2014全国各地高考真题_——数列专题及答案解析
- 格式:doc
- 大小:206.50 KB
- 文档页数:6
努力的你,未来可期!2014-2019全国理数高考真题之数列一、选择题(本大题共10小题)1. 国1(2019-9)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A. a n =2n −5B. a n =3n −10C. S n =2n 2−8nD. S n =12n 2−2n【答案】A解:设等差数列{a n }的公差为d , 由S 4=0,a 5=5,得 {4a 1+6d =0a 1+4d =5,∴{a 1=−3d =2, ∴a n =2n −5,S n =n 2−4n , 故选:A .2. 国3(2019-5)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( ) A. 16 B. 8 C. 4 D. 2 【答案】C 【解答】解:设等比数列{a n }的公比为q(q >0), 则由前4项和为15,且a 5=3a 3+4a 1,有{a 1+a 1q +a 1q 2+a 1q 3=15a 1q 4=3a 1q 2+4a 1,∴{a 1=1q =2, ∴a 3=22=4,故选C .3. 国1(2018-4)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A. −12B. −10C. 10D. 12 【答案】B【解析】解:∵S n 为等差数列{a n }的前n 项和,3S 3=S 2+S 4,a 1=2, ∴3×(3a 1+3×22d)=a 1+a 1+d +4a 1+4×32d ,把a 1=2,代入得d =−3 ∴a 5=2+4×(−3)=−10. 故选:B .4. 国1(2017-4)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) A. 1 B. 2 C. 4 D. 8 【答案】C 【解答】解:S n 为等差数列{a n }的前n 项和,设公差为d , ∵a 4+a 5=24,S 6=48,∴{a 1+3d +a 1+4d =246a 1+6×52d =48, 解得a 1=−2,d =4,∴{a n}的公差为4.故选C.5.国1(2017-12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂,那么该款软件的激活码是()A. 440B. 330C. 220D. 110【答案】A【解析】【分析】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.由题意求得数列的每一项,及前n项和S n=2n+1−2−n,及项数,由题意可知:2n+1为2的整数幂.只需将−2−n消去即可,分别即可求得N的值.【解答】解:由题意可知,数列可看作:第一项20,第二项:20,21,第三项:20,21,22,…,第n项:20,21,22,…,2n−1,根据等比数列前n项和公式,求得每项和分别为:21−1,22−1,23−1,…,2n−1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+⋯+n=(1+n)n,2所有项数的和为S n=21−1+22−1+23−1+⋯+2n−1=(21+22+23+⋯+−n=2n+1−2−n,2n)−n=2(1−2n)1−2由题意可知:2n+1为2的整数幂.只需将−2−n消去即可,+2=3,不满足N>100,则①1+2+(−2−n)=0,解得:n=1,总共有(1+1)×12+3=18,不满足N>100,②1+2+4+(−2−n)=0,解得:n=5,总共有(1+5)×52+4=95,不满足N>③1+2+4+8+(−2−n)=0,解得:n=13,总共有(1+13)×132100,+5=440,满④1+2+4+8+16+(−2−n)=0,解得:n=29,总共有(1+29)×292足N>100,∴该款软件的激活码440.故选A.6.国2(2017-3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A. 1盏B. 3盏C. 5盏D. 9盏【答案】B【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,努力的你,未来可期!∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381=a(1−27)1−2=127a,解得a=3,则这个塔顶层有3盏灯.故选B.7.国3(2017-9)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A. −24B. −3C. 3D. 8【答案】A【解答】解:∵设等差数列{a n}的公差为d,(d≠0),由题意得a1=1,∵a2,a3,a6成等比数列,∴a32=a2⋅a6,∴(a1+2d)2=(a1+d)(a1+5d),解得d=−2,∴{a n}前6项的和为S6=6a1+6×52d=6×1+6×52×(−2)=−24.故选A.8.国1(2016-3)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A. 100B. 99C. 98D. 97【答案】C【解答】解:设{a n}的公差为d,∵等差数列{a n}前9项的和为27,S9=9(a1+a9)2=9×2a52=9a5.∴9a5=27,a5=3,又∵a10=8=a5+(10−5)d=3+5d,∴d=1,∴a100=a5+95d=98.故选C.9.国3(2016-12)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A. 18个B. 16个C. 14个D. 12个【答案】C【解析】【分析】本题是新定义题,考查数列的应用,关键是对题意的理解,枚举时做到不重不漏,是压轴题.由新定义可得,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,当m=4时,数列中有四个0和四个1,然后一一列举得答案.【解答】解:由题意可知,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,若m=4,说明数列有8项,满足条件的数列有:0,0,0,0,1,1,1,1;0,0,0,1,0,1,1,1;0,0,0,1,1,0,1,1;0,0,0,1,1,1,0,1;0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1;0,0,1,0,1,1,0,1;0,0,1,1,0,1,0,1;0,0,1,1,0,0,1,1;0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1;0,1,0,0,1,1,0,1;0,1,0,1,0,0,1,1; 0,1,0,1,0,1,0,1.共14个.故选C.10.国2(2015-4)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A. 21B. 42C. 63D. 84【答案】B【解析】解:∵a1=3,a1+a3+a5=21,∴a1(1+q2+q4)=21,∴q4+q2+1=7,∴q4+q2−6=0,∴q2=2,∴a3+a5+a7=a1(q2+q4+q6)=3×(2+4+8)=42.故选:B.二、填空题(本大题共7小题,共35.0分)11.国1(2019-14)记S n为等比数列{a n}的前n项和.若a1=13,a42=a6,则S5=________.【答案】1213【解答】解:在等比数列中,由a42=a6,得(a1q3)2=a1q5,即q6a12=q5a1,解得q=3,则S5=13(1−35)1−3=1213,故答案为1213.12.国3(2019-14)记S n为等差数列{a n}的前n项和.若a1≠0,a2=3a1,则S10S5=______.【答案】4【解析】解:设等差数列{a n}的公差为d,则由a1≠0,a2=3a1可得,d=2a1,∴S10S5=10(a1+a10)5(a1+a5)=2(2a1+9d) 2a1+4d=2(2a1+18a1)2a1+8a1=4,努力的你,未来可期!故答案为:4.13. 国1(2019-14)记S n 为数列{a n }的前n 项和,若S n =2a n +1,则S 6=_____. 【答案】−63 【解答】解:S n 为数列{a n }的前n 项和,S n =2a n +1,① 当n =1时,a 1=2a 1+1,解得a 1=−1, 当n ≥2时,S n−1=2a n−1+1,②, 由①−②可得a n =2a n −2a n−1, ∴a n =2a n−1,∴{a n }是以−1为首项,以2为公比的等比数列, ∴S 6=−1×(1−26)1−2=−63,故答案为−63.14. 国2(2017-15)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑1S knk=1=______.【答案】2nn+1【解析】解:等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10, 由S 4=4(a 1+a 4)2=2(a 2+a 3)=10,可得a 2=2,数列的公差为1,首项为1,a n =n, S n =n(n+1)2,1S n=2n(n+1)=2(1n −1n+1),则∑1S kn k=1=2[1−12+12−13+13−14+⋯+1n −1n+1]=2(1−1n+1)=2nn+1. 故答案为2nn+1.15. 国3(2017-14)设等比数列{a n }满足a 1+a 2=−1,a 1−a 3=−3,则a 4=______.【答案】−8 【解析】解:设等比数列{a n }的公比为q ,∵a 1+a 2=−1,a 1−a 3=−3, ∴a 1(1+q)=−1,a 1(1−q 2)=−3, 解得a 1=1,q =−2. 则a 4=(−2)3=−8. 故答案为−8.16. 国1(2016-15)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1·a 2·…·a n的最大值为______.【答案】64 【解答】解:等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,设公比为q , 可得a 2+a 4=q (a 1+a 3)=5,解得q =12, a 1+q 2a 1=10,解得a 1=8,则a 1·a 2·⋯·a n =a 1n q 1+2+3+⋯+(n−1) =8n·(12)n(n−1)2=23n−n 2−n 2=27n−n 22,当n =3或n =4时,a 1·a 2·⋯·a n 取得最大值:2122=26=64, 故答案为64.17. 国2(2015-16)设数列{a n }的前n 项和为S n ,且a 1=−1,a n+1=S n+1S n ,则S n =______.【答案】−1n【解析】解:∵a n+1=S n+1S n , ∴S n+1−S n =S n+1S n , ∴1S n−1Sn+1=1,又∵a 1=−1,即1S 1=−1,∴数列{1S n}是以首项是−1、公差为−1的等差数列,∴1S n=−n ,∴S n =−1n ,故答案为:−1n .通过S n+1−S n =a n+1可知S n+1−S n =S n+1S n ,两边同时除以S n+1S n 可知1S n−1Sn+1=1,进而可知数列{1S n}是以首项、公差均为−1的等差数列,计算即得结论.本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.三、解答题(本大题共8小题,共96.0分)18. 国2(2019-19)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n+1=3a n −b n +4,4b n+1=3b n −a n −4.(1)证明:{a n +b n }是等比数列,{a n −b n }是等差数列; (2)求{a n }和{b n }的通项公式.【答案】(1)证明:∵4a n+1=3a n −b n +4,4b n+1=3b n −a n −4, ∴4(a n+1+b n+1)=2(a n +b n ),4(a n+1−b n+1)=4(a n −b n )+8, 即a n+1+b n+1=12(a n +b n ),a n+1−b n+1=a n −b n +2;努力的你,未来可期!又a 1+b 1=1,a 1−b 1=1,∴{a n +b n }是首项为1,公比为12的等比数列, {a n −b n }是首项为1,公差为2的等差数列;(2)解:由(1)可得:a n +b n =(12)n−1,a n −b n =1+2(n −1)=2n −1, ∴a n =(12)n +n −12,b n =(12)n −n +12. 【解析】本题主要考查了等差、等比数列的定义和通项公式,考查学生的计算能力和推理能力,属于简单题. (1)定义法证明即可;(2)由(1)结合等差、等比的通项公式可得.19. 国2(2018-17)记S n 为等差数列{a n }的前n 项和,已知a 1=−7,S 3=−15.(1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.【答案】解:(1)∵等差数列{a n }中,a 1=−7,S 3=−15, ∴a 1=−7,3a 1+3d =−15,解得a 1=−7,d =2, ∴a n =−7+2(n −1)=2n −9;(2)∵a 1=−7,d =2,a n =2n −9,∴S n =n2(a 1+a n )=12(2n 2−16n)=n 2−8n =(n −4)2−16, ∴当n =4时,前n 项的和S n 取得最小值为−16.20. 国3(2018-17)等比数列{a n }中,a 1=1,a 5=4a 3.(1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 【答案】解:(1)∵等比数列{a n }中,a 1=1,a 5=4a 3. ∴1×q 4=4×(1×q 2), 解得q =±2,当q =2时,a n =2n−1,当q =−2时,a n =(−2)n−1,∴{a n }的通项公式为,a n =2n−1,或a n =(−2)n−1. (2)记S n 为{a n }的前n 项和. 当a 1=1,q =−2时,S n =a 1(1−q n )1−q=1−(−2)n 1−(−2)=1−(−2)n3,由S m =63,得S m =1−(−2)m3=63,m ∈N ,无解;当a 1=1,q =2时,S n =a 1(1−q n )1−q=1−2n 1−2=2n −1,由S m =63,得S m =2m −1=63,m ∈N , 解得m =6.21. 国2(2016-17)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28,记b n =[lga n ],其中[x]表示不超过x 的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b 1,b 11,b 101;(Ⅱ)求数列{b n }的前1000项和.【答案】解:(Ⅰ)S n为等差数列{a n}的前n项和,且a1=1,S7=28,7a4=28.可得a4=4,则公差d=1.所以a n=n,b n=[lgn],则b1=[lg1]=0,b11=[lg11]=1,b101=[lg101]=2.(Ⅱ)由(Ⅰ)可知:b1=b2=b3=⋯=b9=0,b10=b11=b12=⋯=b99=1.b100=b101=b102=b103=⋯=b999=2,b1000=3.数列{b n}的前1000项和为:9×0+90×1+900×2+3=1893.22.国3(2016-17)-已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)若S5=3132,求λ.【答案】解:(1)∵S n=1+λa n,λ≠0.∴a n≠0.当n≥2时,S n−1=1+λa n−1,两式相减,得a n=1+λa n−1−λa n−1=λa n−λa n−1,即(λ−1)a n=λa n−1,∵λ≠0,a n≠0.∴λ−1≠0.即λ≠1,即a na n−1=λλ−1,(n≥2),∴{a n}是等比数列,公比q=λλ−1,当n=1时,S1=1+λa1=a1,即a1=11−λ,∴a n=11−λ·(λλ−1)n−1;(2)若S5=3132,则S5=1+λ[11−λ·(λλ−1)4]=3132,即(λ1−λ)5=3132−1=−132,则λ1−λ=−12,得λ=−1.23.国1(2015-17)S n为数列{a n}的前n项和,已知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式;(Ⅱ)设b n=1a n a n+1,求数列{b n}的前n项和.【答案】解:(I)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3,两式相减得a n+12−a n2+2(a n+1−a n)=4a n+1,即2(a n+1+a n)=a n+12−a n2=(a n+1+a n)(a n+1−a n),∵a n>0,∴a n+1−a n=2,努力的你,未来可期!∵a 12+2a 1=4a 1+3, ∴a 1=−1(舍)或a 1=3,则{a n }是首项为3,公差d =2的等差数列, ∴{a n }的通项公式a n =3+2(n −1)=2n +1; (Ⅱ)∵a n =2n +1,∴b n =1a n a n+1=1(2n+1)(2n+3)=12(12n+1−12n+3),∴数列{b n }的前n 项和T n =12(13−15+15−17+⋯+12n+1−12n+3) =12(13−12n+3)=n3(2n+3).24. 国1(2014-17)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n+1=λS n −1,其中λ为常数.(Ⅰ)证明:a n+2−a n =λ(Ⅱ)是否存在λ,使得{a n }为等差数列?并说明理由.【答案】(Ⅰ)证明:∵a n a n+1=λS n −1,a n+1a n+2=λS n+1−1,∴a n+1(a n+2−a n )=λa n+1∵a n+1≠0,∴a n+2−a n =λ.(Ⅱ)解:假设存在λ,使得{a n }为等差数列,设公差为d . 则λ=a n+2−a n =(a n+2−a n+1)+(a n+1−a n )=2d , ∴d =λ2. ∴a n =1+λ(n−1)2,a n+1=1+λn 2,∴λS n =1+[1+λ(n−1)2] [1+λn2]=λ24n 2+(λ−λ24)n +2−λ2, 根据{a n }为等差数列的充要条件是{λ≠02−λ2=0,解得λ=4. 此时可得S n =n 2,a n =2n −1.因此存在λ=4,使得{a n }为等差数列.也可以先考虑前3项成等差数列,得出λ,再进一步验证即可.【解析】(Ⅰ)利用a n a n+1=λS n −1,a n+1a n+2=λS n+1−1,相减即可得出; (Ⅱ)假设存在λ,使得{a n }为等差数列,设公差为d.可得λ=a n+2−a n =(a n+2−a n+1)+(a n+1−a n )=2d ,d =λ2.得到λS n =λ24n 2+(λ−λ24)n +2−λ2,根据{a n }为等差数列的充要条件是{λ≠02−λ2=0,解得λ即可. 本题考查了递推式的意义、等差数列的通项公式及其前n 项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.25. 国2(2014-17)已知数列{a n }满足a 1=1,a n+1=3a n +1.(Ⅰ)证明{a n +12}是等比数列,并求{a n }的通项公式; (Ⅱ)证明:1a 1+1a 2+⋯+1a n<32.【答案】证明(Ⅰ)a n+1+12a n +12=3a n +1+12a n +12=3(a n +12)a n +12=3,∵a 1+12=32≠0,∴数列{a n +12}是以首项为32,公比为3的等比数列; ∴a n +12=32×3n−1=3n 2,即a n =3n −12;(Ⅱ)由(Ⅰ)知1a n=23n −1,当n ≥2时,∵3n −1>3n −3n−1,∴1a n=23n −1<23n −3n−1=13n−1,∴当n =1时,1a 1=1<32成立,当n ≥2时,1a 1+1a 2+⋯+1a n<1+13+132+⋯+13n−1=1−(13)n1−13=32(1−13n )<32.∴对n ∈N +时,1a 1+1a 2+⋯+1a n<32.【解析】本题考查的是数列的递推关系式、等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即b n+1b n=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n }的通项公式;(Ⅱ)将1a n进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.。
专题6 数列1. 【2014高考安徽卷文第12题】如图,在等腰直角三角形ABC 中,斜边22BC =,过点A 作BC 的垂线,垂足为1A ;过点1A 作AC 的垂线,垂足为2A ;过点2A 作1AC 的垂线,垂足为3A ;…,以此类推,设1BA a =,12AA a =,123A A a =,…,567A A a =,则7a =________.2. 【2014高考大纲卷文第8题】设等不数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=( )A. 31B. 32C. 63D. 643. 【2014高考广东卷文第13题】等比数列{}n a 的各项均为正数,且154a a =,则2122232425log log log log log a a a a a ++++= .4. 【2014高考江苏卷第7题】在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是 .5. 【2014高考江西卷文第13题】在等差数列{}n a 中,71=a ,公差为d ,前n 项和为n S ,当且仅当8=n 时n S 取最大值,则d 的取值范围_________.6. 【2014高考辽宁卷文第9题】设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d >7. 【2014高考全国2卷文第5题】等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A. (1)n n +B. (1)n n -C.(1)2n n + D. (1)2n n - 8. 【2014高考全国2卷文第16题】数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________.9.【2014高考陕西卷文第8题】原命题为“若12n n n a a a ++<,n N +∈,则{}n a 为递减数列”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(A )真,真,真 (B )假,假,真 (C )真,真,假 (D )假,假,假 10. 【2014高考陕西卷文第14题】已知0,1)(≥+=x xxx f ,若++∈==N n x f f x f x f x f n n )),(()(),()(11,则)(2014x f 的表达式为________.11. 【2014高考天津卷卷文第5题】设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和,若,,,421S S S 成等比数列,则1a =( )A.2B.-2C.21 D .12- 12. 【2014高考重庆卷文第2题】在等差数列{}n a 中,1352,10a a a =+=,则7a =( ).5A .8B .10C .14D13. 【2014高考安徽卷文第18题】 数列{}n a 满足111,(1)(1),n n a na n a n n n N ++==+++∈(1) 证明:数列{}na n是等差数列;(2) 设3nn b =,求数列{}n b 的前n 项和n S14. 【2014高考北京卷文第15题】已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.15. 【2014高考大纲卷文第17题】数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.16. 【2014高考福建卷文第17题】在等比数列{}n a 中,253,81a a ==.(1)求n a ; (2)设3log nn b a =,求数列{}n b 的前n 项和n S .17. 【2014高考广东卷文第19题】设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()223n n S n n S -+--()230n n +=,n N *∈.(1)求1a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有()()()112211111113n n a a a a a a +++<+++L .18. 【2014高考湖北卷文第19题】已知等差数列}{n a 满足:21=a ,且1a 、2a 、5a 成等比数列. (1)求数列}{n a 的通项公式.(2)记n S 为数列}{n a 的前n 项和,是否存在正整数n ,使得?80060+>n S n 若存在,求n 的最小值;若不存在,说明理由.19. 【2014高考湖南卷文第16题】已知数列{}n a 的前n 项和*∈+=N n nn S n ,22. (1)求数列{}n a 的通项公式;(2)设()n nan a b n 12-+=,求数列{}n b 的前n 2项和.20. 【2014高考江苏第20题】设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和为*2()n n S n N =∈,证明:{}n a 是“H 数列”.(2)设{}n a 是等差数列,其首项11a =,公差0d <,若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}n a ,总存在两个“H 数列” {}n b 和{}n c ,使得n n n a b c =+*()n N ∈成立.21. 【2014高考江西文第17题】已知数列{}n a 的前n 项和*∈-=N n nn S n ,232. (1)求数列{}n a 的通项公式;(2)证明:对任意1>n ,都有*∈N m ,使得m n a a a ,,1成等比数列. 22. 【2014高考全国1文第17题】已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
2014 年高考新课标Ⅱ卷数列题解答剖析
在第(Ⅰ)小题中,这四种解法主要波及的知识都包
括等比数列的观点、通项以及乞降公式等知识。
可是在其余
方面,略有差别。
如技术方面,解法1、解法 3、解法 4 关注运算技术、变形技术和推理论证技术的使用,而解法 2 还波及猜想、归纳等数学活动;在思想方法的运用上,解法 1 主要表现化归思想,解法 2 主要采纳合情推理和归纳的思想,
而解法 3 波及字母替代思想、转变思想,解法 4 采纳累加相消方法和整体思想。
第(Ⅱ)小题着重对考生数学思想与方法的考察,充足
表现了数学的基础性、应用性和工具性的学科特点。
多视角、多维度、多层次地考察了考生的数学思想质量和思想能力,
考察了考生对数学实质的理解及考生的数学修养及其学习
潜能。
相同,该小题的解答也出色纷呈,方法多样。
因此,结论对全部自然数都建立。
此题解法多样,能够让不一样思想方式的学生显现自己
解决问题的能力。
同时,问题的解决也拥有必定的探究性。
三、教课思虑
此题满分 12 分,全省理科考生 151098 人中,均分 3.35,划分度 0.54,难度 0.72,约三分之一的学生零分,此题得分
整体状况反响了考生对数列的知识掌握状况不容乐观,需要在教课方面加以改良。
第一,加强知识累积,着重典型试题解法对学生问题解
决能力的培育。
总之,此题不失为一道好题,能够正确地反应思想的多
样性,解决过程拥有必定的探究性,进而让不一样的学生都能够依据自己的思想方式和思想特点去解决。
数列专题高考真题(2014·I) 17. (本小题满分12分) 已知数列{}的前项和为,=1,,,其中为常数.(Ⅰ)证明:;(Ⅱ)是否存在,使得{}为等差数列并说明理由.(2014·II) 17.(本小题满分12分) 已知数列满足=1,.(Ⅰ)证明是等比数列,并求的通项公式;(Ⅱ)证明: .(2015·I)(17)(本小题满分12分)为数列的前项和.已知,(Ⅰ)求的通项公式:(Ⅱ)设 ,求数列的前项和。
(2015·I I)(4)等比数列满足,135a a a ++ =21,则357a a a ++= ( )(A )21 (B )42 (C )63 (D )84(2015·I I)(16)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. (2016·I)(3)已知等差数列前9项的和为27,,则(A )100 (B )99 (C )98 (D )97(2016·I)(15)设等比数列满足的最大值为__________。
(2016·II)(17)(本题满分12分)S n 为等差数列的前项和,且=1 ,=28 记,其中表示不超过的最大整数,如.(I )求,,;(II )求数列的前1 000项和.(2016·III)(12)定义“规范01数列”如下:共有项,其中项为0,项为1,且对任意,中0的个数不少于1的个数.若,则不同的“规范01数列”共有 (A )18个(B )16个(C )14个(D )12个(2016·III)(17)(本小题满分12分)已知数列的前项和,其中(I )证明是等比数列,并求其通项公式;(II )若 ,求.(2017·I)4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8(2017·I)12.几位大学生响应国家的创业号召,开发了一款应用软件。
2014年高考数学真题汇编——数列一.选择题1. (2014大纲)等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( )A .6B .5C .4D .3【答案】C .2. (2014重庆)对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列248.,,C a a a 成等比数列 239.,,D a a a 成等比数列【答案】D【解析】.∴D 选要求角码成等差3. (2014北京)设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件.C 充分必要条件 .D 既不充分也不必要条件D试题分析:对等比数列}{n a ,若1>q ,则当0,1a 时数列}{n a 是递减数列;若数列}{n a 是递增数列,则4. (2014福建)等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ).8A .10B .12C .14DC5. (2014辽宁)设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( )A .0d <B .0d >C .10a d <D .10a d >【答案】C【解析】 ..0.00;00:.,1111111C d a d a d a a a a a a a n n n 选且或且分情况解得即递减由同增异减知,<∴><<><+二.填空题1. (2014江苏) 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 ▲ .2(2014安徽)数列{}n a 是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q= . 12.13(2014北京)若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大.4(2014广东)若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= .51011912101112202019151201011:50,,ln ln ln ,ln ln ln ,220ln 20ln 20ln 100,50.a a a a a a e S a a a S a a a S a a a a e S =∴==+++=+++∴====∴=答案提示:设则5 (2014天津)设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a 的值为__________. 【答案】21-【解析】 解:12-依题意得2214S S S =,所以()()21112146a a a -=-,解得112a =-.6. (2014上海)设无穷等比数列{n a }的公比为q ,若)(lim 431 ++=∞→a a a n ,则q= 。
2014全国各地高考数列真题山东:(19) (本小题满分12分)在等差数列{}n a 中,已知公差为2,2a 是1a 与4a 的等比中项. (I)求数列{}n a 的通项公式;(II )设(1)2n n n b a +=,记1234(1)n n n T b b b b b =-+-+-+-…,求n T .(19)解:(I )由题意知2111()(3)a d a a d +=+, 即2111(2)(6)a a a +=+, 解得12a =,所以数列{}n a 的通项公式为2n a n =. (II )由题意知(1)2(1)n n n b a n n +==+.所以122334(1)(1)n n T n n =-⨯+⨯-⨯++-⨯+. 因为12(1)n n b b n +-=+. 可得,当n 为偶数时,12341()()()n n n T b b b b b b -=-++-+++-+48122n =++++(42)22nn += (2)2n n +=当n 为奇数时,1()n n n T T b -=+-(1)(1)(1)2n n n n -+=-+2(1)2n +=-所以2(1),2(2)2n n n T n n n ⎧+-⎪⎪=⎨+⎪⎪⎩为奇数,为偶数. 上海:23.(本题满分18分)本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知数列{}n a 满足1113,*,13n n n a a a n N a +≤≤∈=. (1)若2342,,9a a x a ===,求x 的取值范围; (2)若{}n a 是等比数列,且11000m a =,求正整数m 的最小值, 以及m 取最小值时相应{}n a 的公比;(3)若12100,,,a a a 成等差数列,求数列12100,,,a a a 的公差的取值范围.23.解:(1)由题得,263[3,6]933x x x x ⎧≤≤⎪⎪⇒∈⎨⎪≤≤⎪⎩ (文科)(2)∵1133n n n a a a +≤≤,且数列{}n a 是等比数列,11a =,∴11133n n n q q q --≤≤,∴111()03(3)0n n q q q q --⎧-≥⎪⎨⎪-≤⎩,∴1[,3]3q ∈。
1.【2014年湖南卷(理20)】 已知数列}{n a 满足11=a ,n n n p a a =-+||1,*N n ∈.(1)若}{n a 是递增数列,且1a ,22a ,33a 成等差数列,求p 的值;(2)若21=p ,且}{12-n a 是递增数列,是}{2n a 递减数列,求数列}{n a 的通项公式.2.【2014年全国大纲卷(18)】等差数列{}n a 的前n 项和为n S ,已知110a =,2a 为整数,且4n S S ≤.(1)求{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .3.【2014年山东卷(理19)】已知等差数列}{n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列。
(I )求数列}{n a 的通项公式;(II )令n b =,4)1(11+--n n n a a n 求数列}{n b 的前n 项和n T 。
4.【2014年四川卷(理19)】设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(*n N ∈)。
(1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ;(2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列{}nna b 的前n 项和n T 。
5.【2014年天津卷(理19)】已知q 和n 均为给定的大于1的自然数,设集合{0M =,1,2,...,1}q -,集合12{|A x x x x q ==++...1n n x q -+,i x M ∈,1i =,2,...,}n . ⑴当2q =,3n =时,用列举法表示集合A ;⑵设s 、t A ∈,12s a a q =++...1n n a q -+,12t b b q =++...1n n b q -+,其中i a 、i b M ∈,1i =,2,...,n .证明:若n n a b <,则t s <.6.【2014年全国新课标Ⅰ(理17)】(本小题满分12分)已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,11n n n a a S λ+=-,其中λ为常数.(Ⅰ)证明:2n n a a λ+-=;(Ⅱ)是否存在λ,使得{n a }为等差数列?并说明理由.7.【2014年全国新课标Ⅱ(理17)】(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+. (Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式; (Ⅱ)证明:1231112n a a a ++<…+.8.【2014年江苏卷(理20)】设数列{错误!未找到引用源。
2014数列理科高考题1、[2014·福建卷] 等差数列{a n}的前n项和为S n,若a1=2,S3=12,则a6等于( C)A.8 B.10 C.12 D.142、[2014·辽宁卷] 设等差数列{a n}的公差为d.若数列{2a1a n}为递减数列,则( C)A.d<0 B.d>0 C.a1d<0 D.a1d>03、[2014·全国卷] 等比数列{a n}中,a4=2,a5=5,则数列{lg a n}的前8项和等于( C )A.6 B.5 C.4 D.34、[2014·重庆卷] 对任意等比数列{a n},下列说法一定正确的是(D)A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9,成等比数列5、[2014·安徽卷] 数列{a n}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=___1__.6、[2014·北京卷] 若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n=___8___时,{a n}的前n项和最大.7、[2014·天津卷] 设{a n}是首项为a1,公差为-1的等差数列,S n为其前n项和.若S1,S2,S4成等比数列,则a1的值为__-12_.8、[2014·广东卷] 若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则ln a1+ln a2+…+ln a20=___50__.9、[2014·江西卷] 已知首项都是1的两个数列{a n},{b n}(b n≠0,n∈N*)满足a n bn+1-a n+1b n+2b n+1b n=0.(1)令c n=anbn,求数列{c n}的通项公式;(2)若b n=3n-1,求数列{a n}的前n项和S n.解:(1)因为a n b n+1-a n+1b n+2b n+1b n=0,b n≠0(n∈N*),所以a n+1b n+1-a nb n=2,即c n+1-c n=2,所以数列{c n}是以c1=1为首项,d=2为公差的等差数列,故c n=2n-1.(2)由b n=3n-1,知a n=(2n-1)3n-1,于是数列{a n}的前n项和S n=1×30+3×31+5×32+…+(2n -1)×3n -1,3S n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n,将两式相减得-2S n =1+2×(31+32+…+3n -1)-(2n -1)×3n =-2-(2n -2)×3n,所以S n =(n -1)3n+1.10、[2014·新课标全国卷Ⅰ] 已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0, a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ.(2)是否存在λ,使得{a n }为等差数列?并说明理由.解:(1)证明:由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1, 两式相减得a n +1(a n +2-a n )=λa n +1. 因为a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得 a 2=λ-1, 由(1)知,a 3=λ+1.若{a n }为等差数列,则2a 2=a 1+a 3,解得λ=4,故a n +2-a n =4. 由此可得{a 2n -1}是首项为1,公差为4的等差数列, a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.11、[2014·新课标全国卷Ⅱ] 已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n+12是等比数列,并求{a n }的通项公式; (2)证明1a 1+1a 2+…+1a n <32.解:(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎪⎫a n +12.又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列,所以a n +12=3n2,因此数列{a n }的通项公式为a n =3n-12.(2)证明:由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n -1,即1a n =23n-1≤13n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝ ⎛⎭⎪⎫1-13n <32.所以1a 1+1a 2+…+1a n <32.12、[2014·重庆卷] 设a 1=1,a n +1=a 2n -2a n +2+b (n ∈N *).(1)若b =1,求a 2,a 3及数列{a n }的通项公式.(2)若b =-1,问:是否存在实数c 使得a 2n <c <a 2n +1对所有n ∈N *成立?证明你的结论.(1)方法一:a 2=2,a 3=2+1. 再由题设条件知(a n +1-1)2=(a n -1)2+1.从而{(a n -1)2}是首项为0,公差为1的等差数列,故(a n -1)2=n -1,即a n =n -1+1(n ∈N *). 方法二:a 2=2,a 3=2+1.可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1.因此猜想a n =n -1+1. 下面用数学归纳法证明上式. 当n =1时,结论显然成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1=(a k -1)2+1+1=(k -1)+1+1=(k +1)-1+1, 这就是说,当n =k +1时结论成立.所以a n =n -1+1(n ∈N *).(2)方法一:设f (x )=(x -1)2+1-1,则a n +1=f (a n ).令c =f (c ),即c =(c -1)2+1-1,解得c =14.下面用数学归纳法证明命题 a 2n <c <a 2n +1<1.当n =1时,a 2=f (1)=0,a 3=f (0)=2-1,所以a 2<14<a 3<1,结论成立.假设n =k 时结论成立,即a 2k <c <a 2k +1<1. 易知f (x )在(-∞,1]上为减函数,从而 c =f (c )>f (a 2k +1)>f (1)=a 2,即 1>c >a 2k +2>a 2.再由f (x )在(-∞,1]上为减函数,得c =f (c )<f (a 2k +2)<f (a 2)=a 3<1,故c <a 2k +3<1,因此a 2(k +1)<c <a 2(k +1)+1<1,这就是说,当n =k +1时结论成立.综上,存在 c =14使a 2n <C <a 2a +1对所有n ∈N *成立.方法二:设f (x )=(x -1)2+1-1,则a n +1=f (a n ).先证:0≤a n ≤1(n ∈N *). ① 当n =1时,结论明显成立.假设n =k 时结论成立,即0≤a k ≤1. 易知f (x )在(-∞,1]上为减函数,从而 0=f (1)≤f (a k )≤f (0)=2-1<1.即0≤a k +1≤1.这就是说,当n =k +1时结论成立.故①成立.再证:a 2n <a 2n +1(n ∈N *). ②当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,所以a 2<a 3,即n =1时②成立. 假设n =k 时,结论成立,即a 2k <a 2k +1. 由①及f (x )在(-∞,1]上为减函数,得 a 2k +1=f (a 2k )>f (a 2k +1)=a 2k +2,a 2(k +1)=f (a 2k +1)<f (a 2k +2)=a 2(k +1)+1.这就是说,当n =k +1时②成立.所以②对一切n ∈N *成立.由②得a 2n <a 22n -2a 2n +2-1,即(a 2n +1)2<a 22n -2a 2n +2,因此a 2n <14. ③又由①②及f (x )在(-∞,1]上为减函数,得f (a 2n )>f (a 2n +1),即a 2n +1>a 2n +2.所以a 2n +1>a 22n +1-2a 2n +1+2-1,解得a 2n +1>14. ④综上,由②③④知存在c =14使a 2n <c <a 2n +1对一切n ∈N *成立.13、[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.解:(1)设数列{a n }的公差为d ,依题意得,2,2+d ,2+4d 成等比数列,故有(2+d )2=2(2+4d ),化简得d 2-4d =0,解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2.从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41.14、[2014·湖南卷] 已知数列{a n }满足a 1=1,|a n +1-a n |=p n ,n ∈N *.(1)若{a n }是递增数列,且a 1,2a 2,3a 3成等差数列,求p 的值;(2)若p =12,且{a 2n -1}是递增数列,{a 2n }是递减数列,求数列{a n }的通项公式.解:(1)因为{a n }是递增数列,所以a n +1-a n =|a n +1-a n |=p n.而a 1=1,因此 a 2=p +1,a 3=p 2+p +1.又a 1,2a 2,3a 3成等差数列,所以4a 2=a 1+3a 3,因而3p 2-p =0,解得p =13或p =0.当p =0时,a n +1=a n ,这与{a n }是递增数列矛盾,故p =13.(2)由于{a 2n -1}是递增数列,因而a 2n +1-a 2n -1>0,于是(a 2n +1-a 2n )+(a 2n -a 2n -1)>0.①因为122n <122n -1,所以|a 2n +1-a 2n |<|a 2n -a 2n -1|.②由①②知,a 2n -a 2n -1>0,因此a 2n -a 2n -1=⎝ ⎛⎭⎪⎫122n -1=(-1)2n 22n -1.③ 因为{a 2n }是递减数列,同理可得,a 2n +1-a 2n <0,故a 2n +1-a 2n =-⎝ ⎛⎭⎪⎫122n =(-1)2n +122n.④ 由③④可知,a n +1-a n =(-1)n +12n. 于是a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+12-122+…+(-1)n2n -1=1+12·1-⎝ ⎛⎭⎪⎫-12n -11+12=43+13·(-1)n2n -1. 故数列{a n }的通项公式为a n =43+13·(-1)n2n -1. 15、[2014·全国卷] 等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4.(1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0, 于是10+3d ≥0,10+4d ≤0, 解得-103≤d ≤-52,因此d =-3.故数列{a n }的通项公式为a n =13-3n . (2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n=13⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫110-3n -113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n 10(10-3n ). 16、[2014·山东卷] 已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .解: (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12, 由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)由题意可知,b n =(-1)n -14na n a n +1=(-1)n -14n(2n -1)(2n +1)=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1. 当n 为偶数时,T n =⎝⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝⎛12n -3+⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1=1-12n +1=2n2n +1. 当n 为奇数时,T n =⎝⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝⎛⎭⎪⎫12n -3+12n -1+⎝⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或T n=2n +1+(-1)n -12n +117、[2014·陕西卷] △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,求cos B 的最小值.解:(1)∵a ,b ,c 成等差数列,∴a +c =2b . 由正弦定理得sin A +sin C =2sin B . ∵sin B =sin[π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ).(2)∵a ,b ,c 成等比数列,∴b 2=ac . 由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时等号成立, ∴cos B 的最小值为12.18、[2014·天津卷] 已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n q n -1,x i ∈M ,i =1,2,…,n }. (1)当q =2,n =3时,用列举法表示集合A .(2)设s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,其中a i ,b i ∈M ,i =1,2,…,n .证明:若a n <b n ,则s <t .解:(1)当q =2,n =3时,M ={0,1},A ={x |x =x 1+x 2·2+x 3·22,x i ∈M ,i =1,2,3},可得A ={0,1,2,3,4,5,6,7}.(2)证明:由s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,a i ,b i ∈M ,i =1,2,…,n 及a n <b n ,可得s -t =(a 1-b 1)+(a 2-b 2)q +…+(a n -1-b n -1)q n -2+(a n -b n )q n -1≤(q -1)+(q -1)q +…+(q -1)q n -2-q n -1=(q -1)(1-q n -1)1-q -q n -1=-1<0, 所以s <t .19、[2014·四川卷] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图像上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n b n 的前n 项和T n . 解:(1)由已知得,b 7=2a 7,b 8=2a 8=4b 7,所以2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2, 所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 其在x 轴上的截距为a 2-1ln 2. 由题意有a 2-1ln 2=2-1ln 2,解得a 2=2.所以d =a 2-a 1=1.从而a n =n ,b n =2n,所以数列{a n b n }的通项公式为a n b n =n2n ,所以T n =12+222+323+…+n -12n -1+n2n ,2T n =11+22+322+…+n2n -1,因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n. 所以,T n =2n +1-n -22n. 20、[2014·浙江卷] 已知数列{a n }和{b n }满足a 1a 2a 3…a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2.(1)求a n 与b n .(2)设c n =1a n -1b n(n ∈N *).记数列{c n }的前n 项和为S n .(i)求S n ;(ii)求正整数k ,使得对任意n ∈均有S k ≥S n .解:(1)由题意a 1a 2a 3…a n =(2)b n ,b 3-b 2=6, 知a 3=(2)b 3-b 2=8.又由a 1=2,得公比q =2(q =-2舍去),所以数列{a n }的通项为a n =2n (n ∈N *).所以,a 1a 2a 3…a n =2n (n +1)2=(2)n (n +1).故数列{b n }的通项为b n =n (n +1)(n ∈N *).(2)(i)由(1)知c n =1a n -1b n =12n -⎝ ⎛⎭⎪⎫1n -1n +1(n ∈N *). 所以S n =1n +1-12n (n ∈N *).(ii)因为c 1=0,c 2>0,c 3>0,c 4>0,当n ≥5时,c n =1n (n +1)⎣⎢⎡⎦⎥⎤n (n +1)2n -1, 而n (n +1)2n -(n +1)(n +2)2n +1=(n +1)(n -2)2n +1>0, 得n (n +1)2n ≤5×(5+1)25<1, 所以,当n ≥5时,c n <0.综上,若对任意n ∈N *恒有S k ≥S n ,则k =4. 2014高考文科数列真题1、设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a =( )(A )2 (B )-2 (C )12 (D )12- 解:依题意得2214S S S =,所以()()21112146a a a -=-,解得112a =-,选D. 2、等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S =(A ) ()1n n + (B )()1n n - (C )()12n n + (D)()12n n -3、 (辽宁卷)设等差数列{}n a 的公差为d ,若数列1{2}n a a 为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d >C4、(江西卷)在等差数列{}n a 中,17a =,公差为d ,前n 项和为n S ,当且仅当8n =时n S 取最大值,则d 的取值范围___【答案】718d -<<-【解析】 因为170a =>,当且仅当8n =时n S 取最大值,可知0d <且同时满足890,0a a ><,所以,89770780a d a d =+>⎧⎨=+<⎩,易得718d -<<-5、(广东卷) 等比数列{}n a 的各项均为正数且154a a =,则2122232425log log log log log a a a a a ++++ = 5 .6、(安徽卷)数列{}n a 满足11=a ,)1()1(1+++=+n n a n na n n ,*N n ∈(Ⅰ)证明:数列{}n an是等差数列;(Ⅱ)设3n n n b a =⋅,求数列{}n b 的前n 项和n S(Ⅰ)证:由已知可得111n n a a n n +=++,即111n n a an n +-=+.所以{}n a n 是以111a=为首项,1为公差的等差数列. (Ⅱ)解:由(Ⅰ)得1(1)1n a n n n=+-⋅=,所以2n a n =,从而3nn b n =⋅1231323333nn S n =⨯+⨯+⨯++⋅① 234+13132333-133n n n S n n =⨯+⨯+⨯++⋅+⋅()②①-②得:1321333332+⋅-++++=-n n n n S1331)31(3+⋅---⨯=n n n 233)21(1-⋅-=+n n所以+1(21)334n n n S -⋅+=7、(北京卷)(本小题满分13分)已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.【解析】⑴ 设等差数列{}n a 的公差为d ,由题意得41123333a a d --=== 所以()()11312n a a n d n n =+-==,,.设等比数列{}n n b a -的公比为q ,由题意得344112012843b a q b a --===--,解得2q =. 所以()11112n n n n b a b a q ---=-=. 从而()13212n n b n n -=+=,,⑵ 由⑴知()13212n n b n n -=+=,,.数列{}3n 的前n 项和为()312n n +,数列{}12n -的前n 项和为1212112n n -=--×. 所以,数列{}n b 的前n 项和为()31212n n n ++-.8、(福建卷)在等比数列{}n a 中,253,81a a ==. (1)求n a ;(2)设3log n n b a =,求数列{}n b 的前n 项和n S .9、(本小题满分14分)设各项为正数的数列{}n a 的前n 和为n S ,且n S 满足.222*(3)3()0,n n S n n S n n n N -+--+=∈(1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有11221111(1)(1)(1)3n n a a a a a a +++<+++221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣解令得即即由得从而当时12211222,221,2().313(3),()(),221644111111113(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)(n k k n n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++又当时1)1111111()()11111141223(1)444444111111().11434331(1)44n n n n n +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-10、 (湖北卷)已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得n S 60800n >+?若存在,求n 的最小值;若不存在,说明理由.答案(Ⅰ)设数列{}n a 的公差为d ,依题意,2,2d +,24d +成等比数列,故有2(2)2(24)d d +=+,化简得240d d -=,解得0d =或d =4. 当0d =时,2n a =;当d =4时,2(1)442n a n n =+-⋅=-,从而得数列{}n a 的通项公式为2n a =或42n a n =-.(Ⅱ)当2n a =时,2n S n =. 显然260800n n <+,此时不存在正整数n ,使得60800n S n >+成立. 当42n a n =-时,2[2(42)]22n n n S n +-==.令2260800n n >+,即2304000n n -->, 解得40n >或10n <-(舍去),此时存在正整数n ,使得60800n S n >+成立,n 的最小值为41. 综上,当2n a =时,不存在满足题意的n ;当42n a n =-时,存在满足题意的n ,其最小值为41.11、(湖南卷) 已知数列{}n a 的前n 项和*∈+=N n nn S n ,22. I )求数列{}n a 的通项公式;(II )设()n na n ab n 12-+=,求数列{}n b 的前n 2项和.12、(江西卷)(本小题满分12分)已知数列{}n a 的前n 项和*∈-=N n nn S n ,232. (1)求数列{}n a 的通项公式;(2)证明:对任意1>n ,都有*∈N m ,使得m n a a a ,,1成等比数列. 解析:(1)当1n =时111a S == 当2n ≥时 ()22131133222n n n n n n n a S S n ---+-=-=-=-检验 当1n =时11a = 32n a n ∴=-(2)使m n a a a ,,1成等比数列. 则21n m a a a =()23232n m ∴--=即满足()2233229126m n n n =-+=-+ 所以2342m n n =-+则对任意1>n ,都有2342n n N *-+∈所以对任意1>n ,都有*∈N m ,使得m n a a a ,,1成等比数列.13、(全国大纲卷)数列{}n a 满足12212,2,22n n n a a a a a ++===-+. (1)设1n n n b a a +=-,证明{}n b 是等差数列; (2)求{}n a 的通项公式.14、(山东卷)在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项. (I)求数列{}n a 的通项公式;(II )设(1)2n n n b a +=,记1234(1)n n n T b b b b b =-+-+-+-…,求n T .15、(全国1卷)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
2014高考题分类-(文科)数列(含答案)1、(2014年高考重庆卷文2)在等差数列{a n}中,a i 2 , a3 a5 10,则a7 ( )A. 5B. 8 C . 10 D. 141、解:.••数列{a n}是等差,a3 a5 10 ,・°・ 5 , a? 2a4 a 8 , •••选B.2、(2014年高考天津卷文5)设a…是首项为3 ,公差为1 的等差数列,S”为其前n项和,若S,S2, S4成等比数列,则 & =()A. 2B. - 2C. - D .222、解:• a”是首项为a,,公差为1的等差数列,S”为其前”项和,又• S” S2, S4 成等比数列,...佝a2)2= a1(a a2 a3 a«),即2(2a1 1) = a1 (4a1 6),解得a1 —2,••选D3、(2014年高考新课标2卷文5)等差数列a n的公差为2,若a2,a4,a8成等比数列,贝廿a.的前n项S.= ( )B. n n 1C.D.23、解:.•.等差数列a”的公差为2,且a2 , a4 , 成等比数列,二a42= a?a8 ,即(印6)2=⑻2)⑻14),解得a 2,则a n 2n,二选A4、(2014年高考全国卷文8).设等比数列©}的前n项和为S n,若S2 3,S4 15,则S6 ()A . 31 B. 32 C. 63 D ・644、解:••由等比数列{a n}的前n项和S,的性质得:S2 , S4 -S2, S6 —S4成等比数列,即3,12,S6—15 成等比数列,••• 122= 3(S—15), 解得:S e = 63,二选C5、(2014年高考辽宁卷文9).设等差数列{a n}的公差为d, 若数列0an}为递减数列,则()DA・d 0 B・d 0 C・a-|d 0 D . qd 06、(2014年高考江苏卷文7)在各项均为正数的等比数列,则a6的值是▲.{a n}中,a2 1, a8 a6 2a4【答累】A【解析】设公上匕为哲因为?刚由陽=令+纠得字"二『+2亍* -1?'2— 2 = 0(解得叨'二2 * 所园盹-n才=4・【着点】等比数列餉通项公式7、(2014年高考江西卷文13)在等差数列a n中,a1 7 ,公差为d ,前n 项和为S n,当且仅当n 8时&取最大值,则d 的取值范围 __________ .7、解:因为a i7 0,当且仅当n 8时Sn 取最大值,可知d 0且同时满足a 80,a 90,二a 87 If 0,解得1 d 7,・••答案1 d 1& (2014年高考广东卷 文13).等比数列a n的各项均为正数,且a ’a s4,贝Ulog 2 a 1 +log 2a 2+log 2a 3+log 2a 4+log 2 a 5= _________________.答案:5 提示: 设 Slog 2 a 1 log 2 a 2 log 2 a 3 log 2 a 4 log 2a 5,则 S log 2a 5 log 2a 4log 2 a 3 log 2 a 2 log 2 a 1,5log 2 4 10,a 9 7 8d 02S 5log 2(a i a s ) S 5.9、(2014年高考新课2卷文16)数列{a n}满足a”1[1 a na 2= 2,则a1 = ___________9、解:由已知得10、(2014年高考北京卷 已知a n是等差数列,满足 b 420,且b n a ”是等比数列.(1) 求数列a n和h 的通项公式; (2) 求数列0的前n 项和.文15) a 13,a(本小题满分13分)12,数列b n满足b i4 ,2项公式及其前n 项和T n.(15) f 共 13 分 >«t ( I )设聲筈数列扫」的分建为# +由题倉需所以 u n -Vi t i (N -1)(/ 3n)*设事比数列他-碍}的总比为「V^.1=2£zl£=g r 無% 岛一打I 4-3从丽氏=抑+ 2* 1 5工12- (11J 曲(1 ) + (fl = l31 . 1 -2*艸如伽"和吟仞0犠輸科潤鼬项和环—=r所乩数囲世」的前"顶櫛为]附小心I,11、 (I : (2014年高考重庆卷 文16)(本小题满分 小问6分,(II )小问5分)已知a n是首相为1,公差为2的等差数列,S13分. 表示an的前n 项和. (I )求aII )设 a 41 q S 40 及5 ;b n是首相为2的等比数列,公比 求S 的通q满足I )因为2」垦苗顶眄訂扭蛙"2的零養敦列[析民12、_ ・i 喊眄 *口J n(l<2rt"l> 2K 5, = 3 +3 + ■-■ + (I FI亠I J 工 - ; ---- = --- 二片・CH)*( 1)^^=7.5^ 讥18为孑-心咖*Sj =o t即『-阳416 =o tBrijtfi -4)a =fi,从■而电=址3t® 6."・I妬f屋公比厂目的舗塩融列,所瓯虹胡厂'=2 - 4*_, =2fc_L从阿血丨的枫M和町帀啤二住=寻仟-I )■(2014年高考湖南卷文16).(本小题满分12分)2已知数列a n的前n项和S n亍,n N(I)求数列a n的通项公式;(II )设b 2an1n a n,求数列b n的前2n项和.I )当” I 时* H,V;an[上肾(用・】)*4(jr・|)7 1当用荒2吐d, = 5故盟蚪{% J的划顶公式为匹■ e im由HA灿‘才•(“衍础姗{耐的诃斟顶和为g剧Tj, = C21 + 2^+■*■■+■ I s*)+(—I 4 2- 3+4 —+ 2h),启斗-【*2・3 + £—半加"财-|>-ISlJS捌他}的曲舸段和乙旷口丹7-13、(2014年高考福建卷文17). 已知等比数列{a n}中,a2 3,a5 81.(I )求数列{臥}的通项公式;求数列{b n}的前n项和S (本小题满分12分)a2(II )若数列 6IOg3a n ,13、考查等差、等比数列等基础知识,考查运算求解能力,考查化归与转化思想解:(I )设{a n}的公比为q ,依题意得3 a 1q 481,解得n(d 2 因此,a n3n1(II ) V 数列 b nb n ) = n 2n2 'log 3a n= n 1,・°・数列{b n}的前n 项和S =14、(2014年高考江西卷 文17) 2已知数列a n的前n 项和S n詈(1) 求数列a n的通项公式;(2) 证明:对任意n 1,都有m比数列.解析: 14、 (本小题满分12分)N,使得a 1, a n, a m成等(1 )当 n 1 时 a ,S 1 当n 2时 % S S 检验当n 1时a 1a”使印,a n, a m成等比数列.则 a n2= a 1a m3n 2"=3m 23m 3n 2 2 2 9n 2 12n 6所以m 3n 24n 221 n 1 3n2 23n 2 (2) 即满足则对任意n 1 ,都有3n 24n 2 N所以对任意n 1 ,都有m N ,使得a” a n, a ”成等比数列.15、(2014年高考全国卷 文 仃).(本小题满分10分)数列{a n}满足 印 2,a 22,an 22a . 1 a . 2(1) 设bn a n 1 a n,证明{bn}是等差数列;(2) 求{a n}的通项公式.(17) t *汕仆)T ; J A 小=LHi = 2&n » I "1T I J 可匪t 九甘[曹用觌列I (n ) 如的逍顼笛亠 W J [ I ) th j: = m ■ 1 -日"2 褐- art*i *4fnt+i - ti> + 2-X 枷匸出g 曲=11巧旦內}!上门卷X 处…2的带•岸歌吩hl[-应I xjiJ E9 乔[五X + ■f.・1 *蹄以細増強武为-分)已知a n是递增的等差数列,a 2, a 4是方程x 25x 6根。
2014年全国高考数学分类汇编-数列全国2014年高考数学(理科)分类汇编1(2014福建理)3.等差数列{a n}的前n项和S.,若a i 2,S3 12,贝V a6 ()A.8B.10C.12D.142(2014广西理)10.等比数列3”}中,a4 2,35 5,则数列{lg a…}的前8项和等于()A. 6 B . 5 C . 4 D . 33(2014广西文)8.设等比数列{a”}的前”项和为S n,若S2 3,S4 15,贝V S6 ()A. 31 B . 32 C . 63 D ・644(2014重庆文)2.在等差数列{a…}中,印2,a3 a5 10,则a7 ()A.5B.8C.10D.145(2014辽宁文理)8.设等差数列啣的公差为d, 若数列{2宀为递减数列,则(A. d 0B. d 0C. a-|d 0D. a1d 06(2014天津文)5.设a…是首项为a,,公差为1的等差数列,S n为其前n项和,若s, S2, S4,成等比数列,则a1=(A.2B.-2C. 1 D . 12 27(2014课标2文)(5)等差数列a n的公差为2,若a 2, 34, a 8成等比数列,则a 的前n 项和S.= () (A ) n n 1 ( B ) n n 18(2014重庆理)2.对任意等比数列{a n},下列说法 一定正确的是 ( ) A. 31,33,39成等比数列 B. a 2,a 3,a 6成等比数列成等比数列 D -a 3,a 6,a 9成等比数列9(2014安徽理)12.数列a n是等差数列,若311, 333, 355构成公比为q 的等比数列,贝y q _____________________ .10(2014安徽文)12.如图,学科网在等腰直角三 角形ABC 中,斜边BC 2迈,过点A 作BC 的垂线,垂足为 几;过点片作AC 的垂线,垂足为 A 2;过点A 作AC的垂线,垂足为A 3;…, 以此类推,设BA 31 , AA 1 32, A 1A 2 33,•…, A 5A 6 37,贝U 37.11(2014北京理)9.若等差数列a n满足a-i a 8 a90 , a 7 a io0 , 则当n _____________________(C )呼(D) n n 12~时a”的前n项和最大.12(2014广东理)13 .若等比数列a n的各项均为正数,且a0a” a g a>2 2e5,则ln a1 In a2In a2n_________ . ______13(2014广东文)13.等比数列a n的各项均为正数,且时 5 4 ,贝U Iog2 a1 Iog2a2 Iog2a3Iog2 a4 Iog2 a5 ___________________________________14(2014江苏文理)7.在各项均为正数的等比数列{a n}中,a2 1, a8 a6 2a4,则a6 的值是____15(2014江西文)14.在等差数列{a…}中,& i,公差为d,前n项和为{an},当且仅当n 8时S取最大值,则d 的取值范围___________ .16(2014天津理)(11)设a n是首项为&,公差为-1的等差数列,S n为其前n项和.若S0S4成等比数列,则a 的值为_______________ .17(2014课标2文)(16)数列a n满足a n 1,a2=2,贝H a i = __________【答案】CCCBC DAD 9. 1 10. 111. 816.仃.1全国2014年咼考数学(文史)分类汇编 1(2014重庆文)16.已知a n 是首项为1, 公差为2的等差数列,S n表示a n的前n 项和.(I )求 a n 及 S ;(H )设b n是首项为2的等比数列,公比q 满足 q 2色1 q S 0,求b n的通项公式 及其前n 项和T n.【点拨】⑴a 2n 1,S n 2;(n )由 q 2a 41 q S 0得 q 4 ,所以 b n22n1,T n 2(4n 1)2(2014重庆理)22.设a 1 1,0.1 .a : 2a n 2b (n N*)(1)若b 1,求a 2,a 3及数列{%}的通项公式;⑵ 若b 〔,冋:是否存在实数C 使得a 2nc a 2n 1对所有 n N*成立?证明你的结论.5n2【点拨】(1) a 1,a2 2,a3 5.2 1,& 1,猜想a n 1 1(可数归完成);(2)设函数f(x) x2 2x 2 1,令f(x) x 得不动点x 4.仿(1)得a1 1,a2 0,a3 2 1,用数学归纳法可证明:a2n 1 a2m. 事实上,1O当n 1 时,32 0 4 v2 1 a3显然成立.2o.假定当n k时,a2k : 32k 1成立,那么「"当n k 1 时,Qa2k 2 f (a2k 1) (a2k 1 1)21 1(a2k 2 1)2 (32k 1 1)21 (32k 2 1)2([ 1)2 1这就是说当n k 1时,a2k2 1 a2k 3也成立.3(2014浙江文)19、已知等差数列{a n}的公差d 0, 设{a n}的前n 项和为S n,a1 1,S2 S3 36.(1)求d及S n ;⑵求m,k (m,k N*)的值,使得i 3m 1 3m 2 L 3m k 65【点拨】(1) d 2,S n n2;⑵Q3m 2m 1, (k 1)(2m 1)冬严 2 654(2014浙江理)19.已知数列{3n}和{b n}满足a&L 3n( 2)s(n N ).若{a n}为等比数列,且 3 2,& 6 b又32k 3 f (32k 2) (32k 3 1)2(32k 2 1)2 11 43k2a(k 1)(2m k 1) 5 13 k 1 5 k 4 ... 2m k 1 13 m 5⑴求a n与b n;(2)设c a _L(n N).记数列{c n}的前n 项和为S n. ( i ) 求 S ; (ii )求正整数k ,使得对任意nN ,均有& 【点拨】(1)aa 2a 3 \2 ,a i a 2得 a 3268 .从而 q 2, a n a sqn 32n.由 a i a 2L a n( 2户 2 2)2【b n(n 1)(2) G 丄1吉(丄斗).所以a n t n 2n n n 1(i) S cia a L a 古》(分组裂项)(ii)Q^ ML 1 i)鳥 1)2",易见",C 2,C 3,C 4 0,当n 5寸,c n0. 可见S 4最大,即S 4 S n . k 4■5(2014 a n 13a n1 .(I)证明(U)证明: 【点拨】(I)在a n 1 3(『2),可见数列a 1是以3为公比,以a 1 3为首项 的等比数列.故a n 2贰1叮.(H)法1(放缩法)Q^尹课标2理)17.已知数列a n满足a=1, 1是等比数列,并求a n的通项公式; 丄1…+丄3a 1 a 2 a n2 -a n1 3a n 1中两边加2:a2 3n 1 1 2 1 2 1 L 2 1 1 1 32 1 1 33 1 1 3n 1 1 12 (本题用的是"加点糖定理")法2(数学归纳法)先证一个条件更強的结论20■假疋对于n 新命题成立,即1 3 1 3a 2 2 3n1 2天津文理)19.已知q 和n 均为给定的大于 1的自然数■设集合M 0,1,2丄,q 1,集合A xx X 1 X 2q L x!q n 1,x M ,i 1,2,L ,n(1) 当q 2 , n 3时,用列举法表示集合A ; (2) ^设 s,t ? A , s ai a 2q L a nq n 1,t b bq L bq n1,其中 a,b M , i 1,2,L ,n .证明:若 3nb ,则 s< t . 【点拨】(I )解:当q 2 , n 3时,M 0,1 ,2x 2 4x s ,x 酣弓卑,2,3为 x ^x 中^ x,x 2,X 30 0 0 0勺 10 0 1 1 0 1 0 1 0 1 1 0 10 0 1 1 11 a2 31 2 1 1 L 132 93a n L 1a3 1氏1al13n0 ^1 2 3 2 2 1 1 a新命题成立.T,那么对于n一23 21al L 1a1al1al a1-a 1a3 1al3n3n3n6(2014 _ 2 3 2 4 3 5 4 1a2可得, A 0,12,3,4,5,6,7 .(H)证明:由 s,t?A , s a a 2q L a nq n 1, t bi bq L b nq n 1, Q,b Ms ta ib a 2 b ? q L an i b n i q n 2a nq n 1.q 1 q 1 q L q 1 q n 2 q n 17(2014四川文)19.设等差数列{a n}的公差为d ,点 (命)在函数f(x) 2x的图象上(nN ). (I)证明:数列⑹为等比数列;(H) 若& 1 ,函数f(x)的图象在点(a 2,b 2)处的切线在x 轴 上的截距为2侖,求数列{a nb 2}的前n 项和S n.【点拨】(I) 丫亍2d…(H) f (x) 2xln2 , k 刀2勺n2.切线方程y 2a2 2判n2(x a 2),依题设有a 2爲2爲a 2 2, b 24 . ^从a nb n 2 n 4n(等比差数列,乘公比、错位相减)得(3n 1)4n1 4$ 98(2014四川理)19.设等差数列{a n}的公差为d , 点®,b n)在函数f(x) 2x的图象上(nN *).(I) 若4 2,点(a 8,4b 7)在函数f(x)的图象上,求数列{a n}i 1,2丄,n 及an bn,可得q 1 1 q n 1q n 1 1 o.所以, s< t .的前n 项和S n;(2) 若 a 1,函数f(x)的图象在点(a 2,b 2)处的切线在X 轴 上的截距为2需,求数列©的前n 项和T n.【点拨】(1) Q4b 72a82a8 2b r2a7d 2. S n 23n ;(2) f (x) 2Xln2, k 切2Tn2 . 切线方程 y 2a2魯n2(x a 2),依题设有a 2爲2爲 比 2 , b24 .从而 b n 21(等比差数列,乘公比、错位相减)得T n2n2n29(2014上海文)23.已知数列满足3a n a n 1 3a n ,n N 1(1) 若322,83x,a 49,求x的取值范围;(2) 若{a n}是等比数列,且a m血,求正整数m 的最小值,以及m取最小值时相应{aj 的公比;(3) 若a 1,a 2,L ,a 100成等差数列,求数列 a 1,B 2,L ,9!00的公差的取值范围.⑵易见 an0,3a n a n 1 3a n3 q 3又am10k 1 qm1 (3)m1 m 8,m 8.q 宦10 -(3) ^①当 n 1 时,a 1, [a a 1d 3a13【点拨】(1)由a 2 a 3 3a 2 a 3 a 4 3a 3x [3,6];②当 2 n 100时,印 iga.! a n3am d 2器取 n1gd i99.综上島d 2・10(2014上海理)23.已知数列{a n }满足1 3a n an 1 3环门 N 1 -(1)若 a 22,a 3x,a 49 ,⑵没a n是公比为q 等比数列,S n a 1 a> a j L a n,ig,S, 1 3S,n N求q 的取值范围;3(3)若a 1,a 2,L ,ak成等差数列,且a 32L a k1000,求正整数k 的最大值,以及k 取最大值 时相应数列a 1,a 2,L 耳的公差.【点拨】(1)由3:(2)由加 a n q 3a n,ai 1 [3S S a 1q 3S i ,1 q 2.下面证明任意的n 2,上式都成立. ①当q 1时,显然成立. ②当q 1时,显然成立.对于右不等式等价于 亡严 0.令f (x )—q 二X1),1 q 1 q f (x) q; l J q(q 3) 0,要使 f(x) 0,只需 f(1) 0即書0 q 2 .结合q /a 3 3a2 ”x [3,6]; a 4 3a3,结合 11 (1 q n) 1(1 q n 1)3 1 q 1 q3罟,其中左不等式11(2014山东文)(19)在等差数列{a n}中,已知公 差 d 2, a 2是a 1与a 4的等比中项. (I )求数列{a n}的通项公式;(1)nb ,求 T n.【点拨】(I ) 212 , an 2n(D ) h n (n 1)(分奇偶讨论求和)(n 为奇数)1 n (n 2)(为偶数)12(2014山东理)19.已知等差数列{a n}的公差为 2,前n 项和为S n,且S 1,S 2,S 4成等比数列.(I )求数列{a n}的通项公式;(H )令b ( 1厂盘,求数列{b n}的前n 项和T n.得到【点拨】(I ) a 1,a n2n 1;n取2n1 1000 k a i(2 1) dk(k 1) 2 2 2k 1)k 1999,从而当 k 1999时,q2 1999 -(II )设 b,记T nqa3kS n3n 2 n(n ) b n ( 1叱1 2n 1 1](分奇偶讨论,最后合并)Tn2n;m ( 1)n.13(2014课标1文)17.已知a n是递增的等差数 列,a 2,a 4是方程X 25x 6 0的根。
2014全国各地高考数列真题
山东:
1、 (本小题满分12分)
在等差数列{}n a 中,已知公差为2,2a 是1a 与4a 的等比中项. (I)求数列{}n a 的通项公式;
(II )设(1)2
n n n b a +=,记1234(1)n n n T b b b b b =-+-+-+-…,求n T .
答案1、解:
(I )由题意知2111()(3)a d a a d +=+, 即2111(2)(6)a a a +=+, 解得12a =,
所以数列{}n a 的通项公式为2n a n =. (II )由题意知(1)2
(1)n n n b a n n +==+.
所以122334(1)(1)n n T n n =-⨯+⨯-⨯++-⨯+ . 因为12(1)n n b b n +-=+. 可得,当n 为偶数时,
12341()()()n n n T b b b b b b -=-++-+++-+
48122n =++++
(42)
22n
n += (2)2
n n +=
当n 为奇数时,
1()n n n T T b -=+-
(1)(1)
(1)2
n n n n -+=
-+
2(1)2
n +=-
所以2(1),2(2)2
n n n T n n n ⎧+-⎪⎪=⎨+⎪⎪⎩为奇数,为偶数. 上海:
2、 (本题满分18分)本题共3个小题,第1小题满分3分,第2
小题满分6分,第3小题满分9分. 已知数列{}n a 满足1113,*,13
n n n a a a n N a +≤≤∈=. (1)若2342,,9a a x a ===,求x 的取值范围; (2)若{}n a 是等比数列,且1
1000
m a =
,求正整数m 的最小值, 以及m 取最小值时相应{}n a 的公比;
(3)若12100,,,a a a 成等差数列,求数列12100,,,a a a 的公差的取值范围.
答案2、解:(1)由题得,2
63
[3,6]933
x x x x ⎧≤≤⎪⎪⇒∈⎨
⎪≤≤⎪⎩ (文科)(2)∵11
33
n n n a a a +≤≤,且数列{}n a 是等比数列,11a =,
∴11133n n n q q q --≤≤,∴1
11()03(3)0n n q q q q --⎧-≥⎪
⎨⎪-≤⎩
,∴1[,3]3q ∈。
∴111000m m a q -==
,∴1311
1log 1log 10001000
q m =+≥+,又∵m N *∈,∴8m ≥
∴m 的最小值为8,此时1log 71000q
=,即71
1000
q =。
(3)由题得,∵1133
n n n a a a +≤≤,且数列数列12100,,a a a 成等差数列,
11a =,
∴1
[1(1)]13[1(1)]3
n d nd n d +-≤+≤+-,∴(21)2(23)2
d n d n +≥-⎧⎨-≥-⎩,∴2
[,2]199d ∈- 四川:
3、(本小题满分12分)
设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(n N *∈)。
(Ⅰ)证明:数列{}n b 为等差数列;
(Ⅱ)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距
为1
2ln 2
-
,求数列2{}n n a b 的前n 项和n S 。
答案3、(1)详见解析;(2)1(31)44
9
n n n T +-+=.
试题分析:本题考查等差数列与等比数列的概念、等差数列与等比数列的通项公式与前n 项和、导数的 几何意义等基础知识,考察运算求解能力、推理论证能力。
(1)由已知,2n
a n
b =0>..
当1n ≥时,
11
22n n a a d n n
b b +-+==. 所以,数列是首项为1
2a ,公比为2d 的等比数列.
(2)()2x f x =求导得()2ln 2x f x '=,所以()2x f x =在22(,)a b 处的切线为
2222ln 2()
a y
b x a -=-,令
y =得
222221
(2ln 2)(),,2ln 2
a b x a x a a -=⨯-=-
∴=, 所以211,n d a n =-=∴=,2n n b =.所以24n n n a b n =⋅, 其前n 项和:231142434(1)44n n n T n n -=⋅+⋅+⋅++-⋅+⋅ 两边乘以4得:23414142434(1)44n n n T n n +=⋅+⋅+⋅++-⋅+⋅ 得:12
3
1
144444444
43
n n
n n n n T T n n +++--=++++-⋅=-⋅ ,
所以1(31)44
9
n n n T +-+=.
新课标:
4、 (本小题满分12分)
已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
(I )求{}n a 的通项公式; (II )求数列2n n a ⎧⎫
⎨⎬⎩⎭
的前n 项和. 答案4、解:
(I )方程2560x x -+=的两根为2,3,由题意得242, 3.a a == 设数列{}n a 的公差为d ,则422,a a d -=故1
,2
d =从而13,2
a = 所
以
{}
n a 的通项公式为
1
12
n a n =
+ (II )设2n n a ⎧⎫
⎨
⎬⎩⎭
的前n 项和为,n s 由(I )知12,22n n n a n ++=则 2313412
...,2222n n n n n s +++=
++++ 341213412 (22222)
n n n n n s ++++=++++ 两式相减得
31213112(...)24222
n n n n s +++=+++- 123112
(1).4422n n n -++=+--
14
2.2
n n n s ++=-
浙江:
5、(本小题满分14分)
已知等差数列{}n a 的公差0d >,设{}n a 的前n 项和为n S ,11a =,
2336S S ⋅=
(1)求d 及n S ;
(2)求,m k (*,m k N ∈)的值,使得1265m m m m k a a a a +++++++= . 答案5.本题主要考查等差数列的概念、通项公式、求和公式等基础知识,同时考查运算求解能力。
满分14分。
(1)由题意,36)33)(2(11=++d a d a , 将11=a 代入上式得2=d 或5-=d ,
因为0>d ,所以2=d ,从而12-=n a n ,2n S n =(*∈N n ). (2)由(1)知,)1)(12(1+-+=+⋅⋅⋅++++k k m a a a k n n n , 所以65)1)(12(=+-+k k m , 由*∈N ,k m 知,1)1)(12(>+-+k k m , 所以⎩⎨
⎧=+=-+5
113
12k k m ,所以⎩⎨⎧==45k m .
重庆:
6、 (本小题满分13分.(I )小问6分,(II )小问5分)
已知{}n a 是首项为1,公差为2的等差数列,n S 表示{}n a 的前n 项
和.
(I )求n a 及n S ;
(II )设{}n b 是首项为2的等比数列,公比q 满足
()01442=++-S q a q ,求{}n b 的通
项公式及其前n 项和n T . 答案6、解:
(I )因为{}n a 是首项11a =,公差2d =的等差数列,所以
()1121n a a n d n =+-=-
故()()
12121,13(21)22
n n n a a n n S n n ++-=+++-=
== (II )由(I )得,447,16.a S ==因为()01442=++-S q a q ,即28160q q -+=
所以()2
40q -=,从而4q =.
又因12b =,是{}n b 公比4q =的等比数列,所以11211242n n n n b b q ---==⋅= 从而{}n b 的前n 项和()()1124113
n n
n b q T q
-==
--。