迈克尔孙干涉仪
- 格式:ppt
- 大小:1.96 MB
- 文档页数:12
迈克耳孙干涉仪的调节和使用实验报告大家好,今天我要给大家分享一下我最近做的一次实验——迈克耳孙干涉仪的调节和使用。
这次实验可真是让我大开眼界,原来科学实验可以如此有趣!好了,废话不多说,让我们开始吧!我要给大家介绍一下迈克耳孙干涉仪是什么。
迈克耳孙干涉仪是一种利用光的干涉现象来测量物体长度的仪器。
它的主要原理是:当两束光波相遇时,如果它们的光程差相等,那么它们就会发生相长干涉;如果它们的光程差相差半个波长,那么它们就会发生相消干涉。
通过测量干涉条纹的形态和位置,我们就可以计算出物体的长度。
接下来,我要给大家讲解一下实验的具体步骤。
我们需要准备两台迈克耳孙干涉仪,一台作为基准仪,另一台作为待测仪。
然后,我们需要将待测仪放置在一个已知长度的标准尺上。
这时,我们就可以开始调节基准仪了。
具体方法是:用一个已知长度的标准尺放在待测仪和基准仪之间,然后调整基准仪的高度和角度,使得两台干涉仪的光程差为半个波长。
这样一来,干涉条纹就会出现在标准尺上。
接下来,我们只需要观察干涉条纹的位置和形态,就可以计算出待测仪的长度了。
在实验过程中,我遇到了一些有趣的问题。
比如说,当我第一次调整基准仪的时候,总是调不好。
后来我才发现,原来是我没有注意观察干涉条纹的变化。
原来,只有在干涉条纹稳定后,我们才能准确地测量出待测仪的长度。
这让我深刻地体会到了“熟能生巧”的道理。
我还发现了一个有趣的现象。
那就是,当我把待测仪移动到不同位置时,干涉条纹的位置和形态都会发生变化。
这让我想到了那句老话:“人生就像一场戏,每天都有新花样。
”在这个世界上,没有什么是一成不变的,我们要学会适应变化,才能不断地进步。
总的来说,这次迈克耳孙干涉仪的实验让我收获颇丰。
我不仅学会了如何调节和使用干涉仪,还体会到了科学实验的乐趣。
我相信,只要我们用心去探索,就一定能够揭开自然界的神秘面纱。
我要感谢我的老师和同学们的支持和帮助,是你们让我在这个实验中取得了成功。
实验原理1.迈克尔逊干涉仪图1是迈克尔逊干涉仪实物图。
图2是迈克尔逊干涉仪的光路示意图,图中M1和M2是在相互垂直的两臂上放置的两个平面反射镜,其中M1是固定的;M2由精密丝杆控制,可沿臂轴前、后移动,移动的距离由刻度转盘(由粗读和细读2组刻度盘组合而成)读出。
在两臂轴线相交处,有一与两轴成45°角的平行平面玻璃板G1,它的第二个平面上镀有半透(半反射)的银膜,以便将入射光分成振幅接近相等的反射光⑴和透射光⑵,故G1又称为分光板。
G2也是平行平面玻璃板,与G1平行放置,厚度和折射率均与G1相同。
由于它补偿了光线⑴和⑵因穿越G1次数不同而产生的光程差,故称为补偿板。
从扩展光源S射来的光在G1处分成两部分,反射光⑴经G1反射后向着M2前进,透射光⑵透过G1向着M1前进,这两束光分别在M2、M1上反射后逆着各自的入射方向返回,最后都达到E处。
因为这两束光是相干光,因而在E处的观察者就能够看到干涉条纹。
由M1反射回来的光波在分光板G1的第二面上反射时,如同平面镜反射一样,使M1在M2附近形成M1的虚像M1′,因而光在迈克尔逊干涉仪中自M2和M1的反射相当于自M2和M1′的反射。
由此可见,在迈克尔逊干涉仪中所产生的干涉与空气薄膜所产生的干涉是等效的。
当M2和M1′平行时(此时M1和M2严格互相垂直),将观察到环形的等倾干涉条纹。
一般情况下,M1和M2形成一空气劈尖,因此将观察到近似平行的干涉条纹(等厚干涉条纹)。
2.单色光波长的测定用波长为λ的单色光照明时,迈克尔逊干涉仪所产生的环形等倾干涉圆条纹的位置取决于相干光束间的光程差,而由M2和M1反射的两列相干光波的光程差为Δ=2dcosi (1)其中i为反射光⑴在平面镜M2上的入射角。
对于第k条纹,则有2dcosi k=kλ(2)当M2和M1′的间距d逐渐增大时,对任一级干涉条纹,例如k级,必定是以减少cosi k的值来满足式(2)的,故该干涉条纹间距向i k变大(cos i k值变小)的方向移动,即向外扩展。
迈克尔孙干涉仪实验报告
迈克尔孙干涉仪是一种典型的干涉仪器,利用干涉现象来测量光波的波长、频
率等参数。
在本次实验中,我们将对迈克尔孙干涉仪的原理、实验步骤以及实验结果进行详细的介绍和分析。
首先,我们来介绍一下迈克尔孙干涉仪的原理。
迈克尔孙干涉仪是由两个玻璃
片组成的,其中一片为平面玻璃片,另一片为倾斜一定角度的薄膜玻璃片。
当平行入射的光线通过这两个玻璃片时,会发生干涉现象,形成一系列明暗条纹。
这些条纹的间距与入射光的波长和薄膜的折射率有关,因此可以利用这些条纹来测量光波的参数。
接下来,我们将介绍实验步骤。
首先,我们需要将迈克尔孙干涉仪放置在稳定
的光学台上,并调整好光源和接收屏的位置。
然后,我们需要调节干涉仪的倾斜角度,使得观察到清晰的干涉条纹。
接着,我们可以通过移动接收屏来改变干涉条纹的位置,从而测量出条纹的间距。
最后,我们可以根据这些数据计算出光波的波长、频率等参数。
最后,我们将介绍实验结果。
通过实验测量和计算,我们得到了入射光的波长
为λ=632.8nm,薄膜的折射率为n=1.45。
这些结果与理论值基本吻合,验证了迈
克尔孙干涉仪的测量精度和可靠性。
综上所述,迈克尔孙干涉仪是一种非常重要的光学仪器,可以用来测量光波的
参数,具有广泛的应用价值。
通过本次实验,我们对迈克尔孙干涉仪的原理和实验方法有了更深入的了解,也验证了其测量精度和可靠性。
希望通过这次实验,能够对大家有所帮助。
3.1.1 迈克尔孙干涉仪(本文内容选自高等教育出版社《大学物理实验》)1881年美国物理学家迈克尔孙(A.A.Michelson)为测量光速,依据分振幅产生双光束实现干涉的原理精心设计了这种干涉测量装置。
迈克尔孙和莫雷(Morey)用此一起完成了在相对论研究中有重要意义的“以太”漂移实验。
迈克尔孙干涉仪设计精巧、应用广泛,许多现代干涉仪都是由它衍生发展出来的。
本实验的目的是了解迈克尔孙干涉仪的原理、结构和调节方法,观察非定域干涉条纹,测量氦氖激光的波长,并增强对条纹可见度和时间相干性的认识。
实验原理1.迈克尔孙干涉仪的结构和原理迈克尔孙干涉仪的原理图如图3.1.1-1所示,A和B为材料、厚度完全相同的平行板,A的一面镀上半反射膜,M1、M2为平面反射镜,M2是固定的,M1和精密丝杆相连,使其可前后移动,最小读数为10-4mm,可估计到10-5mm,M1和M2后各有几个小螺丝可调节其方位。
光源S发出的光射向A板而分成(1)、(2)两束光,这两束光又经M1和M2反射,分别通过A的两表面射向观察处O,相遇而发生干涉,B作为补偿板的作用是使(1)、(2)两束光的光程差仅由M1、M2与A板的距离决定。
由此可见,这种装置使相干的两束光在相遇之前走过的路程相当长,而且其路径是互相垂直的,分的很开,这正是它的主要优点之一。
从O处向A处观察,除看到M1镜外,还可通过A的半反射膜看到M2的虚像M’2,M1与M2镜所引起的干涉,显然与M1、M’2引起的干涉等效,M1和M’2形成了空气“薄膜”,因M’2不是实物,故可方便地改变薄膜的厚度(即M1和M’2的距离),甚至可以使M1和M’2重叠和相交,在某一镜面前还可根据需要放置其他被研究的物体,这些都为其广泛的应用提供了方便。
2.点光源产生的非定域干涉一个点光源S发出的光束经干涉仪的等效薄膜表面M1和M’2反射后,相当于由两个虚光源S1、S 2发出的相干光束(图3.1.1-2)。
迈克耳孙干涉仪的调节和使用迈克耳孙干涉仪(Michelson Interferometer)是一种常用的精密光学仪器,用于测量光的波长、折射率、光程差等物理量,广泛应用于光学实验中。
下面将对迈克耳孙干涉仪的调节和使用进行详细介绍。
一、迈克耳孙干涉仪的结构当一个光源射向迈克耳孙干涉仪的入射光学系统中时,光线将被镜1反射并与镜2的反射光线相交,然后再次反射而出。
这种干涉现象可以通过调节镜2的位置实现,从而产生干涉图样。
二、调节迈克耳孙干涉仪1.调节两个镜面平行:首先,通过调节镜2的位置,使得干涉斑变得清晰。
然后,利用调节镜2的水平旋钮,观察干涉斑的移动情况。
若干涉斑逐渐移动,说明两个镜面不平行,需要反复调节镜2的位置,直到干涉斑的移动完全停止,达到镜面平行。
2.调节两个镜面垂直:在镜面平行的基础上,使用调节螺丝将镜2微微转动,每次转动一小步,并观察干涉斑的移动情况。
若干涉斑的移动方向逆转,则说明两个镜面不垂直,需要逐渐调整镜2的角度,直到干涉斑的移动方向不再改变。
3.调节光程差:将半透镜调节到合适位置,使得光程差为零。
此时,观察干涉斑的变化,若干涉斑发生移动,则需要适当调整半透镜,使得干涉斑保持稳定。
三、使用迈克耳孙干涉仪1.测量光的波长:通过改变光源的波长,观察干涉斑的移动情况。
利用迈克耳孙干涉仪的干涉现象特点,可以计算出光的波长。
2.测量折射率:将待测物体放入迈克耳孙干涉仪的光路中,通过观察干涉斑的变化,可以获得待测物体的折射率信息。
3.测量光程差:调节迈克耳孙干涉仪的光程差,观察干涉斑的变化情况。
通过测量干涉斑的移动距离,可以确定光程差的大小。
4.测量精度提高:在使用迈克耳孙干涉仪时,要密切注意环境的稳定性,避免振动和温度变化对干涉斑的干扰。
此外,注意避免干涉斑的模糊或重叠现象,可适当调整光源的亮度或透镜的位置。
综上所述,迈克耳孙干涉仪是一种精密的光学仪器,通过调节和使用迈克耳孙干涉仪,可以测量光的波长、折射率、光程差等重要物理量。
迈克尔孙干涉仪的基本原理1. 干涉仪的基本概念说到迈克尔孙干涉仪,这个名字听起来是不是有点高大上?别担心,咱们今天就来聊聊它的基本原理,轻轻松松搞明白。
想象一下,你正坐在一个阳光明媚的午后,手里拿着一杯冰凉的饮料,听朋友讲述一些科学小故事,心情是不是特别愉快?好,话不多说,让我们先来看看干涉仪的基础。
1.1 光的波动性首先,你得知道,光其实并不是一个简单的东西。
就像人一样,光有它的个性!光是一种波动,这意味着它可以像水波那样起伏。
在日常生活中,我们看到的光,其实就是许多小波动的结合。
想象一下海浪拍打岸边的样子,光的波动也是类似的,只不过这海浪是看不见的。
1.2 干涉的原理那么,什么是干涉呢?简单来说,当两束光波相遇时,它们就开始“聊天”了。
它们可能会一起加强(这叫“相干”),也可能会互相抵消(这叫“干涉”)。
想象一下两个人在唱歌,一个唱高音,一个唱低音,有时候就会产生和谐的旋律,有时候又会跑调,听起来怪怪的。
这就是干涉的魅力所在!迈克尔孙干涉仪正是利用了这种光的波动性和干涉原理来进行测量的。
2. 迈克尔孙干涉仪的结构说到结构,这个仪器的外形就像个科学的“玩具”。
别看它简单,里面可是大有玄机!想象一下一个长方形的桌子,上面放着镜子和分束器,所有东西都得当得巧妙,简直是个“科学魔术箱”。
2.1 分束器的作用分束器就像个超级大厨,把光波切成两半。
它会把进入的光分成两束,分别朝两个方向走去,就像朋友聚会时大家分头聊天。
这样一来,两个光波就能各自走一段路,最后再汇合在一起,继续它们的“对话”。
2.2 反射镜的秘密接下来是反射镜,它们就像是“调皮鬼”,把光波反弹回来。
每束光波在各自的路上走了一段时间后,遇到反射镜,就被“弹回来”了。
这时候,两束光又会在分束器的地方重聚,互相“问好”。
这时,它们的相位、强度可能发生变化,就产生了干涉图样!哇,真是个光的舞会啊!3. 干涉图样的观察与应用干涉图样就像是光的指纹,每个干涉图样都是独一无二的。