激光加工机的工作原理
- 格式:pdf
- 大小:198.75 KB
- 文档页数:6
激光加工工作原理激光加工是一种利用高能量密度的激光束对材料进行切割、焊接、打孔等加工的方法。
其工作原理主要包括激光产生、激光传输、激光聚焦、激光作用以及加工控制等方面。
1.激光产生激光的产生是通过激发介质在特定环境下产生的。
通常使用的是气体、液体或固体介质,如二氧化碳、氢气、氮气、金属等。
在介质中加入特定元素,如二氧化碳气体,通过放电或燃烧等方法将介质加热到高温状态,然后通过反射镜和透镜的组合将光能聚焦到一点上,形成高能量密度的激光束。
2.激光传输产生的激光需要通过传输系统将其传输到加工区域。
传输过程中,激光束通常会被封闭在保护罩内,以防止激光辐射对工作人员和环境造成伤害。
同时,还需要使用光导纤维或反射镜等装置将激光传输到加工区域。
3.激光聚焦在加工区域,激光束需要通过聚焦系统将其缩小到一定尺寸,以便进行精细的加工操作。
聚焦系统通常由一组反射镜和透镜组成,可以将激光束缩小到微米级别,从而实现对材料的精细加工。
4.激光作用聚焦后的激光束会作用在材料表面上,根据不同的加工需求进行切割、焊接、打孔等操作。
激光作用过程中,材料表面的温度会迅速升高,导致材料熔化、汽化或发生化学反应,从而实现加工操作。
5.加工控制激光加工过程中需要对其进行精确控制,以确保加工质量和效率。
控制系统中通常包含各种传感器和执行器,如位置传感器、速度传感器、功率传感器等,用于监测和控制激光束的位置、速度和功率等参数。
同时,还需要使用计算机数控系统对加工过程进行精确控制,实现自动化加工。
总之,激光加工工作原理是通过产生高能量密度的激光束,将其传输到加工区域并进行聚焦操作,然后对材料表面进行作用实现加工操作。
整个过程需要精确控制以确保加工质量和效率。
激光雕刻机的结构和工作原理激光雕刻机是一种将计算机中的图像或文字通过激光焊接在不同材质表面上的设备。
与传统机械雕刻不同,激光雕刻机由于是使用激光进行雕刻,因此具有高精度、高速度等优点,广泛应用于纪念品、礼品、宣传品等行业。
这里将介绍激光雕刻机的结构和工作原理。
激光雕刻机的结构激光雕刻机主要由以下四个部分组成:1. 激光器激光器是激光雕刻机的核心组件,用于产生一束聚焦到几乎可见的小点的高能量激光束。
激光器中的气体分子被激发时,将能量释放出来,将电子从低能级跃迁到更高能级。
当电子回到低能级时,会释放出一束光。
激光器中的放大介质包括CO2、Nd:YAG等,它们在激光材料中有不同的激发方法。
2. 控制系统激光雕刻机的控制系统主要由计算机、运动控制卡、马达、传感器以及运动系统等组成。
计算机下达指令后,会通过运动控制卡将指令发送给运动系统,运动系统会驱动马达完成对工件的运动,马达的位置信息会通过传感器返回至运动控制卡进行反馈。
3. 光路系统激光雕刻机中的光路系统主要由反射镜以及凸透镜等组成,其功能是将激光发生器发出的光束反射、折射和聚焦,传送到要处理材料表面。
通过调整凸透镜的位置和倾斜角度,可以使激光束成为一个尖锐的光点,保证刻画的效果可以满足要求。
4. 工作台工作台是激光雕刻机的基础,可以分为标准固定工作台与真空吸附工作台两种。
其主要功能是固定要雕刻加工的物品,并使其与激光束相对应,在或纸、塑料、木、皮革、织物等材质上进行刻画。
激光雕刻机的工作原理激光雕刻机将计算机中的文字或图像设计,根据设计要求选择不同的激光适配器,然后必须使工作板最佳位置。
然后开启激光照射工件,激光束成层次状地照耀于工作板之上,通过激光的高温烧蚀的方式进行凸起和微观断裂,使被雕刻平面上出现文字、图案或图像。
激光刻画的原理是通过控制遮光板人机放置在工艺头两侧的,然后在工艺头两侧开一些罅隙,以便激光穿过罅隙照射到工件平面发生酸蚀,即所谓的点蚀(Keyhole)或拓个洞(Hole drilling)。
激光机的工作原理
激光机的工作原理基于聚集的光子通过受激辐射的过程产生一束非常高度同步、高亮度的电磁波。
具体来说,激光机的工作原理包括以下几个关键步骤:
1. 激光介质激发:激光机通过光泵或电激励等方式,将激光介质(可以是气体、液体或固体)的原子或分子从基态激发到激发态,使其处于一个高能量的激发态。
2. 光子受激辐射:当激发态的原子或分子通过碰撞或光子的相互作用,释放出与激发态能量差相等的能量,这些能量以光子的形式释放出来。
3. 光子增益:在激光介质中,光子通过受激辐射过程不断放大,形成一束高度同性的光波。
4. 谐振腔:激光机通常包含一个或多个反射镜和一个透镜,它们构成一个谐振腔。
光波在谐振腔内不断反射,进一步增强光波的强度。
5. 输出激光:当光波在谐振腔内达到足够的强度时,它会被输出到激光机外部。
通过调整谐振腔的反射镜和透镜的位置,可以控制激光的输出方向和光束质量。
以上是激光机的基本工作原理,不同类型的激光机可能会有一些差异,但总体上都是基于上述原理。
第七章激光加工第七章激光加工•激光加工(Laser Beam Machining,简称LBM)•激光是一种可控的单色光,强度高,能量密度大,可以在空气介质中高速加工•激光加工不需要任何加工工具,而且加工速度快、表面变形小•激光加工可以用于打孔、切割、电子器件的微调、焊接、热处理、以及激光储存等各个领域12第一节激光加工的原理和特点一激光的产生原理第一节激光加工的原理和特点一激光的产生原理•激光是利用光的能量经过透镜聚焦后在焦点上达到很高的能量密度靠光热效应来加工各种材料的•原子是由原子核和绕核转动的电子组成的。
原子的内能就是电子绕原子核转动的动能和电子被原子核吸引的位能之和。
如果由于外界的作用,使电子与原子核的距离增大或缩小,则原子的内能也随之增大或缩小。
电子只有靠近原子核的轨道运动才是最稳定的,这时电子所处的状态称为“基态”。
当外界传给原子一定能量时,原子内能就会增加,外层电子的轨道半径会扩大,被激发到高能级,称为“激发态”或“高能态”•被激发到高能级的电子是很不稳定的,它总是力图回到低能级去。
电子从高能级回落到低能级的过程称为“跃迁”。
•基态原子可以长时间地存在,而处于激发状态的各种高能级原子停留的时间一般都较短。
而有些原子或离子的高能级或次高能级却有较长的寿命,这种寿命较长的较高能级称为亚稳态能级。
这种亚稳态能级的存在是形成激光的重要条件•当原子从高能级跃迁回到低能级或基态时,常会以光子的形式辐射出光能量34•原子从高能态自发地跃迁到低能态而发光的过程称为“自发辐射”•当一束光入射到具有大量激发态原子的系统中,这种光的频率v 与很接近,则处于激发能级上的电子在这束光的刺激下会跃迁到较低能级,同时发出一束光,这种发光过程称为“受激辐射”•具有亚稳态能级结构的物质,在一定外来光子能量激发的条件下,会吸收光能,使处于较高能级的原子数目大于处于低能级的原子数目,这种现象称为“粒子数反转”h E E n 1−5•在粒子数反转的状态下,如果有一束光子照射该物体,而光子的能量恰好等于这两个能级相对应的能量差,这时就能产生受激辐射,输出大量的光能•用脉冲氙灯照射红宝石时,使红宝石中处于基态E 1的铬离子大量激发到E n 状态,由于E n 状态寿命很短,E n 状态的铬离子又很快跳到寿命较长的亚稳态E 2状态。
激光雕刻机工作原理
激光雕刻机工作原理:
①机器核心部件为激光器产生高能量密度光束通过聚焦镜片集中到极小焦点上;
②数控系统控制X Y轴电机带动工作台或激光头实现二维平面内精确移动定位;
③用户通过计算机软件设计图案文字等矢量图形文件导入控制系统作为加工指令;
④加工时激光束按照预设路径扫描材料表面瞬间高温使得接触部位瞬间气化蒸发;
⑤不同材质吸收激光能量效率各异需调整功率速度焦距等参数优化雕刻效果;
⑥木材皮革塑料等非金属材料通常采用CO2激光器金属加工则多见光纤或YAG类型;
⑥控制软件具备模拟仿真功能允许操作员预览最终成品避免材料浪费;
⑦排风除尘系统同步工作抽取切割过程中产生的烟雾颗粒物保持车间空气清洁;
⑧部分高端机型配备旋转装置支持圆柱形物体表面环绕雕刻扩展应用领域;
⑨安全防护措施不可或缺包括但不限于红外遮挡感应器紧急停止按钮等设计;
⑩定期维护保养内容涉及清洁光学元件润滑运动部件检查电缆连接状态;
⑪技术人员需掌握基本维修技能以便快速解决常见故障保障生产效率;
⑫随着工业4.0概念普及未来激光雕刻设备将更加智能化联网化满足个性化定制需求。
激光加工的基本工艺原理激光加工是利用高能量密度的激光束对材料进行加工的一种先进的加工技术。
它具有加工精度高、加工速度快、加工质量好、灵活性强等特点,被广泛应用于工业制造、航空航天、电子、医疗等领域。
激光加工的基本原理是利用激光器发射出的单色、单向、高能量密度的激光束,通过对激光束的聚焦、导引和控制,将其集中在工件表面上的一个小区域上。
激光束与工件表面的相互作用产生多种物理和化学效应,从而实现对工件进行切割、焊接、钻孔等加工操作。
激光加工的基本工艺原理包括激光与材料的相互作用、激光的传输与聚焦、激光加热和激光驱动。
激光与材料相互作用是激光加工的基础。
激光束通过与材料相互作用,能够迅速提升材料的温度,引起材料的热膨胀和熔化。
激光能量在材料中的传播方式可以分为吸收、散射和透射三种形式。
材料的光学特性、热导率和熔点等参数会对激光加工的质量和效果产生重要影响。
激光的传输与聚焦是激光加工中的关键环节。
激光束从激光器发射出来后,需要通过光学系统进行传输和聚焦。
激光束的传输包括光纤传输和光路传输两种方式。
光纤传输具有高效率、低损耗和方便灵活等优点,适用于长距离传输。
而光路传输适用于短距离传输和精密加工,通常需要利用透镜进行光线的收敛和聚焦。
激光加热是激光加工的核心过程。
激光束集中在材料表面上后,会使材料被加热到高温状态。
激光加工的效果主要依赖于材料的吸收系数、光照时间和激光能量密度等参数。
如果激光能量密度过高,可能引起材料的焦化和蒸发;而如果激光能量密度过低,则无法达到所需的加工效果。
激光加热时的温度分布也会影响加工的精度和质量,因此必须进行合理的温度控制。
激光加工的驱动方式包括脉冲激光和连续激光两种形式。
脉冲激光的工作时间很短,能量较高,适用于对材料进行切割和打孔等加工;而连续激光的工作时间较长,能量较低,适用于对材料进行焊接和表面处理等加工。
不同的驱动方式可以根据不同的加工要求进行选择和调整,以达到最优的加工效果。
激光加工原理及工艺摘要:激光加工作为一种特种加工工艺,从20世纪60年代发展起来现在已是相当成熟的一种特种加工技术。
与传统加工工艺不同,激光加工是利用光的能量,经过透镜聚焦,在焦点上达到很高的能量密度,靠光热效应来加工各种材料。
激光束具有强度高,密度大,可以在空气介质中加工各种材料,在现代工业加工行业中应用越来越广泛。
由于激光加工其本身的各种优点,包括激光功率密度大、应力和热变形小、加工速度快、加工精密等。
无与伦比的优势使激光加工在激光打孔,激光打标、激光切割、电子器件的微调、激光焊接、热处理以及激光存储等各个领域,得到越来越多的应用。
激光技术在现代工业中应用显示出来其独特的优越性,所以受到人们的广泛重视,应用激光的行业包括机械行业、电子行业、制衣皮革等等。
未来激光加工会得到更大的应用。
关键词: 特种加工激光加工辐射。
引言:激光技术是20世纪60年代初诞生的,而且迅速发展的一门高新技术,他的出现深化了人们对光的认识,扩展了光为人类服务的领域。
激光加工在工业领域加速了人们对传统加工的改造,为现代工业加工技术提供了新的手段。
激光加工具有以下优点:(1)激光束能量高度集中,加工区域小,因而热变形小。
(2)加工质量和精度高。
(3)工件不受尺寸和形状限制(4)不需要冷却介质,而且无污染,噪声小劳动强度低,效率高。
正文1。
激光加工的原理(1)激光的产生光的产生于光源内部原子的远动状态有关。
原子内的原子核与核外电子间存在着相互吸引与排斥。
电子按一定半径的轨道围绕原子核旋转,当原子吸引一定的外来能量或向外释放一定的能量时,核外电子的运动轨道半径将发生改变,即产生能级变化,并发出光。
激光就是由处于激发状态的原子,离子或分子受激辐射而发出的光。
产生的方式有自发辐射、受激吸收、受激辐射、离子数反转。
(2)激光的特性方向性好,强度高能量集中,单色性好,相干性好(3)加工的原理激光加工是利用光的能量经过透镜聚焦后能达到很高的能量密度的特性,依靠光热效应来加工各种材料。
激光机简介激光机大致分为三大部分组成:1、机械结构2、光电结构3、控制系统一、机械结构:由机身、工作平台、导轨滑块、皮带(或丝杠或齿轮齿条)、传动轴等1、导轨滑块分类以及作用:滚珠直线方轨、滚轮直线导轨。
用于直线往复运动,可在高负载的情况下实现高精度的直线运动。
滚珠直线方轨:速度慢,精度较高。
滚轮直线导轨:即外滑轨、内滑轨。
速度快,精度稍低。
咱们机器常用滑块品牌:台湾上银(HIWIN)、台湾银泰PMI等。
2、皮带:间隙和弹性大使精度稍低,使用寿命短。
皮带传动,传动平稳。
丝杠:分为普通丝杠和滚珠丝杠,其中滚珠丝杠精度最高,价格比较贵,普通丝杠相对精度低,价格也便宜。
丝杠的应用是将旋转运动通过丝母转变为直线运动。
丝杠传动,钢性较好,可以传递较大扭力,位置准确。
单丝杠与双丝杠的优缺点:单丝杠:安装维护方便,造价低。
但是受力点不好设计,运行的时候容易产生扭转力矩,从而影响机床的运行精度。
双丝杠:减少或消除不良力矩对机器运行精度的影响,因为是两根丝杠同时受力,所以单根丝杠受到的负载降低,有利于提高机器的运行速度和使用寿命。
齿轮齿条:在某些大型雕刻机上应用比较多,相对要求精度不高,但速度快、力量大。
二、光电部分:由激光管、光学反射镜、聚焦镜、激光电源以及配电柜组成。
1、激光管:分为CO2玻璃管、CO2射频管、光纤、YAG、半导体。
CO2激光管:主要应用与非金属材料的雕刻和切割。
常用硬质玻璃制成,一般采用层套筒式结构。
最里面一层是放电管,第2层为水冷套管,最外一层为储气管(就是咱们现在用的玻璃管)。
CO2射频管:主要也是应用于非金属材质。
和CO2玻璃管相比较使用寿命可以达到4万个小时左右,而普通玻璃管的寿命是3000个小时,热刺管10000个小时。
射频管的光斑只有0.07MM受热面积小雕刻更加精细。
玻璃管的光斑是0.25MM。
小功率的光纤、YAG、半导体(例如:10W、20W、50W)由于它们的光斑比较小精度比较高所以常常应用在激光打标机。
激光雕刻机自动工作原理
激光雕刻机的自动工作原理如下:
1. 传感器检测:激光雕刻机首先通过传感器检测待雕刻物体的位置、形状和表面特征,以确定雕刻范围和参数。
2. 三维扫描:激光雕刻机利用内置的三维扫描系统,对待雕刻物体进行快速而准确的三维扫描。
通过扫描,获取待雕刻物体的坐标和形状信息。
3. 数控系统:激光雕刻机配备了高精度的数控系统,它根据接收到的扫描数据和用户设定的雕刻参数,自动计算和生成雕刻路径。
4. 高能激光束:激光雕刻机通过激光发射器产生一束高能激光束。
这束激光束具有很高的集中能力和瞬时功率,能够将材料表面局部加热至高温,从而实现切割或雕刻的效果。
5. 自动控制:激光雕刻机的数控系统通过高速计算,精确地控制激光束的移动和功率输出。
它能够实现高速而精确的位置定位和雕刻路径控制,从而实现自动雕刻。
6. 材料加工:当激光束沿着预定轨迹运动时,它会与材料表面相互作用,产生切割或蚀刻效果。
激光雕刻机能够根据事先设定的雕刻参数,自动控制激光束的输出功率和加工速度,以实现对材料表面的精确雕刻。
总结而言,激光雕刻机的自动工作原理包括传感器检测、三维扫描、数控系统的计算与控制、激光束的高能输出、自动控制和材料加工。
这些自动化的步骤使激光雕刻机能够实现高速、精确的雕刻效果。
激光条幅机工作原理
激光条幅机是一种激光加工设备,主要用于对条幅等长条形物体进行加工。
它的工作原理是利用激光束对工件进行切割、雕刻等加工。
在工作时,激光条幅机首先需要进行数据处理,将待加工的图形以数字化形式输入到计算机中进行处理。
计算机将图形数据转化为激光条幅机所能识别的数值信号,然后向激光器发出指令,激活激光器,产生一束高能量的激光束。
激光束会从激光源出发,经过激光束的传输管道,最终通过镜片聚焦为一股极细的激光点。
激光束通过光路传输到工件表面,激光束瞬间产生高温燃烧,使工件表面物质蒸发,加工出所需的形状。
对于不同的物质,激光控制系统需要通过调节输出功率和布置光点密度等方式进行改变,以达到不同的加工要求。
激光切割是激光条幅机最常用的加工方式之一。
激光束在切割过程中会自动跟随要切割的轮廓线,将轮廓线内的物质全部切割并去除。
这种切割方式具有切口狭窄、精度高、损耗小、快速高效和不会引起焊接都市的优点。
另外,激光刻印也是激光条幅机的一种加工方式,它采用激光束对工件表面进行刻印。
利用激光束的高能量和高度炫彩,可以在不同材质表面上精细地刻出各种图案、文字,而且坚固耐用、不容易褪色。
刻印速度快速,效果较好,所以被广泛应用于礼品、家居装饰、珠宝等领域。
总之,激光条幅机是一种高科技的加工设备,具有高效快速、精准度高、可靠性强、加工范围广等优点,被广泛应用于纺绸、箱包、休闲娱乐、家居装饰等领域。
激光雕刻机数控工作原理
激光雕刻机数控工作原理:
激光雕刻机是一种采用激光束对物体表面进行切割、雕刻、打标等加工的设备。
其数控工作原理如下:
1. CAD设计:首先,需要使用计算机辅助设计(CAD)软件
进行图像或文字的设计和编辑,生成激光刻划的矢量图像文件。
2. 数据传输:将设计好的图像文件通过计算机与激光雕刻机连接的方式传输到激光雕刻机的控制系统。
一般情况下,可以通过USB、以太网或Wi-Fi等接口进行数据传输。
3. 图像处理:激光雕刻机的控制系统会对接收到的图像文件进行解码和处理,将矢量图像数据转换为激光刻划机可以识别和执行的指令。
4. XY运动控制:配备有XY运动平台的激光雕刻机会根据指
令控制工作台在水平方向上的移动,从而实现刻划物体的位置调整。
5. 激光发射:激光源(如CO2激光管)会发射出高能量密度
的激光束。
该激光束经过准直、聚焦等光学系统的处理,聚焦到非金属或有机材料表面。
6. 物体刻划:激光束在物体表面刻划时,通过控制激光的开关和功率来实现刻槽深浅、速度和形状等参数的调整。
激光束照
射到物体上时,物体表面的材料受到激光能量的熔化或蒸发,并形成所需的图案或文字。
7. 重复操作:激光雕刻机会根据指令重复执行上述步骤,直到整个图案或文字刻划完成。
需要注意的是,不同类型的激光雕刻机可能具有不同的数控工作原理,例如光纤激光雕刻机和半导体激光雕刻机等。
以上是一般激光雕刻机的基本数控操作过程。
激光加工的工作原理特点及应用1. 工作原理激光加工是利用激光束对材料进行切割、焊接、打孔等加工过程的一种先进技术。
其工作原理主要包括以下几个方面:1.1 激光的发射原理激光是一种特殊的光束,具有高度的单色性、相干性和方向性。
激光器通过激发介质的方式将能量从外部源输入,使其与介质内的原子、分子发生相互作用产生能量,从而产生激光。
1.2 激光与材料的相互作用激光在与材料相互作用时,会产生吸收、反射、透过等过程。
其中,对于大多数材料来说,光能量会被吸收,然后转化为材料内部的热能。
1.3 激光加工过程激光加工过程包括光束聚焦、物质加热与熔化、气体吹扫等步骤。
首先,激光束经过透镜聚焦后,能量密度会增加,使材料迅速升温。
然后,材料会熔化或者挥发,完成切割或加工过程。
最后,通过气体的吹扫,将熔化的材料排出切割区域。
2. 工作特点激光加工具有以下几个显著的特点:2.1 高精度由于激光光束具有较小的聚焦直径,因此可以实现非常高的加工精度。
激光加工可以达到亚微米级别的精度,适用于对精度要求较高的行业,如电子、医疗等。
2.2 高速度激光加工速度快,可以达到每小时几米到几十米的加工速度。
相比传统机械加工方法,激光加工节省了大量的加工时间,提高了生产效率。
2.3 非接触加工激光加工是一种非接触式加工方式,光束直接作用于材料表面,无需物理接触。
这不仅避免了由于接触而导致的材料损坏和工具磨损,还能够处理复杂的形状和脆性材料。
2.4 热影响区小激光加工时,激光束的能量集中在很小的区域内,使热影响区域极小。
这种特点使得激光加工适用于对材料热变形和热影响敏感的领域。
2.5 可编程控制激光加工装备可以通过计算机编程进行控制,实现自动化。
利用CAD(计算机辅助设计)和CAM(计算机辅助制造)软件,可以实现复杂图形的加工,提高生产效率和精度。
3. 应用领域激光加工技术广泛应用于以下领域:3.1 电子工业激光加工在电子行业中被广泛应用于电路板切割、焊接、打孔等工艺。