2012学年普陀区九年级数学期终调研试卷
- 格式:doc
- 大小:217.00 KB
- 文档页数:4
数学试卷(时间:100分钟,满分:150分)考生注意:所有答案务必按照规定在答题纸上完成,写在试卷上不给分一、单项选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.下列各数中无理数共有………………………………………………………………( ).①–0.21211211121111,②3π,③227(A) 1个; (B) 2个; (C) 3个; (D) 4个.2. 如果a >1>b ,那么下列不等式正确的个数是…………………………………………( ).① a –b>0,② a -1>1–b ,③ a -1>b –1,④1ab>. (A) 1; (B) 2; (C) 3; (D) 4. 3.在下列方程中,有实数根的是…………………………………………………………( ).(A) 2310x x ++=; (B) 10=;(C) 2230x x ++=; (D)111x x x =--. 4.下列语句正确的是……………………………………………………………………( ).(A)“上海冬天最低气温低于–5 ºC ”,这是必然事件; (B) “在去掉大小王的52张扑克牌中抽13张牌,其中有4张黑桃”,这是必然事件; (C) “电视打开时正在播放广告”,这是不可能事件;(D) “从由1,2,5组成的没有重复数字的三位数中任意抽取一个数,这个三位数能被4整除”,这是随机事件.5. 上海市2012年5月份某一周的日最高气温(单位:ºC )分别为28,30,25,29,31,32,28,这周的日最高气温的平均值为……………………………………………( ). (A) 28ºC ; (B) 29ºC ; (C) 30ºC ; (D) 31ºC . 6.对于一个正多边形,下列四个命题中,错误的是……………………………………( ). (A )正多边形是轴对称图形,每条边的中垂线是它的对称轴; (B )正多边形是中心对称图形,正多边形的中心是它的对称中心; (C )正多边形每一个外角都等于正多边形的中心角; (D )正多边形每一个内角都与正多边形的中心角互补.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置] 7.计算:()33a a --⋅= .8.函数()2f x x=- 的定义域是 . 9.若2(0)3a cb d b d ==+≠其中,则a cb d ++= . 10.某城市现有固定居住人口约为一千九百三十万,用科学计数法表示为 人. 11.不等式组10,24x x ->⎧⎨<⎩的解集是 .12. 分解因式:227183x x ++= .13.如果两个相似三角形的面积之比是16∶9,那么它们对应的角平分线之比是 . 14. 有6张分别写有数字1、2、3、4、5、6的卡片,它们的背面相同,现将它们的背面朝上,从中任意摸出一张是数字5的机会是 . 15.如图,在平行四边形ABCD 中,点E 、F 分别是AB 、CD 上的中点,记AB a =,AD b =. 用含a 、b 的式子表示向量AF = .16. 为了了解中学生的身体发育情况,对第二中学同年龄的80名学生的身高进行了测量,经统计,身高在150.5—155.5厘米之间的頻数为5,那么这一组的頻率是 . 17.地面控制点测得一飞机的仰角为45°,若此时地面控制点与该飞机的距离为2000米,则此时飞机离地面的高度是 米(结果保留根号).18.已知在△AOB 中,∠B =90°,AB=OB ,点O 的坐标为(0,0),点A 的坐标为(0,8),点B 在第一象限内,将这个三角形绕原点O 旋转75°后,那么旋转后点B 的坐标为 .三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分)19(4)2tan303ππ--︒--.E20.解方程组:222,22212.x y x xy y x y =+⎧⎨-+++=⎩21. 如图:已知,四边形ABCD 是平行四边形,AE ∥BD ,交CD 的延长线于点E ,EF ⊥BC 交BC 延长线于点F , 求证:四边形ABFD 是等腰梯形.第21题CAB FED22.一辆汽车,新车购买价20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同. 已知在第三年年末,这辆车折旧后价值11.56 万元,求这辆车第二、三年的年折旧率.23.如图,已知⊙O 的半径为5,弦AB 的长等于8,OD ⊥AB ,垂足为点D ,DO 的延长线与⊙O 相交于点C ,点E 在弦AB 的延长线上,CE 与⊙O 相交于点F ,cos C =35,求:(1)CD 的长(5分);(2)EF 的长(7分).D 第23题 AE B CO F24. 如图,抛物线c bx x y -+=2经过直线3-=x y 与坐标轴的两个交点A 、B ,此抛物线与x 轴的另 一个交点为C ,抛物线的顶点为D . (1)求此抛物线的解析式(4分); (2)点P 为抛物线上的一个动点,求使APC S ∆∶ACD S ∆=5∶4的点P 的坐标(5分);(3)点M 为平面直角坐标系上一点,写出使点M 、A 、 B 、D 为平行四边形的点M 的坐标(3分).第24题第25题2012学年度第二学期普陀区九年级质量调研数学试卷参考答案及评分说明一、单项选择题:(本大题共6题,每题4分,满分24分)1.(C) ; 2.(B) ; 3.(A) ; 4.(D) ; 5.(B); 6.(B).二、填空题:(本大题共12题,每题4分,满分48分) 7. –1; 8. 0x ≥且2x ≠; 9.23; 10. 71.9310⨯; 11. 12x <<; 12.()2331x +; 13.4∶3; 14.16; 15. b +12a ;16.116; 17. ; 18.(2-)或(-,). 三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.解: 原式=12(3)3π-⨯--…………………………………8′(各2分)=23π-+. ……………………………………2′ 20.解:222,(1)22212.(2)x y x xy y x y =+⎧⎨-+++=⎩由(1)得:2x y -=. (3)…………………………………………1′由(2)得:2()2()12x y x y -++=. (4)……………………………(2+1)′ 将(3)代入(4),得:4x y +=.………………………………………………2′可得:4,2.x y x y +=⎧⎨-=⎩…………………………………………………………1′解方程组得:3,1.x y =⎧⎨=⎩…………………………………………………2′∴原方程组的解为:3,1.x y =⎧⎨=⎩ ……………………………………………1′21.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ; AB ∥CD ,AB =CD . ……………………………………3′∴AB ∥DE ;又∵AE ∥BD ,∴四边形ABDE 是平行四边形. ………………………1′ ∴AB=DE . ……………………………………………1′∴CD=DE . ……………………………………………………………………………1′ ∵EF ⊥BC ,∴DF=CD=DE . …………………………………………………………………1′ ∴AB=DF . ……………………………………………………………………1′ ∵CD 、DF 交于点D ,∴线段AB 与线段DF 不平行. ……………………………………………………1′ ∴四边形ABFD 是等腰梯形. ………………………………………………1′22.解:设这辆车第二、三年的年折旧率为x .…………………………………………1′ 根据题意,可以列出方程220(120%)(1)11.56x --=.……………………………………………4′整理,得 2(1)0.7225x -=.……………………………………………1′2289(1)400x -=.……………………………………………1′17120x -=±.…………………………………………………1′解得10.15x =,2 1.85x =(不合题意,舍去).…………………………………1′所以 0.15x =,即15%x =.答:这辆车第二、三年的年折旧率为15%.………………………………………………………1′ 23. 解:(1)联接AO . ……………………………………………………1′ ∵OD ⊥AB ,∴142AD BD AB ===, …………………………………2′∵AO =5,∴OD=3. ……………………………………………………1′ ∴CD=8. ……………………………………………………1′(2)过点O 作OH ⊥HC 于点E , ……………………………………………1′ ∴2CF CH =.………………………………………………………………1′在Rt △OCH 中, ∵cos C =35, HD第23题A EB COF第21题 C AB EDOC =5,∴CH=3. ………………………………………………………2′ 在Rt △CDE 中, ∵cos C =35CDCE =,CD =8, ∴CE=4011333=.………………………………………………………2′∴EF=CE –CF=11136733-=.…………………………………………………1′24.解:(1)∵直线3-=x y 与坐标轴的两个交点A 、B ,∴点B (0,–3),点A (3,0). ………………………2′ 又∵抛物线c bx x y -+=2经过点A 、B ,∴c =3. …………………………………………………1′ 将点A 坐标代入抛物线的解析式c bx x y -+=2, 解得 b =–2. ……………………………………………1′ ∴抛物线的解析式是 322--=x x y . (2)∵抛物线的解析式是 322--=x x y ,可得 C (–1,0),顶点D (1,–4).……………………………………………………2′ 因为点P 为抛物线上的一个动点,设点P (a ,322--a a ), ∵APC S ∆∶ACD S ∆=5∶4,∴454421324212=⨯⨯--⨯⨯a a .∴322--a a =5解得 41=a ,22-=a ; 或5322-=--a a ,因为0<∆,所以无实数解.∴满足条件的点P 的坐标为)5,4(1P ,)5,2(2-P .……………………………………3′ (3)∵点M 、A 、B 、D 为平行四边形,∴点M 的坐标为)1,2(1M ,)7,2(2--M ,)1,4(3-M . ………………………………3′第24题精锐教育网站: - 10 - 精锐教育· 教学管理25. 解:(1)过点P 作PD ⊥AB ,垂足为D .∵∠ACB =90°,∴∠ACB=∠PDB=90°. 又∵∠ABC=∠PBD ,∴△ACB ∽△PDB . ……………………………………2′ ∵AC=6cm ,BC =8cm ,∴AB =10cm . ∵点P 为BC 的中点,∴BP =4cm .∵ABPBAC PD =,解得PD=2.4. ………………………2′ ∵t =1.2,V =2cm/s ,PQ=2⨯1.2=2.4,∴PQ=PD ,即⊙P 与直线AB 相切. …………………2′ (2)当AP=AQ 时, ∵∠ACB =90°,∴CQ=CP =4cm ,∴PQ =8cm . ∴1t =4秒. ………………………………………………1′ 当P A=PQ 时, ∵∠ACB =90°,AC=6cm ,CP =4cm ,∴AP =132cm .∴PQ=132cm . ∴2t =13秒. ……………………1′ 当QA=QP 时,点Q 在线段AP 的中垂线QH 上,垂足为H . ∵∠ACB =90°, ∴cos ∠APC =131321324==AP PC . 又∵cos ∠APC =QPQP PH 13=, ∴1313213=QP ,得 PQ=213,∴3t =413.…………………………………………1′ ∴当t=4秒或13秒或413秒时,△AQP 是等腰三角形. ……………………………1′ (3)∵点P 在⊙O 内,∴⊙P 与⊙O 只可能内切,∵O 为AB 中点,P 为BC 中点,∴圆心距OP=21AC=3cm . ………………………1′ ∵⊙O 是△ABC 的外接圆,∴⊙O 的半径为5 cm ,⊙P 的半径为PQ , ∴5-PQ =3 当PQ –5=3时,PQ =8 cm ,t=4秒;当PQ –5=–3时,PQ=2cm ,t=1秒. ……………………………2′BPCAOQ第25题DBPCAO第25题QH中国领先的中小学教育品牌∴当⊙P与⊙O相切时,t分别为4秒和1秒.…………………………………………1′精锐教育网站:- 11 - 精锐教育·教学管理部。
2012学年普陀区九年级数学期终调研试卷 2012.12.25(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)1.如果:2:3x y =,那么下列各式不成立的是………………………………………( ). (A )53x y y+= ; (B )13x y y-=-; (C )123x y=; (D )1314x y +=+.2.某一时刻,身髙1.6 m 的小明在阳光下的影长是0.4 m ,同一时刻同一地点测得某旗杆的影长是5m ,那么该旗杆的高度是……………………………………………………( ). (A )1.25m ; (B )10m ;(C )20 m ; (D )8m .3.如果二次函数2y x bx c =++配方后为2(2)1y x =+-,那么b , c 的值分别为…( ). (A )4-,5; (B )4,3; (C )4-, 3; (D )4,5. 4.如图,已知抛物线c bx x y ++=2的对称轴为2=x ,点A , B 均在抛物线上,且AB与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为……………………( ).(A )(2,3); (B )(4,3); (C )(3,3); (D )(3,2).5.如图所示,△ABC 的顶点是正方形网格的格点,则sin A 的值为……………………( ). (A ) 12; (B)5; (C)5; (D )10.6. 已知线段a 、b 、c ,求作第四比例线段x ,下列作图正确的是……………………( ).(第4题)(第5题)a xbc a cbx x cba c axb(A ) (B ) (C ) (D ) 二、填空题:(本大题共12题,每题4分,满分48分)7.如果在比例尺为1︰1 000 000的地图上,A 、B 两地的图上距离是1.6厘米,那么A 、B 两地的实际距离是 千米.8.把长度为4cm 的线段进行黄金分割,则较长线段的长是__________cm .9.如果两个相似三角形的对应角平分线比是1︰4,那么它们的周长比是 .10.如果抛物线21)21y m x m x =-++(的图像开口向下,那么m 的取值范围是__________.11.将二次函数22y x =-的图像向右平移1个单位,再向下平移2个单位,所得图像的解析式为 ________________.12.二次函数2y ax bx c =++中,函数y 与自变量x 的部分对应值如下表,则m 的值为__________ .13.在Rt △ABC 中,∠C =90°,B α∠=,A B=2,那么BC = _____________.(结果用α的锐角三角比表示)14.如图,点D 、E 、F 分别是△ABC 三边的中点,那么与D F相等的向量是__________ .15.如图,点G 是△ABC 的重心,AG ⊥GC ,AC =4,那么BG 的长为 ___________. 16.如图,△ABC 中,∠C =90°,BC =6cm ,cot 23A =,那么△ABC 的面积是____________ cm 2.17.如图,某公园入口处原有三级台阶,每级台阶高为18cm ,深为30cm ,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起始点为C ,现设计斜坡BC 的坡度1:5i =,那么AC 的长度是 cm .18. 如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC =,那么四边形MABN 的面积是______________.(第14题)(第15题)(第16题)三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 计算:2cos 30(sin 60)︒⋅︒-.20.(本题满分10分)如图,已知两个不平行的向量a 、b .先化简,再求作:13(3)()22a b a b +-+.(不要求写作法,但要指出所作图中表示结论的向量)21.(本题满分10分)已知:在直角梯形ABCD 中,AD ∥BC ,∠C =90°,AB=AD =25,BC =32.连接BD ,AE ⊥BD ,垂足为点E . (1)求证:△ABE ∽△DBC ;(2)求线段AE 的长.ba(第20题图)(第17题)(第18题)(第21题)(第22题)22.(本题满分10分)21.3,0 63.5929 sin 21.3,tan 21.3,sin 63.5,tan 63.52)25510A CBC C ︒︒︒≈︒≈︒≈︒≈ 一艘轮船自西向东航行,在处测得东偏北方向有一座小岛继续向东航行8海里到达处,测得小岛此时在轮船的东偏北方向上。
2024学年第一学期九年级数学学科期中考试试卷2024.10(时间:100分钟,满分:150分)一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列函数中,一定为二次函数的是()A. B. C. D.2.已知点P是线段AB的黄金分割点,且,那么下列结论正确的是()A. B.C.D.3.如图,在中,点D、E和F分别在边AB、AC和BC上,,,如果,那么下列结论中正确的是()A. B. C. D.4.下列关于向量的说法中,正确的是()A.如果,那么B.如果,,那么C.已知是单位向量,如果,那么D.如果,,其中是非零向量,那么5.在同一平面直角坐标系中,画出直线与抛物线,这个图形可能是()A. B.21yx=()()11y x x=+-2y ax=()21y x x x=-+BP AP>2BP AP AB=⋅2AP BP AB=⋅APAB=BPAP=ABC△DE BC∥DF AC∥34ADBD=34DEBC=34BFCF=37CFBC=37DFAC=k=0ka=2a=1b=2a b=e4a=4ea=23a b c+=2b c=ca b∥y ax b=+2y ax b=+C. D.6.已知在中,点D 、E 分别在边AB 和AC 上,联结CD 、BE 交于点F ,下列条件中,不一定能得到和相似的是( )A. B. C. D.二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.已知,且,那么_______.8.抛物线与y 轴的交点坐标为_______.9.已知二次函数的图像经过点、,那么该二次函数图像的对称轴为直线_______.10.已知二次函数的图像在对称轴的左侧部分是上升的,那么m 的取值范围是_______.11.如图,已知在中,,CD 是边AB 上的高,如果,,那么_______.12.如图,在中,,点D 和点E 在边BC 上,,,那么_______.13.如图,已知,且,那么_______.ABC △ADE △ABC △DF EF BF CF =DF EF CF BF=BDE BFC ∠=∠BDF CEFS S =△△234a b c k ===0k ≠c a c b-=+223y x x =+-()20y x bx c a =++≠()1,1A --()5,1B -()21y m x =+ABC △90ACB ∠=︒3AD =2BD =CD =ABC △3AB AC ==4BE =BAE ADC ∠=∠CD =AD EF BC ∥∥::2:5:7AD EF BC =:AE AB =14.如图,在中,点D 在边BC 上,线段AD 经过重心G ,向量,向量,那么向量______.(用向量、表示)15.如图,一条河的两岸有一段是平行的,在河的南岸边每隔10米种一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P 处看北岸,发现北岸有两根相邻的电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有一棵树,那么这段河的宽度为_______米.16.如图,在中,点D 在边AB 上,,点E 和F 分别在边BA 和CA 的延长线上,且,如果,那么_______.17.定义:如果将抛物线上的点的横坐标不变,纵坐标变为点A 的横、纵坐ABC △BA a = BC b = AG =a b ABC △ACD B ∠=∠CD EF ∥::3:4:2EA AD DB =AEF ABCS S =△△()20y ax bx c a =++≠(),A x y标之和,就会得到一个新的点,我们把这个点叫做点A 的“简朴点”,已知抛物线上一点B 的简朴点是,那么该抛物线上点的简朴点的坐标为_______.18.如图,在矩形ABCD 中,,在边CD 上取一点E ,将沿直线BE 翻折,使点C 恰好落在边AD 上的F 处,的平分线与边AD 交于点M ,如果,那么_______.三、解答题(本大题共7题,满分78分)19.(本题满分10分)如图,已知两个不平行的向量、,求作,满足.(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的向量.)20.(本题满分10分,第(1)小题5分,第(2)小题5分)已知点在二次函数的图像上.(1)求二次函数图像的对称轴和顶点坐标;(2)将二次函数的图像先向左平移4个单位,再向上平移t 个单位后图像经过点,求的值.21.(本题满分10分,第(1)小题5分,第(2)小题5分)已知二次函数的图像经过原点,顶点坐标为.(1)求二次函数的解析式;(2)如果二次函数的图像与x 轴交于点A (不与原点重合),联结OP 、AP ,试判断的形状并说明理由.22.(本题满分10分,第1小题5分,第2小题5分)如图,已知在中,点D 在边AC 上,过点A 作,交BD 的延长线于点E ,点F 是BE 延长线上一点,联结CF ,如果.(1)求证:;(2)如果,,求的值.()1,A x x y +1A 241y ax x =-+()12,3B ()1,C m 1C 1AB =BCE △ABF ∠2AD MF =BC =a bx x ()2a x b x -=- ()3,1-2y x bx b =-++()1,5-t ()2,2P -AOP △ABC △AE BC ∥2BD DE DF =⋅AB CF ∥2DE =6EF =AB CF23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在中,CD 是AB 边上的高,点E 是边AC 的中点,联结ED 并延长交CB 的延长线于点F ,且.(1)求证:;(2)如果,求证:.24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,在平面直角坐标系xOy 中,二次函数的图像与x 轴交于点,与y 轴交于点.(1)求该二次函数的解析式;(2)如果点是二次函数图像对称轴上的一点,联结AD 、BD ,求的面积;(3)如果点P 是该二次函数图像上位于第二象限内的一点,且,求点P 的横坐标.ABC △BD BF =ADE FDB ∽△△2DF AC CF AD=2BC BD AB =⋅22y x bx c =-++()2,0A -()0,4B (),1D m -ABD △PB AB ⊥25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,在矩形ABCD 中,,,点E 是射线D A 上的一点,点F 是边AB 延长线上的一点,且.联结CE 、EF ,分别交射线DB 于点O 、点P ,联结CF 、CP .(1)当点E 在边AD 上时,①求证:;②设,,求y 关于x 的函数解析式;(2)过点E 作射线DB 的垂线,垂足为点Q ,当时,请直接写出DE 的长.2AB =1BC =2DE BF =DCE BCF ∽△△DE x =CP y =14OQ PQ =2024学年第一学期九年级数学学科期中考试卷2024.10参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分)1.B ;2.A ;3.C ;4.D ;5.D ;6.C.二、填空题:(本大题共12题,每题4分,满分48分)7.;8.;9.;10.;;12.;13.;14.;15.;16.;17.;18.三、解答题:(本大题共7题,其中第19—22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.解: ,20.解:(1)∵点在二次函数的图像上,∴把,代入,得.解得.∴二次函数的解析式为.∴对称轴为直线.顶点的坐标为.(2)二次函数的解析式化为.∵将二次函数的图像先向左平移4个单位,再向上平移t 个单位,∴平移后新二次函数的解析式为.∵平移后图像经过点,∴把,代入,得.解得.21.解:(1)∵二次函数图像的顶点坐标为,∴设二次函数的解析式为.∵二次函数的图像经过原点,∴把,代入得..27()0,3-2x =1m <-94352133a b -+ 45238()1,05322a x b x -=- 2x a b =- ()3,1-2y x bx b =-++3x =1y =-2y x bx b =-++193b b -=-++2b =222y x x =-++1x =()1,3()213y x =--+()233y x t =-+++()1,5-1x =5y =-()233y x t =-+++5163t -=-++8t =()2,2P -()222y a x =--0x =0y =()222y a x =--()20022a =--解得.∴这个二次函数的解析式为.(2)∵二次函数的图像与x 轴交于点A ,∴把,代入得,(舍去).得点A 的坐标为.∴.∵,∴.∵,∴是等腰直角三角形.22.解:(1)∵,∴.∵,∴.∴∴.(2)∵,,∴.∵,∴.∵,∴,∴.23.证明:(1)∵,∴.∵CD 是AB 边上的高,点E 是边AC 的中点,∴在中.又∵,∴.∴.∵,∴.∴.(2)∵,∴.∴.∵,∴∴∴.∵,∴.∴.∴.24.解:(1)∵二次函数的图像与x 轴交于点,与y 轴交于点,12a =()21222y x =--0y =()21222y x =--14x =20x =()4,04OA =OP ==AP ==OP AP =222OP AP OA +=AOP △AE BC ∥AD DE CD BD=2BD DE DF =⋅DE BD BD DF=AD BD CD DF=AB CF ∥2DE =6EF =8DF DE EF =+=216BD DE DF =⋅=4BD =AB CF ∥AB BD CF DF =12AB CF =BD BF =F BD ∠=∠Rt ACD △12DE AC =12AE AC =AE DE =A ADE ∠=∠ADE BDF ∠=∠A F ∠=∠ADE FDB ∽△△2DF AC CF AD =DF AE CF AD =DF CF AE AD=A F ∠=∠ADE FCD ∽△△ADE FCD ∠=∠A FCD ∠=∠ABC CBD ∠=∠ABC CBD ∽△△BD BC BC AB=2BC BD AB =⋅22y x bx c =-++()2,0A -()0,4B得解得.∴二次函数的解析式为.(2)∵点是二次函数图像对称轴上的一点,又∵二次函数图像的对称轴为直线.∴,点D 坐标为.设直线AB 的表达式为.∵直线AB 经过,,得,解得,∴直线AB 的表达式为.设抛物线的对称轴与直线AB 交于点E ,得点E 坐标为.∴.∴.(3)过点P 作轴,垂足为H .设点.∴,.∵,又∵,∴.∵,∴.∴.∴.∴(舍去),.即点P 的横坐标是.25.解:(1)∵四边形ABCD 是矩形,∴,,∵,∴.()202224b c c⎧=-⨯--+⎪⎨=⎪⎩2b =-2224y x x =--+(),1D m -12x =-12m =-1,12⎛⎫-- ⎪⎝⎭()0y px q p =+≠()2,0A -()0,4B 024p q q =-+⎧⎨=⎩24p q =⎧⎨=⎩24y x =+1,32⎛⎫- ⎪⎝⎭4DE =1142422ABD ADE BDE S S S DE AO =+=⋅=⨯⨯=△△△PH y ⊥()2,224P t t t --+PH t =-222BH t t =--ABO ABP P PHB ∠+∠=∠+∠90ABP PHB ∠=∠=︒ABO BPH ∠=∠90AOP PHB ∠=∠=︒ABO BPH ∽△△PH BH BO AO =22242t t t ---=10t =234t =-34-2AB CD ==90CDE ABC ∠=∠=︒90CBF ∠=︒CDE CBF ∠=∠∵,∴.∵,∴.∴.∴.(2)∵,∴.即.∵,∴.∴.∴.∵,∴.∴.又∵且,∴.∴.∵,∴.∴.∴.∵在中,,,∴.同理可得∴∴(3)1BC =12BC CD =2DE BF =12BF DE =BF BC DE CD=DCE BCF ∽△△DCE BCF ∠=∠DCE BCE BCF BCE ∠+∠=∠+∠BCD ECF ∠=∠,CD CE CB CF =CD CB CE CF=DCB ECF ∽△△PEC BDC ∠=∠EOP DOC ∠=∠EOP DOC ∽△△OE OP OD OC=OE OD OP OC=DOE COP ∠=∠DOE COP ∽△△EDO PCO ∠=∠EDO DBC ∠=∠PCE DBC ∠=∠ECP DBC ∽△△PC EC BC BD=Rt CDE △DE x =2CD =CE =BD =1y =y =1DE =2DE =3DE =。
普陀区九年级数学期终调研试卷(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 1.如果:2:3x y =,那么下列各式不成立的是( )A .53x y y += ; B .13x y y -=-; C .123x y =; D .1314x y +=+.2.某一时刻,身髙1.6m 的小明在阳光下的影长是0.4m ,同一时刻同一地点测得某旗杆的影长是5m ,那么该旗杆的高度是( )A .1.25m ;B .10m ;C .20m ;D .8m .3.如果二次函数2y x bx c =++配方后为2(2)1y x =+-,那么b ,c 的值分别为( )A .4-,5;B .4,3;C .4- 3;D .4,5.4.如图,已知抛物线c bx x y ++=2的对称轴为2=x ,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为()0,3,则点B 的坐标为( )A .(2,3);B .(4,3);C .(3,3);D .(3,2).5.如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( )A .12; B.; C; D.(第4题)(第5题)6. 已知线段a 、b 、c ,求作第四比例线段x ,下列作图正确的是( )(A ) B . (C ) (D )二、填空题:(本大题共12题,每题4分,满分48分)7.如果在比例尺为1︰1 000 000的地图上,A 、B 两地的图上距离是1.6厘米,那么A 、B 两地的实际距离是 千米.8.把长度为4cm 的线段进行黄金分割,则较长线段的长是__________cm .9.如果两个相似三角形的对应角平分线比是1︰4,那么它们的周长比是 .10.如果抛物线21)21y m x mx =-++(的图像开口向下,那么m 的取值范围是__________.11.将二次函数22y x =-的图像向右平移1个单位,再向下平移2个单位,所得图像的解析式为 ________________.12.二次函数2y ax bx c =++中,函数y 与自变量x 的部分对应值如下表,则m 的值为 __________ .13.在Rt △ABC 中,∠90C =,B α∠=,2AB =,那么BC =_____________.(结果用α的锐角三角比表示)14.如图,点D 、E 、F 分别是△ABC 三边的中点,那么与DF 相等的向量__________.a xbc acb x xcb a cax b15.如图,点G 是△ABC 的重心,AG ⊥GC ,4AC =,那么BG 的长为 ___________.16.如图,△ABC 中,∠90C =,6BC cm =,23cotA =,那么△ABC 的面积是____________2cm .17.如图,某公园入口处原有三级台阶,每级台阶高为18cm ,深为30cm ,为方便残疾人 士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起始点为C ,现设计斜坡BC 的坡 1:5i =,那么AC 的长度是 cm .18. 如图,在△ABC 中,∠90C =,将△ABC沿直线MC 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,6MC =,NC =MABN 的面积是______________.三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)(第14题)(第15题)(第16题)(第17题)(第18题)计算:230(60)cos sin ⋅.20.(本题满分10分)如图,已知两个不平行的向量a 、b .先化简,再求作:13(3)()22a b a b +-+. (不要求写作法,但要指出所作图中表示结论的向量)21.(本题满分10分)已知:在直角梯形ABCD 中,AD ∥BC ,∠90C =,25AB AD ==,32BC =.连接BD ,AE ⊥BD ,垂足为点E . (1)求证:△ABE ∽△DBC ; (2)求线段AE 的长.22.(本题满分10分)一艘轮船自西向东航行,在A 处测得东偏北21.3°方向有一座小岛C ,继续向东航行ba(第20题图)(第21题)80海里到达B 处,测得小岛C 此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近? (参考数据:921.325sin ≈,221.35tan ≈,963.510sin ≈,63.52tan ≈)23.(本题满分12分,其中第(1)小题3分,第(2)小题4分, 第(3)小题5分)如图,点E 是矩形ABCD 的边BC 上一点,EF ⊥AE ,EF 分别交AC 、CD 于点M 、F ,BG ⊥AC ,垂足为点G ,BG 交AE 于点H .(1)求证:△ABE ∽△ECF ;(2)找出与△ABH 相似的三角形,并证明;(3)若E 是BC 中点,2BC AB =,2AB =,求EM 的长.24.(本题满分12分,其中第(1)小题2分,第(2)小题5分,第(3)小题5分)如图,点A 在x 轴上,4OA =,将线段OA 绕点O 顺时针旋转120°至OB 的位置.(第23题)(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.25.(本题满分14分,其中第(1)小题3分,第(2)小题5分,第(3)小题6分)将△ABC 绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍,得△AB C '',即如图①,我们将这种变换记为[],n θ.(1)如图①,对△ABC得△AB C '',那么AB C ABCS S ''∆∆= ; 直线BC 与直线B C ''所夹的锐角为 度.(2)如图②,△ABC 中,∠30BAC =,∠90ACB =,对△ABC 作变换[],n θ得△AB C '',使点B 、C 、C '在同一直线上,且四边形ABB C ''为矩形,求θ和n 的值. (3)如图③,△ABC 中,AB AC =,∠36BAC =,1BC =,对△ABC 作变换[],n θ得AB C '',使点B 、C 、B '在同一直线上,且四边形ABB C ''为平行四边形,求θ和n 的值.2012学年普陀区九年级数学期终调研试卷参考答案及评分说明一、选择题(本大题共6题,每题4分,满分24分)1.(D); 2. (C); 3.(A); 4.(B); 5.(B); 6.(D).二、填空题(本大题共12题,每题4分,满分48分)7.16; 8.(2); 9.1︰4; 10.1m <; 11.22(1)2y x =---; 12.1-; 13.2cos α; 14.EA 和CE ; 15.4; 16.12; 17.210 ; 18. 三、解答题:(本大题共7题,满分78分) 19.解:原式2=……………………………………………………(4分)34=………………………………………………………………(4分)=. …………………………………………………………………(2分)20. 解: 13(3)()22a b a b +-+13322a b a b =+--………………………………………………………(1分) 2a b =-+…………………………………………………………………(4分)画图正确4分(方法不限),结论1分.21.(1)证明:∵AB=AD =25,∴∠1 =∠2.……………… (1分)∵AD ∥BC ,∴∠1=∠3.……………………(1分) ∴∠2=∠3. …………………………………(1分)∵AE ⊥BD ,∴∠AEB =∠C =90°. ………………………(1分) ∴△ABE ∽△DBC . ………………………(1分)22.解:过点C 作CD ⊥AE ,垂足为点D ,此时轮船离小岛最近,BD 即为所求.………(1分)12 3E由题意可知:∠A =21.3°,AB =80海里,∠CBE =63.5°.…(1分) 在Rt △ACD 中,tan ∠A =CD AD =25,……………………………………………(1分) 2(80)5C D B D =+;………………………………………………………(1分) 同理:2CD BD =;………………………………………………………………(2分) ∴22(80)5BD BD =+,…………………………………………………………(2分) 解得: 20BD =.…………………………………………………………(1分)C 答:轮船继续向东航行20海里,距离小岛最近. ……………………………………(1分)24. 解:(1)如图,过点B 作BC ⊥x 轴,垂足为的点C .1 2 345……………………………………………(1分)∵∠AOB =120°,∴∠BOC =60°.又∵OA=OB =4, ∴=2OC,BC .∴点B 的坐标为(﹣2,﹣).…………………………………………………(2分)(2)∵抛物线过原点O 和点A 、B ,∴可设抛物线的解析式为2(0)y ax bx a =+≠,……………………………………(1分) 将A (4,0),B (﹣2,﹣)代入,得1640,42a b a b +=⎧⎪⎨-=-⎪⎩ ……………………………………………………………………(2分)解得a b ⎧=⎪⎪⎨⎪=⎪⎩∴此抛物线的解析式为y =+………………………………………………(2分) (3)存在.……………………………………………………………………………………(1分) 解:如图,抛物线的对称轴是x =2,直线x =2与x 轴的交点为D ,设点P 的坐标为(2,y ).①若OB=OP ,则22+|y |2=42,解得y=±,当y=时,在Rt △POD 中,∠PDO =90°,sin ∠POD =PDOP=POD =60°. ∴∠POB =∠POD +∠AOB =60°+120°=180°,即P 、O 、B 三点在同一直线上.∴y=不符合题意,舍去.∴点P 的坐标为(2,﹣).………………………………………………………(1分)②若BO=BP ,则42+|y+|2=42,解得y =﹣.∴点P 的坐标为(2,﹣).……………………………………………………………(1分)③若PO=PB ,则22+|y |2=42+|y +|2,解得y =﹣.∴点P 的坐标为(2,﹣).……………………………………………………………(1分)综上所述,符合条件的点P 只有一个,其坐标为(2,﹣).…………………(1分) 25.解:(1) 3;60. …………………………………………………………………………(2分)(2)∵四边形 ABB′C′是矩形,∴∠BAC′=90°.………………………………………(1分)∴θ=∠CAC′=∠BAC′﹣∠BAC =90°﹣30°=60°.……………………………………(1分) 在 Rt △AB B' 中,∠ABB'=90°,∠BAB′=60°,∴∠AB′B =30°.…………………(1分) ∴AB′=2 AB ,即2AB n AB'==.……………………………………………………(1分) (3)∵四边形ABB′C′是平行四边形,∴AC′∥BB′.又∵∠BAC =36°,∴θ=∠CAC′=∠ACB =72°. …………………………………(1分) ∴∠C′AB′=∠BAC =36°. …………………………………………………………(1分) 而∠B =∠B ,∴△ABC ∽△B′BA . ………………………………………………(1分) ∴AB ∶BB′=CB ∶AB . ……………………………………………………………(1分) ∴AB 2=CB•BB′=CB (BC +CB′). …………………………………………………(1分) 而 CB′=AC=AB=B′C′,BC =1,∴AB 2=1(1+AB ),………………………………(1分)解得,AB =…………………………………………………………………(1分)∵AB >0,∴ 12BC n BC '==.…………………………………………………(1分) (以上各题,若有其他解法,请参照评分标准酌情给分)。
2012学年普陀区九年级数学期终调研试卷参考答案及评分说明一、选择题(本大题共6题,每题4分,满分24分)1.(D); 2. (C); 3.(A); 4.(B); 5.(B); 6.(D).二、填空题(本大题共12题,每题4分,满分48分)7.16; 8.(2); 9.1︰4; 10.1m <; 11.22(1)2y x =---;12.1-; 13.2cos α; 14.EA 和CE ; 15.4; 16.12; 17.210 ; 18. 三、解答题:(本大题共7题,满分78分)19.解:原式2=-4分)34=………………………………………………………………(4分)=. …………………………………………………………………(2分) 20. 解: 13(3)()22a b a b +-+ 13322a b a b =+-- ………………………………………………………(1分) 2a b =-+ …………………………………………………………………(4分)画图正确4分(方法不限),结论1分.21.(1)证明:∵AB=AD =25,∴∠1 =∠2.……………… (1分) ∵AD ∥BC ,∴∠1=∠3.……………………(1分)∴∠2=∠3. …………………………………(1分)∵AE ⊥BD , ∴∠AEB =∠C =90°. ………………………(1分)∴△ABE ∽△DBC . ………………………(1分)22.解:过点C 作CD ⊥AE ,垂足为点D ,此时轮船离小岛最近,BD 即为所求.………(1分) 1 2 3 E由题意可知:∠A =21.3°,AB =80海里,∠CBE =63.5°.…(1分)在Rt △ACD 中,tan ∠A =CD AD =25,……………………………………………(1分) 2(80)5C D B D =+;………………………………………………………(1分) 同理:2CD BD =;………………………………………………………………(2分)∴22(80)5BD BD =+,…………………………………………………………(2分) 解得: 20BD =.…………………………………………………………(1分)C 答:轮船继续向东航行20海里,距离小岛最近.……………………………………(1分)24. 解:(1)如图,过点B 作BC ⊥x 轴,垂足为的点C .……………………………………………(1分)1 2 3 4 5∵∠AOB =120°,∴∠BOC =60°.又∵OA=OB =4, ∴=2OC,BC∴点B 的坐标为(﹣2,﹣).…………………………………………………(2分)(2)∵抛物线过原点O 和点A 、B ,∴可设抛物线的解析式为2(0)y ax bx a =+≠,……………………………………(1分) 将A (4,0),B (﹣2,﹣1640,42a b a b +=⎧⎪⎨-=-⎪⎩……………………………………………………………………(2分)解得a b ⎧=⎪⎪⎨⎪=⎪⎩∴此抛物线的解析式为y =+………………………………………………(2分) (3)存在.……………………………………………………………………………………(1分) 解:如图,抛物线的对称轴是x =2,直线x =2与x 轴的交点为D ,设点P 的坐标为(2,y ).①若OB=OP ,则22+|y |2=42,解得y=±,当y=时,在Rt △POD 中,∠PDO =90°,sin ∠POD =PDOP=POD =60°. ∴∠POB =∠POD +∠AOB =60°+120°=180°,即P 、O 、B 三点在同一直线上.∴y=不符合题意,舍去.∴点P 的坐标为(2,﹣.………………………………………………………(1分)②若BO=BP ,则42+|y+|2=42,解得y =﹣∴点P 的坐标为(2,﹣).……………………………………………………………(1分) ③若PO=PB ,则22+|y |2=42+|y+|2,解得y =﹣.∴点P 的坐标为(2,﹣).……………………………………………………………(1分)综上所述,符合条件的点P 只有一个,其坐标为(2,﹣).…………………(1分) 25.解:(1) 3;60. …………………………………………………………………………(2分)(2)∵四边形 ABB′C′是矩形,∴∠BAC′=90°.………………………………………(1分)∴θ=∠CAC′=∠BAC′﹣∠BAC =90°﹣30°=60°.……………………………………(1分) 在 Rt △AB B' 中,∠ABB'=90°,∠BAB′=60°,∴∠AB′B =30°.…………………(1分) ∴AB′=2 AB ,即2AB n AB'==.……………………………………………………(1分) (3)∵四边形ABB′C′是平行四边形,∴AC′∥BB′.又∵∠BAC =36°,∴θ=∠CAC′=∠ACB =72°. …………………………………(1分) ∴∠C′AB′=∠BAC =36°. …………………………………………………………(1分) 而∠B =∠B ,∴△ABC ∽△B′BA . ………………………………………………(1分) ∴AB ∶BB′=CB ∶AB . ……………………………………………………………(1分) ∴AB 2=CB•BB′=CB (BC +CB′). …………………………………………………(1分) 而 CB′=AC=AB=B′C′,BC =1,∴AB 2=1(1+AB ),………………………………(1分)解得,AB =.…………………………………………………………………(1分)∵AB >0,∴12BC n BC '==.…………………………………………………(1分) (以上各题,若有其他解法,请参照评分标准酌情给分)。
普陀区2011学年度第一学期九年级数学期终考试调研卷2012年01月05日(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草 稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的 主要步骤.一、单项选择题:(本大题共6题,每题4分,满分24分)1.在锐角三角形ABC 中,如果各边长都扩大2倍,那么∠B 的余弦值( )A .扩大2倍;B .缩小2倍;C .大小不变;D .不能确定.2.下列各组图形中,一定相似的是( )A .两个矩形;B .两个菱形;C .两个正方形;D .两个等腰梯形.3.如果0<k (k 为常数),那么二次函数222k x kx y +-=的图像大致是( )4.下列说法正确的是( )A .三个点确定一个圆;B .当半径大于点到圆心的距离时,点在圆外;C .圆心角相等,它们所对的弧相等;D .边长为R 的正六边.形的边心距等于R 23.5.如图,在△ABC 中,点D 、E 、F 分别在边AB 、A C 、B C 上,如果D E ∥B C ,D F ∥A C ,那么下列比例式一定成立的是( )A .BC DE EC AE =; B .BC CF AC AE =; C .BCBF ABAD =; D .ACDF BCDE =.6.如图2,由5个同样大小的正方形合成一个矩形,那么∠ABD +∠AD B 的度数是( )A .90°;B .60°;C .45°;D .不能确定.二、填空题:(本大题共12题,每题4分,满分48分)ABCDFECDAB7.计算:tan 30cos 60⨯ = .8.已知抛物线的表达式是254x y -=,那么它的顶点坐标是 .9.在平面直角坐标系中,如果把抛物线5)2(22+-=x y 向右平移3个单位,那么所得抛物线的表达式 是 .10.已知线段4a =,9c =,那么a 和c 的比例中项=b .11.如果两个相似三角形的相似比为1:4,那么它们的周长比为 .12.小王在楼下点A 处看到楼上点B 处的小明的仰角是35°,那么点B 处得小明看点A 处的小王的俯角等于 度.13.如图3,平行四边形A B C D 中,点E 在边B C 上,AE 交BD 于点F ,如果32=FDBF ,那么=BCBE .14.如图4,D E ∥B C ,31=BADA ,请用向量ED表示向量BC ,那么BC = .15.G 为△ABC 的重心,如果EF 过点G 且EF ∥B C ,分别交AB 、A C 于点E 、F ,那么BCEF 的值为 .16.已知两圆相切,半径分别为2cm 和5cm ,那么两圆的圆心距等于 厘米.17.如图5是一张直角三角形的纸片,直角边6A C cm =,53sin =B ,现将△ABC 折叠,使点B 与点A 重合,折痕为D E ,那么D E 的长等于 .18.在平面直角坐标系中,△ABC 的顶点分别是()1,0A -,()3,0B ,()0,2C ,已知ACBDEA CBDEDCBAEF动直线)20(<<=m m y 与线段A C 、B C 分别交于D 、E 两点,而在x 轴上存在点P ,使得△D EP 为等腰直角三角形,那么m 的值等 于 .三、解答题:(本大题共7题,满分78分)19.如图6,已知两个不平行的向量a →、b →.先化简,再求作:()1122422a b a b ⎛⎫--+ ⎪⎝⎭ .(不要求写作法,但要指出图中表示结论的向量)图620.(本题满分10分)如图7,点A ,B 是⊙O 上两点,10A B =,点P 是⊙O 上的动点(P 与A ,B 不重合),联结AP ,B P ,过点O 分别作O E ⊥AP ,O F ⊥B P ,点E 、F 分别是垂足.(1)求线段FF 的长;(2)点O 到AB 的距离为2,求⊙O 的半径.21.(本题满分10分)已知二次函数25(0)y ax bx a =++≠中,函数y 与自变量x 的部分对应值如下表:(1)求这个二次函数的解析式及图像的对称轴;(2)设2m ≥,且1(,)A m y ,2(1,)B m y +两点都在该函数的图像上,试比较1y 与2y 的大小:1y 2y (填“大于”“等于”或“小于”) .B22.如图8所示,A ,B 两地隔河相望,原来从A 地到B 地需要经过桥D C ,沿折线A →D →C →B 到达B 地,现在直线AB (与桥D C 平行)上建了新桥EF ,可沿直线AB 从A 地直达B 地,已知1000B C m =,45A ∠= ,37B ∠=.问:现在从A 地到达B 地可比原来少走多少路程?(结果精确到1m . 参考数据1.41≈,sin 370.60≈ ,cos 370.80≈ )23.(本题满分12分)如图9,在△ABC 中,D 是AB 上一点,E 是A C 上一点,,ACD B ∠=∠ 22AD AE AC =⋅.求证: (1)D E ∥B C ; (2)2()D EC AD E ABCBC DS S S S ∆∆∆∆=.24.(本题满分12分)如图10,梯形O A B C ,B C ∥O A ,边O A 在x 轴正半轴上,边O C 在y 轴正半轴上,点()3,4B , 5A B =. (1)求B A O ∠的正切值;(2)如果二次函数249y x bx c =++的图像经过O 、A 两点,求这个二次函数的解析式并求图像顶点M 的坐标;(3)点Q 在x 轴上,以点Q ,点O 及(2)中的点M 为顶点的三角形与ABO ∆相似,求点Q 的坐标.ABC图1025.(本题满分14分)把两块边长为4的等边三角板A B C 和D E F 先如图11-1放置,使三角板D E F 的顶点D 与三角板A B C 的A C 边的中点重合,D F 经过点B ,射线D E 与射线AB 相交与点M ,接着把三角形板A BC 固定不动,将三角形板D E F 由图11-1所示的位置绕点D 按逆时针方向旋转,设旋转角为α.其中090α<< ,射线D F 与线段B C 相交与点N (如图11-2示).(1)当060α<< 时,求A M C N ⋅的值;(2)当060α<< 时,设A M x =,两块三角形板重叠部分的面积为y ,求y 与x 的函数解析式并求定义域; (3)当2B M =时,求两块三角形板重叠部分的面积.CC FCEA EAB图11-1 图11-2 备用图。
普陀区2011学年度第二学期九年级数学期终考试试卷参考答案及评分说明一、单项选择题:(本大题共6题,每题4分,满分24分)1.(C); 2.(C); 3.(C); 4.(A); 5.(D); 6.(B).二、填空题:(本大题共12题,每题4分,满分48分)7.-4; 8. 5x =±; 9.123y y-= ; 10. 2; 11.1k <; 12. 2(1)a x -; 13.6; 14.9; 15.1:16; 16.π3; 17.5; 18.6.三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19.解:原式=)1()111(+⋅++-a aa a ………………………………………………………(3分)=aa a 11++- ……………………………………………………………………(2分)=aa 12+ ……………………………………………………………………………(2分) 当2=a 时,原式=21)2(2+223=……………………………………………………(3分)20.解法1:由①得:(2)(3)0x y x y ++=∴20x y +=或30x y += ………………………………………………(4分)原方程组可化为 20,2;x y x y +=⎧⎨+=⎩30,2.x y x y +=⎧⎨+=⎩……………………………………(2分) 分别解这两个方程组,得原方程组的解为114,2;x y =⎧⎨=-⎩223,1.x y =⎧⎨=-⎩ …………(4分) 解法2:由②得2y x =- ③ ………………………………………………………(1分) 把③代入①得225(2)6(2)0x x x x +-+-=整理得27120x x -+=……………………………………………………………(3分) 解得124,3x x ==…………………………………………………………………(2分) 分别代入③得112,1y y =-=-……………………………………………………(2分) ∴原方程组的解为114,2;x y =⎧⎨=-⎩223,1.x y =⎧⎨=-⎩ ………………………………………(2分)21.解: ∵CD ⊥AB ,∴∠CDA =90°…………………………………………………………………(1分)∵ sin A =54=AC CD ,CD =12, ∴ AC =15…………………………………………………………………………(3分) ∴AD =9. …………………………………………………………………………(2分) ∴BD =4. …………………………………………………………………………(2分) ∴tan B =3=BDCD………………………………………………………………(2分)22、解:(1)2.68……………………………………………………………………………………(3分) (2)6…………………………………………………………………………………………(2分) (3)设12月份全市共成交商品房x 套,600002400200x= 5000=x …………………………………………………………………………(3分)()50006%17%1150⨯+=(套)……………………………………………………(2分) ∴估计12月份在全市所有的60000套可售商品房中已成交的并且每平方米价格低于2万21F DECAB元的商品房的成交套数为1150套.23.(1)证明:∵CE BE DE ⋅=2,∴DEBECE DE =. ……………………………………………………………(2分)∵E E ∠=∠, ……………………………………………………………(1分)∴DBE∆∽CDE ∆.……………………………………………………………(1分)∴CDE DBE ∠=∠. ……………………………………………………………(1分)(2)∵CDE DBE ∠=∠, 又∵AFD DBE ∠=∠,∴=∠CDE AFD ∠.……………………………………………………………(1分)∴DC AB //. ……………………………………………………………(1分)又∵BC AD //,∴四边形ABCD 是平行四边形 …………………………………………………(1分)∵BC AD //,∴1∠=∠ADB . …………………………………………………………(1分)∵DB 平分ABC ∠,∴21∠=∠. ………………………………………………………(1分)∴2∠=∠ADB .∴AD AB =. …………………………………………………………(1分)∴四边形ABCD 是菱形. ……………………………………………………(1分)24.解: (1)二次函数()21236y x =+的图像的顶点A ()23,0-,与y 轴的交点B ()0,2,……(2分)设直线AB 的表达式为(0)y kx b k =+≠,可求得 33k =,2b =.所以直线AB 的表达式为323y x =+.…………………(1分)可得30BAO ∠=,∵60BAC ∠=,∴90CAO ∠=.………………………………………………………………………(1分) 在Rt △BAO 中,由勾股定理得:AB =4.∴AC =4.点()23,4C -.………………………………………………………………(1分)(2)∵点C 、M 都在第二象限,且△ABM 的面积等于△ABC 的面积,∴CM ∥AB .…………………………………………………………………………………(1分)设直线CM 的表达式为33y x m =+,点()23,4C -在直线CM 上, 可得 6m =.∴直线CM 的表达式为363y x =+.……………………………………………………(1分)可得点M 的坐标:()53,1-.……………………………………………………………(1分)(3)点N 的坐标()323,0--,()323,0-,()3323,0--,()3323,0-.…………………………………………………………………………………………(4分)25. (1)①证明:过点P 作PM ⊥AC ,PN ⊥BC ,垂足分别为M 、N .…………………(1分)∵CD 是ACB ∠的平分线, ∴PM =PN .由90PMC MCN CNP ∠=∠=∠=,得90MPN ∠=. ∴190FPN ∠+∠=. ∵290FPN ∠+∠=,∴12∠=∠.∴△PMF ≌△PNE .……………………………(3分) ∴PF = PE . ②解:∵2CP =,∴1CN CM ==.∵△PMF ≌△PNE , ∴1NE MF x ==-.∴2CE x =-.……………………………………………………………………(2分) ∵CF ∥PN ,∴CF CGPN GN=. ∴1xCG x=-.……………………………………………………………………(2分) ∴21xy x x=+--(0≤x <1).………………………………………………(2分) (2)当△CEF 与△EGP 相似时,点F 的位置有两种情况: ①当点F 在射线CA 上时,∵90GPE FCE ∠=∠=,1PEG ∠≠∠, ∴1G ∠=∠. ∴FG FE =. ∴CG CE =. 在Rt △EGP 中,222EG CP ==2分)②当点F 在AC 延长线上时,∵90GPE FCE ∠=∠=,12∠≠∠, ∴32∠=∠.21NM AB CEDPFFDPGE C BA1GFM NABCEPD∵1455∠=+∠,1452∠=+∠, ∴52∠=∠.易证34∠=∠,可得54∠=∠.∴FC CP ==∴1FM =+.易证△PMF ≌△PNE ,可得1EN =+.∵CF ∥PN ,∴CF CGPN GN=.∴1GN =.∴EG =2分)。
普陀区2010学年度第一学期九年级 数学期终考试调研卷2011.1.11 (时刻:100分钟,满分:150分)一、单项选择题:(本大题共6题,每题4分,满分24分) 1.下列四个函数中,一定是二次函数的是( ) (A )21y x x=+; (B )2y ax bx c =++; (C )()227y x x =-+; (D )(1)(21)y x x =+-.2.下列讲法中不正确...的是( ) (A )假如m 、n 为实数,那么()m n a ma na +=+; (B )假如0k =或0a =,那么0ka =; (C )长度为1的向量叫做单位向量; (D )假如m 为实数,那么()m a b ma mb +=+.3.已知二次函数c bx ax y ++=2的图像如图所示,那么a 、b 、c 的符号为( )(A )a >0,b >0,c >0; (B )a <0,b <0,c <0; (C )a <0,b >0,c >0; (D )a <0,b <0,c >0.4.如图,能推得DE ∥BC 的条件是( )(A )AD ∶AB =DE ∶BC ; (B )AD ∶DB =DE ∶BC ; (C )AD ∶DB =AE ∶EC ; (D )AE ∶AC =AD ∶DB .5.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,假如CD =2,AC =3,那么sin B 的值是( )(A )23; (B )32; (C )34; (D )35.6.如图, A 、B 、C 、P 、Q 、甲、乙、丙、丁差不多上方格纸中的格点,假如△RPQ ∽△ABC ,那么点R 应是甲、乙、丙、丁四点中的( )(A )甲; (B )乙;(第3题图)Oxy C A B D (第5题图)E D CBA(第4题图)(C)丙;(D)丁.二、填空题:(本大题共12题,每题4分,满分48分)7.已知抛物线的表达式是()221y x=--,那么它的顶点坐标是.8.假如二次函数223y x ax=++的对称轴是直线1x=,那么a的值是.9.在平面直角坐标系中,假如把抛物线235y x=+向右平移4个单位,那么所得抛物线的表达式为.10.实际距离为3000米的两地,在比例尺为1:100000的地图上的距离为厘米.11.假如两个相似三角形的面积比为1∶2,那么它们的周长比为.12.已知点M是线段AB的黄金分割点(AM>MB),假如AM=215-cm,那么AB= cm.13.已知点G 是△ABC 的重心,AD 是中线,假如AG =6,那么AD = .14.如图,四边形ABCD 是正方形,点E 、F 分不在边DC 、BC 上,AE ⊥EF ,假如53DE EC=,那么AE ∶EF 的值是 .15.如图,直线 A A 1∥BB 1∥CC 1,假如12AB BC =, 12AA =,15CC =,那么线段BB 1的长是 .16.假如一段斜坡的垂直高度为8米,水平宽度为10米,那么这段斜坡的坡比 i = .17.如图, 已知在△ABC 中,AD =2,DB =4,DE BC ∥.设AB a =,AC b =,试用向量a 、b表示向量BE = .18.已知在ABC ∆中,20AB =,12AC =,16BC =,点D 是射线BC 上的一点(不与端点B 重合),联结AD ,假如△ACD 与△ABC相似,那么BD = .(第17题图)EDCBA(第15题A BCA B CF E DCBA(第14题图)三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:()02tan 60cot 452011cos60cos30sin 30︒+︒+-︒︒-︒.20.(本题满分10分)如图,已知两个不平行的向量错误!、错误!.先化简,再求作:2(错误!+12错误!)-12(2错误!-4错误!).(不要求写作法,但要指出图中表示结论的向量)错误!错误!21.(本题满分10分)已知一个二次函数的图像通过()1,1C-三点,B、()1,3A、()0,1求那个函数的解析式,并用配方法求出图像的顶点坐标.22.(本题满分10分)某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶,每级小台阶都为0.4米.现要做一个不锈钢的扶手AB 及两根与FG 垂直且长均为l子的底端分不为D ,C ),且66DAB ∠=(1)求点D 与点C 的高度差DH 的长度;(2)求所用不锈钢材料的总长度l (即AD +AB +BC , 结果精确到0.1米). (参考数据:sin 660.91≈,cos660.41≈,tan 66 2.25≈,cot 660.45≈)GF(第22题图)23.(本题满分12分)如图,在ABC △中,90BAC ∠=,AD 是BC 边上的高,点E 在线段DC 上,EF AB ⊥,EG AC ⊥,垂足分不为F G ,.求证:(1)EG CGAD CD=; (2)FD ⊥DG .GFEDCBA(第23题图)24. (本题满分12分)如图,已知ABC △为直角三角形,90ACB ∠=,AC BC =,点A 、C在x 轴上,点B 坐标为(3,m )(m >0)点D ,以P (1,0(1)用m 表示点A 、D 的坐标;(2)求那个二次函数的解析式;(3)点Q 为二次函数图像上点P 至点B 且点Q 到ABC △边BC 、AC 的距离相等,联结PQ 、BQ , 求四边形ABQP 的面积.25、(本题满分14分)在ABC △中,90ACB ∠=,4AC =,3BC =,D 是边AC 上一动点(不(第24题图)与端点A 、C 重合),过动点D 的直线l 与射线AB 相交于点E ,与射线BC 相交于点F ,(1)设1CD =,点E 在边AB 上,ADE △与ABC △相似,求现在BE 的长度.(2)假如点E 在边AB 上,以点E 、B 、F 为顶点的三角形与以点E 、A 、D 为顶点的三角形相似,设CD =x , BF =y ,求y 与x 之间的函数解析式并写出函数的定义域.(3)设1CD =,以点E 、B 、F 为顶点的三角形与以点E 、A 、D 为顶点的三角形相似, 求:△△EBF EAD S S 的值.(第25题图)AB CABC(备用图)ABC1 / 1。
2012学年普陀区九年级数学期终调研试卷
参考答案及评分说明
一、选择题(本大题共6题,每题4分,满分24分)
1.(D); 2. (C); 3.(A); 4.(B); 5.(B); 6.(D).
二、填空题(本大题共12题,每题4分,满分48分)
7.16; 8.
(2); 9.1︰4; 10.1m <; 11.22(1)2y x =---;
12.1-; 13.2cos α; 14.EA 和CE ; 15.4; 16.12; 17.210 ; 18
. 三、解答题:(本大题共7题,满分78分)
19.
解:原式2=……………………………………………………(4分)
34=
………………………………………………………………(4分)
=. …………………………………………………………………(2分) 20. 解: 13(3)()22a b a b +-+ 13322
a b a b =+-- ………………………………………………………(1分) 2a b =-+ …………………………………………………………………(4分)
画图正确4分(方法不限),结论1分.
21.(1)证明:∵AB=AD =25,∴∠1 =∠2.……………… (1分) ∵AD ∥BC ,∴∠1=∠3.……………………(1分)
∴∠2=∠3. …………………………………(1分)
∵AE ⊥BD , ∴∠AEB =∠C =90°. ………………………(1分)
∴△ABE ∽△DBC . ………………………(1分)
22.解:过点C 作CD ⊥AE ,垂足为点D ,
此时轮船离小岛最近,BD 即为所求.………(1分)
由题意可知:
∠A =21.3°,AB =80海里,∠CBE =63.5°.…(1分) 在Rt △ACD 中,tan ∠A =CD AD =25
,……………………………………………(1分) 1 2 3 E
2(80)5
C D B D =+;………………………………………………………(1分) 同理:2CD BD =;………………………………………………………………(2分)
∴22(80)5
BD BD =+,…………………………………………………………(2分) 解得: 20BD =.…………………………………………………………(1分)
C 答:轮船继续向东航行20海里,距离小岛最近.
……………………………………(1分)
24. 解:
(1)如图,过点B 作BC ⊥x 轴,垂足为的点C .
……………………………………………(1分)
∵∠AOB =120°,∴∠BOC =60°.又∵OA=OB =4,
∴=2OC ,BC
∴点B 的坐标为(﹣2,﹣).…………………………………………………(2分)
(2)∵抛物线过原点O 和点A 、B ,
∴可设抛物线的解析式为2
(0)y ax bx a =+≠,……………………………………(1分) 将A (4,0),B (﹣2,﹣)代入,得 1 2 3 4 5
1640,42a b a b +=⎧⎪⎨-=-⎪⎩ ……………………………………………………………………(2分)
解得a b ⎧=⎪⎪⎨⎪=⎪⎩
∴此抛物线的解析式为y x =+………………………………………………(2分) (3)存在.……………………………………………………………………………………(1分) 解:如图,抛物线的对称轴是x =2,直线x =2与x 轴的交点为D ,
设点P 的坐标为(2,y ).
①若OB=OP ,则22+|y |2=42,解得y
=±,
当y
=时,在Rt △POD 中,∠PDO =90°,
sin ∠POD =PD
OP
=POD =60°. ∴∠POB =∠POD +∠AOB =60°+120°=180°,
即P 、O 、B 三点在同一直线上.∴y
=不符合题意,舍去.
∴点P 的坐标为(2
,﹣).………………………………………………………(1分)
②若BO=BP ,则42+|y
+|2=42
,解得y =
﹣.
∴点P 的坐标为(2
,﹣).……………………………………………………………(1分) ③若PO=PB ,则22+|y |2=42+|y
+|2,解得y =
﹣.
∴点P 的坐标为(2
,﹣.……………………………………………………………(1分)
综上所述,符合条件的点P 只有一个,其坐标为(2
,﹣).…………………(1分) 25.
解:(1) 3;60. …………………………………………………………………………(2分)
(2)∵四边形 ABB′C′是矩形,∴∠BAC′=90°.………………………………………(1分)
∴θ=∠CAC′=∠BAC′﹣∠BAC =90°﹣30°=60°. (1)
)
在 Rt △AB B' 中,∠ABB'=90°,∠BAB′=60°,∴∠AB′B =30°.…………………(1分) ∴AB′=2 AB ,即2AB n AB
'==.……………………………………………………(1分) (3)∵四边形ABB′C′是平行四边形,∴AC′∥BB′.
又∵∠BAC =36°,∴θ=∠CAC′=∠ACB =72°. …………………………………(1分) ∴∠C′AB′=∠BAC =36°. …………………………………………………………(1分) 而∠B =∠B ,∴△ABC ∽△B′BA . ………………………………………………(1分) ∴AB ∶BB′=CB ∶AB . ……………………………………………………………(1分) ∴AB 2=CB•BB′=CB (BC +CB′). …………………………………………………(1分) 而 CB′=AC=AB=B′C′,BC =1,∴AB 2=1(1+AB ),………………………………(1分)
解得,AB =.…………………………………………………………………(1分)
∵AB >0,∴
BC n BC '==.…………………………………………………(1分) (以上各题,若有其他解法,请参照评分标准酌情给分)。