超精密加工技术与设备研究
- 格式:docx
- 大小:37.85 KB
- 文档页数:4
机械制造工艺及精密加工技术研究机械制造工艺以及精密加工技术是现代工业制造中非常重要的一个分支领域。
它涉及到了各种机械制造加工工艺、设备以及工艺参数的研究与应用。
精密加工技术是机械制造工艺中最为关键的一个环节,对产品的质量和精度有着决定性的影响。
机械制造工艺主要包括以下几个方面的研究内容:先进的加工工艺及机械装备、数字化制造技术、柔性制造系统、自动化生产线、智能制造技术等。
这些研究内容的目的是提高工业产品制造的效率和质量,降低制造成本,增强企业的竞争力。
精密加工技术是机械制造工艺中最具挑战性的一个环节,要求对加工材料的性质和特点进行深入研究,掌握各种加工工艺的原理和方法,并能够根据不同的产品要求进行合理的加工参数的选择和控制。
这些技术的应用范围广泛,涉及到了航天、汽车、电子、仪器仪表等各个领域。
在机械制造工艺及精密加工技术的研究中,一些新的技术和方法被不断推陈出新,推动了整个制造业的进步与发展。
高速加工技术克服了传统加工中切削速度低、进给速度慢的问题,大大提高了加工效率;超精密加工技术使得在微米尺度下进行加工成为可能,满足了现代工业对高精度、高质量产品的需求。
在机械制造工艺及精密加工技术的研究中,还有一些难题有待解决。
超精密加工过程中的工具磨损问题,如何有效地控制磨损,延长工具寿命,是一个亟待解决的问题。
如何在数字化制造和智能制造的背景下,优化加工工艺参数,提高产品的一致性和稳定性,也是一个研究的热点。
机械制造工艺及精密加工技术的研究对于现代工业制造的发展至关重要。
通过不断深入研究,开发新的工艺和方法,可以提高产品的质量和精度,降低制造成本,推动整个制造业的进步和发展。
未来随着科技的不断进步,机械制造工艺及精密加工技术将会迎来更大的突破和创新。
精密加工技术的研究和应用随着科技的不断发展和人类对高质量生活的不断追求,精密加工技术的研究与应用愈发重要。
精密加工技术是一种高度精细的制造工艺,可以实现对物体的精准加工,使之符合特定的要求和标准。
这种技术广泛应用于航空航天、电子信息、医疗卫生、汽车、机械工程和生物医药等领域,成为促进这些领域发展的关键因素之一。
一、精密加工技术的概述精密加工技术是一种高精度、高效率的加工手段,通常需要借助各种机床、工具和附属设备,以在工件表面制出所需形状和精度的加工方法。
精密加工技术发展至今已经涵盖了许多领域,包括直接数控加工、微纳米加工、超精密加工、联合加工、传统机械加工等。
这些技术的出现,极大地提高了现代工业生产效率和产品品质,同时也极大地促进了科技的进步。
二、精密加工技术的研究方向1.纳米技术的应用目前,纳米技术正在成为精密加工技术研究的一个重点方向。
纳米技术的应用有很多,其中最为重要的一项是纳米加工技术,即利用纳米级刀具对超薄薄膜进行加工处理。
与传统机械加工相比,纳米加工的热影响区域小,加工精度高,其被广泛应用的领域包括光学、半导体、生命科学和制造业等。
2.智能加工技术的研究智能加工技术是一种结合机械加工、自动控制技术和信息技术的新型加工技术。
它通过建立数字化模型和智能控制系统来实现加工过程的自动化和优化。
随着计算机和信息技术的飞速发展,智能制造技术得到了快速的发展,成为现代加工技术的研究热点。
与传统机械加工相比,智能加工可以大大降低生产成本和劳动强度,提高生产效率和加工品质。
三、精密加工技术的应用领域1.航空航天领域精密加工技术在航空航天领域的应用十分广泛。
在飞机和火箭发动机的制造过程中,需要对各种材料进行复杂的加工处理。
由于加工精度和质量的要求极高,传统机械加工无法满足要求,因此需要采用精密加工技术。
例如,在发动机制造过程中,使用螺纹加工中心对轴承外圈进行加工时,可以实现高精度、高质量、高效率的加工,保证发动机的工作稳定和安全。
硬脆材料超精密加工关键技术研究随着科技的快速发展,超精密加工技术已经成为现代制造业中不可或缺的关键技术之一。
尤其是在硬脆材料的加工中,超精密加工技术的应用显得尤为重要。
本文将详细探讨硬脆材料超精密加工的关键技术,以期为相关领域的研究和应用提供有益的参考。
超精密加工技术是指通过采用高精度的机床、工具和工艺方法,将原材料或半成品加工成精度高、表面质量好的最终产品。
从20世纪60年代开始,随着计算机、激光、新材料等技术的飞速发展,超精密加工技术也不断取得重大突破。
如今,超精密加工技术已经广泛应用于航空、航天、能源、医疗等领域。
在硬脆材料的加工中,超精密加工技术可以有效提高加工效率和产品质量。
例如,利用超精密加工技术可以制造出高精度的光学元件、半导体芯片、陶瓷零件等,这些产品在各自领域都具有重要的应用价值。
硬脆材料由于其硬度高、脆性大等特点,加工过程中容易出现裂纹、崩边、表面粗糙等问题。
因此,在硬脆材料的超精密加工中,需要解决以下难点:裂纹问题:硬脆材料在加工过程中容易产生裂纹,降低产品的合格率。
崩边问题:由于硬脆材料的硬度较高,加工时容易出现崩边现象,影响产品的精度和表面质量。
表面粗糙问题:硬脆材料在加工过程中容易出现表面粗糙的现象,影响产品的性能和使用寿命。
机床和工具的精度问题:由于硬脆材料的加工精度要求高,因此需要高精度的机床和工具来保证。
采用先进的加工工艺和工具,如激光加工、水刀切割、超声波加工等,以减少加工过程中对材料的损伤。
对硬脆材料进行预处理,如加热、冷却、加载等,以改善其加工性能。
采用高精度的机床和工具,并定期进行维护和校准,以保证加工的精度和稳定性。
对加工参数进行优化,如切削速度、切削深度、进给速度等,以提高加工效率和产品质量。
下面以光学元件和陶瓷零件的超精密加工为例,说明超精密加工技术在硬脆材料加工中的应用。
光学元件的超精密加工:光学元件是光学系统的基本组成部分,其精度和表面质量对整个光学系统的性能有着至关重要的影响。
微细结构超精密加工技术的研究摘要:高精度是超精密加工永恒的主题,受国防和高端民用产品的需要牵引,对微细结构元件加工精度的要求日益提高;同时,高精度的微细结构元件,尤其是微细结构光学元件的需求量迅猛增长,需要适于批量生产的高效率低成本的微制造技术。
基于微细结构的超精密加工技术将综合应用其它领域的新技术,进行工艺集成化已成为一种发展趋势。
关键词:超精密;微细结构;分子动力学1引言我国超精密微细加工技术的研究略晚于国外,但由于长期科技投入不足和国外的技术封锁,与国外先进技术水平相比尚有较大差距。
国外的已经商品化了的超精密微细加工设备,对我国一直处于严格禁运状态。
而微小型结构件的微细超精密加工技术在国民经济与社会发展中具有重要的地位,因此,开展超精密微细加工技术的研究,对突破国外技术壁垒,形成我国自主创新的新产品、新技術和新装备具有重要意义。
针对微小型和具有微细结构的超精密零件,开展超精密加工机理的研究,将为实现微小型和具有微细结构零件的超精密加工技术产业化奠定良好的。
本文的仿真研究将为微细结构超精密加工技术提供理论支持。
2微细结构超精密加工技术面向微细结构的超精密加工技术的研究是现代高技术产品制造的核心技术之一;是先进制造技术领域的前沿课题和未来发展我国微电子产业的关键技术,在航空航天、汽车、信息技术、新能源、家电、医疗等许多高新技术领域有着越来越广泛的应用;它与一个国家的国防与国民经济的发展密切相关,是一个国家的国民经济、国防和科学技术综合实力的体现,已经成为许多国民经济领域的制造技术可持续发展的一个重要保障条件。
在精密工程应用领域,元件的几何形状精度经常需要控制在纳米量级,如:精密轴和孔的圆柱度、大规模集成电路使用的单晶硅片的平面度等等。
与此同时,元件还需要具有纳米级的表面质量,如表面平整性以及表面和次表面的损伤程度(包括微裂纹、物理结构的变化、大规模塑性变形和残余应力等)。
为满足这些指标要求,元件在加工过程中切削力的数量级必须控制在10-6N到10-9N的范围内,而相应的切削深度应该保持在10-6m到10-9m的范围内。
半导体硅晶片超精密加工研究摘要:“非常精密加工”作为一种极其精密的加工技术逐渐显现出来,这种加工的方法结合了极其精确的硅片切割,磨削和磨削加工,分析了硅片超精密加工的研究现状,并探讨了硅片的发展趋势。
预测硅晶片的加工与未来的研究工作。
关键词:半导体;硅晶片;超精密加工;磨削;抛光1、硅晶片的形成制造方法1.1原料准备选择高纯度的硅材料作为原料,通常采用硅石或者硅金属进行提纯。
硅石是一种天然产物,主要成分是二氧化硅(SiO2),其中还含有杂质元素如铝、钙、铁等。
提取高纯度硅的过程一般分为两步:首先是将硅石经过高温还原反应,转化为硅金属;然后将硅金属进行进一步的提纯。
在高温还原反应中,硅石与碳源(如焦炭)在电炉中进行反应,生成硅金属和一些气体副产物。
然后通过蒸馏或其他物理化学方法,将硅金属中的杂质去除,以达到所需的高纯度。
1.2清洗对原料进行清洗处理,去除表面的杂质和污染物。
使用有机溶剂(如丙酮、乙醇等)或无机溶剂(如去离子水)进行浸泡和搅拌,以去除表面附着的有机残留物和颗粒。
使用酸性溶液(如盐酸、硫酸等)进行浸泡和搅拌,以去除表面的无机杂质和氧化层。
酸洗可以有效去除硅表面的氧化物、金属离子和有机污染物。
使用碱性溶液(如氢氧化钠、氨水等)进行浸泡和搅拌,以中和酸性溶液残留,并去除表面的残留杂质。
1.3熔化将清洗后的硅原料放入石英坩埚中,通过高温熔化,使硅原料形成液态硅。
石英坩埚是一种高温耐火容器,由石英材料制成,能够承受高温环境下的熔化过程。
将清洗后的硅原料放入石英坩埚中,然后将坩埚放入高温熔炉中进行加热。
硅的熔点非常高,约为1414摄氏度。
通过高温熔化,硅原料逐渐升温,当温度达到硅的熔点时,硅原料开始熔化成液态硅。
在液态状态下,硅原料可以进一步进行加工和制造。
1.4晶体生长在硅晶片制造中,熔化的硅液会被缓慢降温,这个过程被称为凝固。
凝固过程中,熔化的硅液在逐渐降温的过程中,硅原子开始有序地排列,形成晶体的晶格结构。
哈尔滨工业大学科技成果——大尺寸微结构滚筒模具超精密加工技术与装备主要研究内容在国家“高档数控机床与基础制造装备”科技重大专项课题的支持下,科研团队在国内率先开展了大尺寸微结构滚筒模具超精密加工的关键技术攻关,突破了基于光栅衍射原理的微金刚石刀具磨损状态在线监控、低转速条件下的高精度在线动平衡技术、正交叠加静压导轨的动刚度解耦等关键技术,研发成功了国内第一台大尺寸微结构辊筒模具超精密加工机床。
目前,该机床装备已经进入实用化测试阶段,已经与国内的多家棱镜膜片生产厂家合作,利用该机床开展相关的工艺研究,争取尽快实现对昂贵的进口设备的替代,打破国外的技术垄断。
该项技术为国内首创的自主研发技术,技术优势明显,相关行业需求迫切,市场前景良好。
获得一定量的资金和配套场地、技术人员,采用关键核心部件自行生产、非关键核心部件外委加工的生产方式,可以快速实现该技术的商品化和产业化,作为Roll-to-Roll制造工艺的上游核心装备与技术,可以促进大尺寸微结构滚筒模具的Roll-to-Roll 制造工艺在液晶面板制造、聚光太阳能发电装置制造、具有隐身及减阻功能的智能蒙皮制造、道路照明等领域快速发展,带动国家的一个战略性产业。
主要应用面向液晶面板制造、聚光太阳能发电装置制造、具有隐身及减阻功能的智能蒙皮制造、道路照明等领域,有着广泛的应用需求,是一个国家的战略性产业技术。
国内行业需求迫切、未来增长趋势明显。
主要技术指标大尺寸微结构滚筒模具超精密加工机床主要技术指标:1、机床加工的工件尺寸:最大直径Ф400mm;最大长度1400mm;2、工件的重量:1000Kg;3、机床坐标轴的行程:X轴240mm;Z轴1500mm;4、主轴:径向刚度大于6000N/μm;轴向刚度大于5000N/μm;5、主轴静态回转精度:小于0.5μm;6、坐标轴的运动控制分辨率:50nm;7、微结构的表面粗糙度:Ra不大于10nm;8、微结构的最小尺寸:不大于100μm。
超精密加工技术在机械制造中的应用随着科技的不断进步和人们对产品质量要求的提高,超精密加工技术在机械制造中扮演着越来越重要的角色。
本文将探讨超精密加工技术的定义、原理以及在机械制造中的应用。
一、超精密加工技术的定义和原理超精密加工技术是一种利用先进的加工设备和工艺,对材料进行高精度、高效率的加工方法。
其主要原理是通过控制切削工具与工件之间的相对运动,利用微细的切削力和切削热量,对工件进行精确的切削、磨削或电火花加工,从而获得高精度的加工表面。
二、1. 高精度零件制造:超精密加工技术可以用于制造各种高精度零件,如光学元件、精密仪器仪表的零部件等。
通过控制加工参数和使用高精度的加工设备,可以获得表面粗糙度、尺寸精度和形状精度都非常高的零件。
2. 精密模具制造:在模具制造领域,超精密加工技术可以用于制造高精度的模具。
通过超精密加工技术,可以获得模具表面的高精度、高光洁度和低粗糙度,从而提高产品的加工精度和表面质量。
3. 微机电系统(MEMS)制造:MEMS技术是一种将微观尺度的机械、电子和光学元件集成在一起的技术。
超精密加工技术在MEMS制造中发挥着重要作用,可以实现微米级的加工精度和纳米级的表面光洁度,从而提高MEMS器件的性能和可靠性。
4. 纳米加工技术:随着纳米科技的发展,纳米级加工技术成为了机械制造领域的热点之一。
超精密加工技术可以用于纳米级加工,通过控制加工参数和使用纳米级切削工具,可以实现对材料的原子级加工,从而获得纳米级的表面粗糙度和尺寸精度。
总结:超精密加工技术在机械制造中的应用范围广泛,涉及到高精度零件制造、精密模具制造、MEMS制造和纳米加工技术等领域。
通过控制加工参数和使用高精度的加工设备,可以实现对材料的高精度加工,从而提高产品的加工精度和表面质量。
随着科技的不断进步,超精密加工技术将继续发展,为机械制造领域带来更多的创新和突破。
超精密加工技术的理论和应用研究超精密加工技术是指在微米和纳米级别下进行的精密加工过程。
随着现代科技的不断发展,超精密加工技术越来越受到重视,并广泛应用于电子、光学、航空航天和生物医疗等领域。
1. 超精密加工技术的发展历程超精密加工技术的发展历程可以追溯到20世纪50年代末期,当时主要应用于金属和陶瓷的球面加工和制造。
随着微电子技术的不断进步,超精密加工技术被广泛运用于微电子制造和微机电系统(MEMS)中,如晶体管、光学元件、压电陶瓷和生物芯片等。
在后来的发展中,超精密加工技术逐渐扩展到玻璃、塑料和石英等非金属材料的加工上。
同时,超精密加工技术还被应用于卫星、航天器和精密仪器的制造和维修中。
2. 超精密加工技术的理论基础超精密加工技术的理论基础主要涉及到两个方面:加工力学和加工控制。
加工力学研究表明,超精密加工过程中的切削作用受到材料本身的特性、切削工具的形状和刃口尺寸、切削速度和切削深度的影响。
因此,了解加工物料的相关特性并选择适当的切削参数,对加工质量和加工效率的提高具有重要意义。
加工控制方面的研究主要涉及到加工路径规划、加工速度和切削深度的控制以及加工设备的精度检测等。
3. 超精密加工技术在电子制造领域中的应用在电子制造领域中,超精密加工技术被广泛应用于半导体器件的制造和加工。
例如,通过超精密加工技术制作的半导体器件可以达到微米甚至纳米级别的精度,从而大大提高了器件的性能和稳定性。
此外,超精密加工技术还可以用于电子元器件的制造,如阻值、电容器和电感器等。
通过超精密加工技术制作的电子元器件具有更好的性能和精度,可以提高电路的稳定性和可靠性。
4. 超精密加工技术在航空航天领域中的应用在航空航天领域中,超精密加工技术主要应用于航空发动机部件的制造和维修。
例如,通过超精密加工技术制造的涡轮叶片具有更好的气动性能和材料特性,可以提高发动机的性能和效率。
同时,超精密加工技术还可以用于航空航天器件的制造和加工,如导航系统和通信设备等。
精密和超精密加工技术的新进展精密和超精密加工技术是指不断追求更高精度、更细粒度、更小误差和更高效率的加工方法和技术。
这些技术广泛应用于航空航天、医疗器械、微电子、光学仪器等领域,对于产品的性能和质量有着至关重要的影响。
近年来,精密和超精密加工技术取得了许多突破性进展,本文将就此展开讨论。
精密加工技术是在传统机械加工的基础上发展起来的,通过精细的切削、研磨和抛光等手段,实现高精度、高光洁度的加工目标。
近年来,精密加工技术的发展取得了长足的进步,主要表现在以下几个方面:新型加工设备的研发和应用不断取得突破。
例如,五轴联动数控机床、激光加工机、电子束加工机等新型设备的出现,使得复杂零件的精密加工变得更加高效和准确。
新型加工材料的应用也取得了重要进展。
例如,工程塑料、陶瓷、复合材料等高性能非金属材料的广泛应用,使得精密加工的领域得以进一步拓展。
精密加工技术的智能化和自动化水平不断提升。
智能化加工设备能够实现自适应加工、无人值守加工等功能,提高加工效率和质量稳定性。
超精密加工技术是指比精密加工技术更为精细、精确的加工方法和技术。
随着科技的不断进步,超精密加工技术的应用越来越广泛,主要包括以下几个方面:超精密加工技术广泛应用于微电子领域。
微电子产业对于芯片的精度和光洁度要求极高,超精密加工技术能够实现高精度、高效率的微米级加工,对于提升微电子产业的发展水平和竞争力具有重要意义。
超精密加工技术在光学仪器领域也有着广泛的应用。
光学仪器对于透镜、反射镜等光学元件的精度和表面质量要求极高,超精密加工技术能够实现高精度、高稳定性的光学元件加工,对于提高光学仪器的性能和精度具有重要作用。
再次,超精密加工技术在航空航天领域也有着重要的应用。
航空航天领域对于零件的精度和可靠性要求极为严格,超精密加工技术能够实现高精度、高稳定性的零件加工,对于提升航空航天领域的产品质量和性能具有重要意义。
近年来,精密和超精密加工技术的研究和应用不断取得新的进展,在新型加工设备、新型加工材料和智能化加工等方面都取得了重要突破。
《精密和超精密加工技术》学习总结11机械1班 2011411011070. 引言精密和超精密加工技术不仅直接影响尖端技术和国防工业的发展,还影响着国家的机械制造业的国际竞争力,因此,全球各国对此十分重视!本文就从超精密切削、精密和超精密磨削、精密研磨与抛光、精密加工的机床设备和外部支撑环境、微纳加工技术等相关的超精密加工技术进行研究与总结。
1. 超精密切削超精密切削是国防和尖端技术中的重要部分,受到了各国的重视和发展。
一、超精密切削的切削速度选择超精密切削所使用的刀具是天然单晶金刚石刀具,它是目前自然界硬度最高的物质,具有耐磨性好、热传导系数高和有色金属间摩擦系数小。
因此,在加工有色金属时,切削温度低,刀具寿命很高,亦可使用1000-2000m/min的高速切削。
而这一点(切削速度并不受刀具寿命的制约)是和普通切削规律不同的。
超精密切削的速度选择是根据所使用的超精密机床的动特性和切削系统的动特性所决定的,即选择振动最小的转速。
换而言之,要高效地切削出高质量的加工表面,就应该选择动特性好,振动小条件下最高转速的超精密机床。
例如沈阳第一机厂圣工场的SI-255液体静压主轴的超精密车床在700-800r/min时振动最大,故要避开该转速范围,选择低于或者高于该速度范围进行切削,则可得到较好的加工表面。
二、超精密切削时刀具的磨损和寿命天然单晶金刚石刀具超精密切削应用于加工铝合金、无氧铜、黄铜、非电解镍等有色金属和某些非金属材料,比如激光反射镜、雷达的波导管内腔、计算机磁盘等。
判断金刚石刀具是否破损或磨损而不能继续使用的标准是根据工件加工的表面粗糙度有无超过规定值。
而金刚石刀具的切削路程的长度则是其寿命长短的标志。
倘若切削条件正常,刀具的耐用度可达数百千米。
但是在实际使用中,金刚石刀具常是达不到这个耐用度,因为加工过程中切削刃会产生微小崩刃而不能继续使用,而这主要是由于切削时的振动或切削刃的碰撞引起的。
因此,金刚石刀具只能使用在机床主轴转动非常平稳的高精度机床上,而刀具的维护对机床的要求亦是如此。
超精密机床加工技术研究与应用随着科技的不断进步与发展,超精密机床加工技术已成为现代制造业中一项不可或缺的关键技术。
它以其高精度、高效率和高稳定性的特点,广泛应用于航空航天、汽车制造、电子设备等行业,对提升产品质量和生产效益发挥了重要作用。
超精密机床加工技术的核心之一是控制系统。
在加工过程中,通过精确的控制手段,能够实现对机床各种参数的调节和控制,从而保证加工过程的准确性和稳定性。
目前,自适应控制、非线性控制和神经网络控制等新兴技术在超精密机床加工中得到了广泛应用。
这些技术不仅在控制精度和稳定性方面有着显著的提高,而且能够有效地降低机床的能耗和生产成本,提高生产效益。
在材料加工方面,超精密机床加工技术也取得了长足的进步。
传统的机床加工方式往往会因切削力大、切削温度高等原因导致材料的残余应力增大,从而影响产品的使用寿命和性能。
而超精密机床加工技术通过采用高速切削、微尺度切削和超精密切削等现代加工手段,能够有效地降低切削力和切削温度,减少残余应力的产生,从而提高产品的质量和性能。
此外,超精密机床加工技术在产品设计和生产方面也发挥了重要作用。
通过引入CAD/CAM和虚拟仿真等先进技术,能够对产品进行准确的建模和参数化设计,实现产品的数字化和可视化管理。
同时,借助先进的模拟和仿真工具,能够对加工过程进行全面的优化和预测,从而降低产品开发周期和成本。
超精密机床加工技术的应用领域广泛,其中最具代表性的是航空航天领域。
在航天器的制造过程中,由于航天器的体积大、质量轻,因此对制造工艺的要求尤为严格。
超精密机床加工技术能够实现对航天器各种复杂零部件的高精度加工和组装,从而保证航天器的整体性能和安全性。
此外,超精密机床加工技术还能够实现对特殊材料的加工,如钛合金、复合材料等,为航空航天领域的发展提供了坚实的技术支撑。
在汽车制造领域,超精密机床加工技术也发挥了重要作用。
随着汽车工业的快速发展,对汽车零部件的加工精度和质量要求越来越高。
精密和超精密加工技术现状和发展趋势1.引言国际上在超精密加工技术方面处于领先地位的国家有美国、德国和日本发达国家中,美国、日本、德国等在高技术领域(如国防工业、集成电路、信息技术产业等)之所以一直领先,与这些国家高度重视和发展精密、超精密制造技术有极其重要的关系。
由于加工技术水平的发展,精密和超精密加工划分的界限逐渐向前推移,但在具体数值上没有确切的定义。
被加工零件的尺寸精度在 1.0~0.1μm,表面粗糙度Ra在0.1~0.03μm之间的加工方法称为精密加工。
超精密加工当前是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展超精密加工技术主要包括:超精密加工的机理,超精密加工的设备制造技术,超精密加工工具及刃磨技术,超精密测量技术和误差补偿技术,超精密加工工作环境条件。
2.发展现状美国是开展研究最早的国家,也是迄今处于世界领先地位的国家。
早在50年代末,由于航天等尖端技术发展的需要,美国首先发展了金刚石刀具的超精密切削技术,并发展了相应的空气轴承主轴的超精密机床,用于加工激光核聚变反射镜、战术导弹及载人飞船用球面、非球面大型零件。
20世纪80年代后期,美国通过能源部“激光核聚变项目”和陆、海、空三军“先进制造技术开发计划”,对超精密金刚石切削机床的开发研究,投入了巨额资金和大量人力,实现了大型零件的微英寸超精密加工。
如美国劳伦斯利弗莫尔国家实验室已经研制出一台大型光学金刚石车床(Large Op tics Diam ond Turn ing Machine, LODTM ), 是一台最大加工直径为1.63m的立式车床,定位精度可达28nm,借助在线误差补偿能力,它已实现了距离超过1m而直线度误差只有±25nm 的加工。
在美国能源部支持下,LLI实验室和Y-12工厂合作,与1983年成功地研制出大型超精密金刚石车床(DTM—3型)。
金陵科技学院论文先进制造技术——课程结业(论文)设计(论文)题目:超精密加工技术学生姓名:班级:学号:目录摘要 (1)关键词........................................... 错误!未定义书签。
1 绪论 (1)2 超精密加工技术综述 (2)2.1 超精密加工技术的内涵及其重要性 (2)2.2 超精密加工技术的国内外发展现状 (2)3 超精密加工的主要方法 (4)3.1 超精密切削加工 (4)3.2 超精密磨料加工 (4)4 超精密机床 (6)4.1超精密主轴 (6)4.2机床的布局和导轨 (6)4.3超精密驱动系统 (6)4.4在线监测与误差补偿问题 (6)4.5金刚石刀具在超精密切削技术中的应用 (7)5 结论 (8)参考文献 (9)超精密加工技术的发展摘要精密超精密加工技术的发展,直接影响到一个国家尖端技术和国防工业的发展,因此世界各国对此都极为重视,投入很大力量进行研究开发,同时实行技术保密,控制关键加工技术及设备出口。
精密超精密加工技术,是现代机械制造业最主要的发展方向之一。
在提高机电产品的性能、质量和发展高新技术中起着至关重要的作用,并且已成为在国际竞争中取得成功的关键技术。
关键词:超精密;微米;纳米;尖端产品;数字控制1 绪论超精密加工技术综合应用了机械技术发展的新成果及现代电子技术、测量技术和计算机技术等,是尖端技术产品发展中不可缺少的关键环节…。
同时,超精密加工技术的发展也促进了机械、液压、电子、半导体、光学、传感器和测量技术以及材料科学的发展。
从某种意义上说,超精密加工对先进制造技术特别是纳米技术对整个社会生产力水平的提高起到举足轻重的地位,也成为衡量一个国家科技发展的标准之一。
目前超精密加工还没有确切的定义,一般是指达到绝对加工精度为0.1µm或表面粗糙度为Ra 0.0lµm以及达到加工允差和加工尺寸之比为106的加工技术。
精密和超精密加工的机床设备技术引言机床技术在现代制造业中起着至关重要的作用。
随着科学技术的发展,精密和超精密加工已成为现代制造业中的重要环节。
本文将着重介绍与精密和超精密加工相关的机床设备技术,包括其定义、分类、特点、应用场景等内容。
定义精密加工是指通过机床设备对工件进行高度精确的加工过程。
而超精密加工则是相对于精密加工而言,更加高精确度的加工过程。
精密和超精密加工的出现,极大地推动了现代制造业的发展,使得产品的质量和精度得到了极大的提高。
分类精密加工精密加工可以分为多个子类,主要包括: - 数控机床 - 高速加工机床 - 超精密加工机床数控机床数控机床采用计算机控制系统,可以实现对工件进行高度准确的加工。
它的主要特点包括: - 加工精度高:数控机床可以实现微米级的加工,大大提高了产品的精度。
- 生产效率高:数控机床的自动化程度高,加工速度快,从而提高了生产效率。
- 多功能性强:数控机床可以通过调整其控制系统,实现不同种类产品的加工。
高速加工机床高速加工机床是指能够实现高速切削加工的机床设备。
其主要特点包括: - 加工速度快:高速加工机床的切削速度可以达到一定的高速,从而提高了加工效率。
- 表面质量高:切削速度快、负荷小,使得加工表面的质量得到了保证。
- 刀具寿命长:高速加工机床在切削时产生的热量较少,可以降低刀具的磨损,从而延长刀具的使用寿命。
超精密加工机床超精密加工机床是指能够实现亚微米级精度的加工机床。
其主要特点包括: -高精密度:超精密加工机床的加工精度可以达到亚微米级别,满足对于高精度产品的需求。
- 低热变形:超精密加工机床可以有效降低加工过程中产生的热量,从而减少工件因热膨胀而引起的变形。
- 光滑表面:超精密加工机床可以实现对工件表面的高度光滑加工,满足对于高光洁度产品的需求。
超精密加工•超精密加工器械•超精密切削特点精密和超精密加工的机床设备具有以下特点:1.高精度:机床设备的设计和制造严格遵循高精度要求,以确保加工过程的精确性和稳定性。
超精密加工技术与设备研究
随着科学技术的发展,各种新兴产业的不断涌现,超精密加工技术的应用越来越广泛。
超精密加工技术是指以nm甚至A级为计量单位的高精度加工技术,这种技术可以加工出极为精细的器件、零部件和微型器械等。
近年来,随着光通信、半导体和微机电系统等高新技术的不断发展,超精密加工技术成为了对这些高科技的支撑和发展起到至关重要的作用。
一、超精密加工技术的研究
超精密加工技术不仅是现代制造业的一个重要方向,也是当前世界各国争夺高端装备制造市场的关键技术之一。
超精密加工技术具有下列特点:
1. 高精度
超精密加工技术的加工精度一般在0.1μm以下,甚至可以达到0.01nm。
这种高精度的加工不仅可以满足现代工业的精密加工要求,而且对于微传感器、微机电系统等新兴工业领域的发展也必不可少。
2. 高成本
超精密加工需要使用高端的加工设备和高精度的测量仪器,这些设备通常需要耗费巨大的资金才能购买。
此外,加工过程的高要求和长周期也会带来高成本。
3. 高技术门槛
超精密加工技术对操作人员的技术要求非常高,需要具备高度的专业知识和操作经验。
因此,这种技术对人员的培训和技术水平的提高也是非常重要的。
二、超精密加工设备的分类
超精密加工设备通常可以分为以下几类:
1. 雕刻机
雕刻机是一种采用非接触方式加工的机床,可以在非接触情况下对工件表面进行加工。
它的加工精度可以达到大约0.1μm,适用于制造光学玻璃、金属模具等精密零件。
2. 电解加工机
电解加工机是一种采用电化学反应进行加工的机床,其加工精度可以达到
0.1μm以下。
它适用于制造形状复杂的工件和微加工零部件。
3. 雷射加工机
雷射加工机是一种采用激光束进行加工的机床,其加工精度可以达到0.1μm以下。
它适用于制造微电子元件、微机械零件和光学器件等。
雷射加工机还可以利用激光束切割薄片材料,以满足高端装备制造的需要。
三、超精密加工技术的应用
超精密加工技术的应用非常广泛,主要包括以下几个方面:
1. 半导体加工
在半导体加工领域,超精密加工是一个非常重要的领域,它可以制造出一些超细的、数量巨大的半导体芯片。
这是一种高精度、高效率的加工技术,对于半导体工业的发展有着重要的促进作用。
2. 光学加工
光学镜头、分光镜等光学器件需要高精度的加工,超精密加工技术可以满足这种要求。
该技术已经在望远镜、飞行器等科学装置中得到广泛应用。
3. 生物医学
超精密加工技术还可以用于生命科学和医学技术,如制造微操纵器、超精密加工零部件等。
这种技术被广泛应用于微针、微刀、显微镜等器械的制造和医学治疗领域。
4. 打印技术
光刻技术是一种常见的快速打印技术,超精密加工可以利用光刻技术在一定程度上提高生产效率和制造精度,这对于高端装备制造、电子技术等领域的发展非常重要。
四、超精密加工技术的发展趋势
随着高端装备制造技术的不断发展,超精密加工技术的应用领域越来越广泛。
未来的发展趋势可能包括以下方面:
1. 快速加工
将超精密加工技术与快速成型技术相结合,可以实现快速加工,提高生产效率和制造精度。
2. 面向大规模制造
超精密加工技术通常被视为一种实验性、高端的制造技术,但是,随着制造技术的发展,它将逐渐面向大规模、高效的制造。
3. 制造复杂器件
随着科技的不断发展,很多新型器件的制造变得越来越复杂,超精密加工技术的发展可以应对这种复杂性并实现高精度加工。
4. 与智能制造相结合
超精密加工技术可以与智能制造相结合,实现智能化生产和加工,从而提高生产效率和制造精度。
总之,超精密加工技术是现代科技的重要方向之一,未来的发展将会越来越广泛,起到更加重要的作用。