( ) 6、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B.7、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?8、如图,在△ABC 和△DEF 中,B 、E 、F 、C ,在同一直线上,下面有4个条件,请你在其中选3个作为题设,余下的一个作为结论,写一个真命题,并加以证明. ①AB=DE ; ②AC=DF ; ③∠ABC=∠DEF ; ④BE=CF.9、如图⑴,AB ⊥BD ,DE ⊥BD ,点C 是BD 上一点,且BC=DE ,CD=AB .⑴试判断AC 与CE 的位置关系,并说明理由.⑵如图⑵,若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第⑴问中AC 与BE 的位置关系还成立吗?(注意字母的变化)全等三角形(三)AAS 和ASA【知识要点】1.角边角定理(ASA ):有两角及其夹边对应相等的两个三角形全等.2.角角边定理(AAS ):有两角和其中一角的对边对应相等的两个三角形全等. 【典型例题】例1.如图,AB ∥CD ,AE=CF ,求证:AB=CD例2.如图,已知:AD=AE ,ABE ACD ∠=∠,求证:BD=CE.例3.如图,已知:ABD BAC D C ∠=∠∠=∠.,求证:OC=OD. 例4.如图已知:AB=CD ,AD=BC ,O 是BD 中点,过O 点的直线分别交DA 和BC 的延长线于E ,F.求证:AE=CF.例5.如图,已知321∠=∠=∠,AB=AD.求证:BC=DE.例6.如图,已知四边形ABCD 中,AB=DC ,AD=BC ,点F 在AD 上,点E 在BC 上,AF=CE ,EF 的对角线BD 交于O ,请问O 点有何特征?ABD C O12 3AFDOBE C【经典练习】1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,',C C '∠=∠则△ABC 与△C B A ''' .2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠请补充一个条件,使△ABC ≌DFE,补充的条件是 .3.在△ABC 和△C B A '''中,下列条件能判断△ABC 和△C B A '''全等的个数有( ) ①A A '∠=∠ B B '∠=∠,C B BC ''= ②A A '∠=∠,B B '∠=∠,C A C A ''=' ③A A '∠=∠ B B '∠=∠,C B AC ''= ④A A '∠=∠,B B '∠=∠,C A B A ''=' A . 1个 B. 2个 C. 3个 D. 4个4.如图,已知MB=ND ,NDC MBA ∠=∠,下列条件不能判定是△ABM ≌△CDN 的是( )A . N M ∠=∠ B. AB=CD C . AM=CN D. AM ∥CN 5.如图2所示, ∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2 ②BE=CF ③△ACN ≌△ABM ④CD=DN其中正确的结论是_________ _________。
1.已知:如图,AB DE ∥,AC DF ∥,BE CF =.求证:AB DE =.2.图中是一副三角板,45︒的三角板Rt DEF ∆的直角顶点D 恰好在30︒的三角板Rt ABC ∆斜边AB 的中点处,304590A E EDF ACB ∠=︒∠=︒∠=∠=︒,,,DE 交AC 于点G ,GM AB ⊥于M .(1)如图1,当DF 经过点C 时,作CN AB ⊥于N ,求证:AM DN =.(2)如图2,当DF AC ∥时,DF 交BC 于H ,作HN AB ⊥于N ,(1)的结论仍然成立,请你说明理由.3.在正方形ABCD 中,AB 、BC 、CD 三边上分别有点E 、G 、F ,且EF DG ⊥.求证:EF DG =.4.在正方形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 边上的点,且EG FH ⊥,求证:EG FH =.5.ABC ∆中,90B ∠=︒,M 为AB 上一点,使得AM BC =,N 为BC 上一点,使得CN BM =,连AN 、CM 交于P 点.试求APM ∠的度数,并写出你的推理证明的过程.FEDC B A图2图1EHABCD FGN NMGF ED CBAGFEDC BA M GFE DC BAHGFE D CBAGFE MN H D CBA6.如图,在Rt ABC ∆中,AB AC AD BC =⊥,,垂足为D .E F 、分别是CD AD 、上的点,且CE AF =.如果62AED ∠=︒,那么DBF ∠=__________.7.E 、F 分别是正方形ABCD 的BC 、CD 边上的点,且BE CF =.求证:AE BF ⊥.8.E 、F 、G 分别是正方形ABCD 的BC 、CD 、AB 边上的点,GE EF ⊥,GE EF =.求证:BG CF BC +=.9.如图,矩形ABCD 中,E 是AD 上一点,CE EF ⊥交AB 于F 点,若2DE =,矩形周长为16,且CE EF =,求AE 的长.N MPCB AFBA PFEDCBAGA BC DEF10.如图,已知ABC ∆中,90ABC AB BC ∠=︒=,,三角形的顶点在相互平行的三条直线123l l l ,,上,且12l l ,之间的距离为2,23l l ,之间的距离为3,则AC 的长是______.11.两个全等的30︒、60︒的三角板ADE 、BAC ,如右下图所示摆放,E 、A 、C 在一条直线上,连结BD .取BD 的中点M ,连结ME 、MC ,试判断EMC ∆的形状,并说明理由.12.已知等腰直角三角形ABC ,C ∠为直角,M 为BC 的中点.CD AM ⊥.求证:AMC DMB ∠=∠.求证:AMC DMB ∠=∠.13.如图所示,已知在等腰直角三角形ABC 中,BAC ∠是直角,D 是AC 上一点,AE BD ⊥,AE 的延长线交BC 于F ,若ADB FDC ∠=∠,求证:D 是AC 的中点.14.如图所示,在等边ABC ∆中,DE BC ∥,O 为ADE ∆的中心,M 为BE 的中点,求证OM CM ⊥.EDCBF ACBAl 3l 2l 1ME DCBA MDCBA F EDCBA15.已知P 为等腰直角ABC ∆的斜边AB 上任意一点,PE 、PF 分别为AC 、BC 之垂线,垂足为E 、F .M 为AB 之中点.则E 、M 、F 组成等腰直角三角形.16.长方形ABCD 中,4AB =,7BC =,BAD ∠的角平分线交BC 于点E ,EF ED ⊥交AB 于F ,则EF =_________.17.如图,设ABC ∆和CDE ∆都是正三角形,且62EBD ∠=︒,则AEB ∠的度数是()A .124︒B .122︒C .120︒D .118︒18.已知:BD CE 、是ABC ∆的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =,求证:⑴AP AQ =;⑵AP AQ ⊥.MP F EC BA FEDCB A 1ADBCE19.如图,ABC ∆的边BC 在直线l 上,AC BC ⊥,且AC BC =;EFP ∆的边FP 也在直线l 上,边EF 与边AC 重合,且EF FP =.⑴在图1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的数量关系和位置关系;⑵将EFP ∆沿直线l 向左平移到图2的位置时,EP 交AC 于点Q ,连结AP ,BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;⑶将EFP ∆沿直线l 向左平移到图3的位置时,EP 的延长线交AC 的延长线于点Q ,连结AP ,BQ .你认为⑵中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.20.ABC ∆中,D 为BC 中点,DE BC ⊥交BAC ∠的平分线于点E ,EF AB ⊥于F EG AC ⊥于G .求证:BF CG =.21.如图,在正方形ABCD 中,M 是AB 的中点,,MN MD BN CBE ⊥∠平分,E 为AB 的延长线上一PDQCBEA图⑴lPC (F )B A (E )图⑵Q ←lPFE C B A图⑶←QAEB CF Pl4321A B C EFPlQN lPFCBEAQEGF DC BA22.如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?23.如图,点M 为正方形ABCD 的边AB (或BA )延长线上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,此时MD 与MN 有何数量关系?并加以证明.24.如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?25.已知,ABC ∆中,3AB =,120BAC ∠=︒,1AC =,D 为AB 延长线上一点,1BD =,点P 在BAC ∠的平分线上,且满足PAD ∆是等边三角形.NM EDCB AN CDE B M A NCDEB M A CDNEM B A NEB M A D⑵求点C 到BP 的距离.26.如图,已知ABC ∆和ADE ∆都是等边三角形,B 、C 、D 在一条直线上,试说明CE 与AC CD +相等的理由.27.如图,在四边形ABCD 中,AD BC ∥,点E 是AB 上一个动点;若60B ∠=︒,AB BC =,且60DEC ∠=︒,判断AD AE +与BC 的关系并证明你的结论.28.已知,在ABC ∆中,ACB ∠为锐角,D 是射线BC 上一动点(D 与C 不重合),以AD 为一边向右侧作等边ADE ∆(C 与E 不重合),连接CE .⑴若ABC ∆为等边三角形,当点D 在线段BC 上时(如图1所示),则直线BD 与直线CE 所夹锐角为度;⑵若ABC ∆为等边三角形,当点D 在线段BC 的延长线上时(如图2所示),你在⑴中得到的结论是否仍然成立?请说明理由;⑶若ABC ∆不是等边三角形,且BC AC >(如图3所示).试探究当点D 在线段BC 上时,你在⑴中得到的结论是否仍然成立?若成立,请说明理由;若不成立,请指出当ACB ∠满足什么条件时,能使⑴中的结论成立,并说明理由.CB PDAE DCBAEDCBAEDCB A图1FED C BA图2BC D F AE图3BC FA29.如图,等边三角形ABC ∆与等边DEC ∆共顶点于C 点.求证:AE BD =.30.如图,ABD ∆和CED ∆均为等边三角形,AC BC =,AC BC ⊥.若BE =CD =.31.如图,B ,C ,E 三点共线,且ABC ∆与DCE ∆是等边三角形,连结BD ,AE 分别交AC ,DC 于M ,N 点.求证:CM CN =.32.如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.请你证明:(1)AN BM =;(2)DE AB ∥;(3)CF 平分AFB ∠.33.如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形,D 是AN 中点,E 是BM 中点,求证:CDE ∆是等边三角形.DECBA图6DECBANMEDCBAM D NEC BF A34.如下图,在线段AE 同侧作两个等边三角形ABC ∆和CDE ∆(120ACE ∠<°),点P 与点M 分别是线段BE 和AD 的中点,则CPM ∆是()A .钝角三角形B .直角三角形C .等边三角形D .非等腰三角形35.已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.CG 、CH 分别是ACN ∆、MCB ∆的高.求证:CG CH =.36.如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG .求证:AE CG =.37.以ABC ∆的两边AB AC ,为边向外作正方形ABDE ACFG ,,求证:CE BG =,且CE BG ⊥.M DNECBAPMBC DEAHG NM CBAG FE DCBA38.如图,在△ABC 外面作正方形ABEF 与ACGH ,AD 为△ABC 的高,其反向延长线交FH 于M ,求证:(1)BH CF =;(2)MF MH=39.如图1,若ABC ∆和ADE ∆为等边三角形,M N ,分别EB CD ,的中点,易证:CD BE =,AMN ∆是等边三角形.(1)当把ADE ∆绕A 点旋转到图2的位置时,CD BE =是否仍然成立?若成立请证明,若不成立请说明理由;(2)当ADE ∆绕A 点旋转到图3的位置时,AMN ∆是否还是等边三角形?若是,请给出证明,并求出当2AB AD =时,ADE ∆与ABC ∆及AMN ∆的面积之比;若不是,请说明理由.40.如图所示.正方形ABCD 中,在边CD 上任取一点Q ,连AQ ,过D 作DP AQ ⊥,交AQ 于R ,交BC 于P ,正方形对角线交点为O ,连OP ,OQ .求证:OP OQ ⊥.GOFEDCB AGHM FED CBA图1N M E DC BA图2ABCDEMN图3ABCDEMN41.如图所示,在等腰直角ABC ∆的斜边AB 上取两点M 、N ,使45MCN ∠=︒,记AM m =,MN x =,BN n =,求证:以x 、m 、n 为边长的三角形的形状是直角三角形.42.请阅读下列材料:已知:如图1在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 、E 分别为线段BC 上两动点,若45DAE ∠=︒.探究线段BD 、DE 、EC 三条线段之间的数量关系.小明的思路是:把AEC ∆绕点A 顺时针旋转90︒,得到ABE '∆,连结E D ',使问题得到解决.请你参考小明的思路探究并解决下列问题:⑴猜想BD 、DE 、EC 三条线段之间存在的数量关系式,并对你的猜想给予证明;⑵当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时,如图2,其它条件不变,⑴中探究的结论是否发生改变?请说明你的猜想并给予证明.43.如图所示,在五边形ABCDE 中,90B E ∠=∠=︒,AB CD AE ===1BC DE +=,求此五边形的面积.RQPOD CBAx m n N M CBA 图1ABCDE图2AB CDE【巩固】在五边形ABCDE 中,已知AB AE =,BC DE CD +=,180ABC AED ∠+∠=︒,连接AD .求证:AD 平分CDE ∠.44.如图,五边形ABCDE 中,AB AE =,BC DE CD +=,120BAE BCD ∠=∠=︒,180ABC AED ∠+∠=︒,连结AD 。