洪山区2019-2020学年度七年级第二学期期末调考数学试卷及答案
- 格式:pdf
- 大小:319.94 KB
- 文档页数:9
2019-2020学年七年级第二学期期末考试数学试卷(含答案解析)一、选择题:(每小题4分,共40分)1.下列调查中,适合采用全面调查方式的是()A.对沱江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对市场上某种雪糕质量情况的调查D.对本班45名学生身高情况的调查2.9的算术平方根是()A.±3 B.3 C.-3 D3.已知a>b,则下列不等式一定成立的是()A.-a<-b B.a-1<b-1 C.a+2<b+2 D.2a<2b4.如图,直线a,b被直线c所截,a∥b,∠2=∠3,若∠1=80°,则∠4等于()A.20° B.40°C.60° D.80°5.用代入法解方程组27345x yx y-⋯⋯-⋯⋯⎧⎨⎩=,①=.②代入后,化简比较容易的变形为()A.由①得x=7+2yB.由①得y=2x-7C.由②得x=5+43yD.由②得y=354x-6.不等式组43xx<⎧⎨⎩…的解集在数轴上表示为()A.B.C.D.7.下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④同角或等角的补角相等。
其中是真命题的有()个。
A.1 B.2 C.3 D.48.下列选项中,属于无理数的是()AB.πCD.09.在平面直角坐标系中,将点A(m-1,n+2)先向右平移3个单位,再向上平移2个单位,得到点A′,若点A′位于第二象限,则m、n的取值范围分别是()A.m<0,n>0 B.m<1,n>-2 C.m<0,n<-2 D.m<-2,m>-410.一个两位的十位数字与个位数字的和是7,如果把两位数加上45,那么恰好成为个位数字与十位数字对调后组成的两位数,则这个两位数是()A.34 B.25 C.16 D.61二、填空题:(每小题4分,共32分)11.如图,已知AB∥CD,∠A=70°,则∠1的度数是度。
2019-2020学年武汉市洪山区七年级下学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.实数−8,−3,−5,0中最小的数是()A. 0B. −8C. −5D. −32.下列说法正确的有()①绝对值等于本身的数是正数.②连接两点的线段的长度,叫做这两点的距离.③若AC=BC,则点C就是线段AB的中点.④不相交的两条直线是平行线.A. 1个B. 2个C. 3个D. 4个3.若,则下列各式不成立的是().A. B. C. D.4.点P(m,n−1)在第三象限,则点Q(n−2,−m)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.若关于的不等式组{x−m2<0x−22−2x>2的解集为x<−2且关于x的分式方1−mx2−x+3x−2=1有正整数解,则符合条件整数m的有()A. 1个B. 2个C. 3个D. 4个6.在下列抽样调查中,你认为选取的样本具有代表性的是()A. 为了解某地区居民的防火意识,对该地区的初中生进行调查B. 为了解某商场的平均日营业额,选在周末进行调查C. 为了解某校1200名学生的视力情况,随机抽取该校120名学生进行调查D. 为了解全校学生课外小组的活动情况,对该校的男生进行调查7.不等式组{x−3≤0x+2>0的解集是()A. −2<x≤3B. x>−2C. x≥0D. x≤38.某校九年级共有1100名学生参加“二诊”考试,随机抽取50名学生进行总成绩统计,其中有20名学生总成绩达到优秀,估计这次“二诊”考试总成绩达到优秀的人数大约为()A. 400B. 420C. 440D. 4609. 以下命题:①经过三点一定可以作圆;②任意三角形都有且只有一个外接圆;③平分弦的直径垂直于这条弦;④相等的圆周角所对的弧相等,其中,真命题的个数为( )A. 1B. 2C. 3D. 410. 若方程组{2a −3b =103a +2b =28的解是{a =8b =2,则方程组{2(x +2)−3(y −1)=103(x +2)+2(y −1)=28的解是( )A. {x =8y =2B. {x =10y =2C. {x =6y =3D. {x =10y =1二、填空题(本大题共6小题,共18.0分)11. 若点M(a +2,a −3)在y 轴上,则点M 的坐标为______.12. 为了解早高峰期间A ,B 两邻近地铁站乘客的乘车等待时间(指乘客从进站到乘上车的时间),某部门在同一上班高峰时段对A 、B 两地铁站各随机抽取了500名乘客,收集了其乘车等待时间(单位:分钟)的数据,统计如表:据此估计,早高峰期间,在A 地铁站“乘车等待时间不超过15分钟”的概率为______;夏老师家正好位于A ,B 两地铁站之间,她希望每天上班的乘车等待时间不超过20分钟,则她应尽量选择从______地铁站上车.(填“A ”或“B ”)13. 若三角形的三边长分别为4,a +1,7,则a 的取值范围是______ .14. 已知爸爸今年的年龄比儿子今年年龄的123倍大1,如果儿子今年年龄为p 岁,则爸爸今年年龄为 岁.15. 如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,−1),…,按照这样的运动规律,点P 第17次运动到的点的坐标为______.16. 不等式x −6<3x −2的最小整数解是______. 三、解答题(本大题共8小题,共72.0分) 17. (1)解方程:2x+13−5x−16=1.(2)解方程组:{2x −3y =−53x +2y =12.18. (1)1−x+23=x−12(2){2x +3y =73x −4y =2 (3){3(x +2)<x +4x 3≥x +14(4){x =3zx +y +2z =82x +3y +z =1619. 如图,在单位长度为1的平面直角坐标系中 (1)描出点A(−2,−2)、B(−8,6)、C(6,4); (2)连接AB ,BC ,AC ,试判断△ABC 的形状; (3)求△ABC 的面积.20. 我校九年级163班所有学生参加体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级163班参加体育测试的学生共有多少人?(2)将条形统计图补充完整;(3)在扇形统计图中,求出等级C对应的圆心角的度数;(4)若规定达到A、B级为优秀,我校九年级共有学生850人,估计参加体育测试达到优秀标准的学生有多少人?21. 如图,在平面直角坐标系中,A(−1,5),B(−1,0),C(−4,3)(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)求出△A1B1C1的面积;(3)将△ABC向左平移2个单位,再向上平移2个单位得△A2B2C2,请直接写出点A2,B2,C2的坐标.22. 已知2台大收割机和5台小收割机同时工作2小时共收割水稻3.6公顷,3台大收割机和2台小收割机同时工作5小时,共收割水稻8公顷.(1)求平均每台大、小收割机每小时各收割水稻多少公顷?(2)若用4台大收割机和6台小收割机共同收割,且每台小收割机的工作时间是每台大收割机工作时间的1.2倍,求收割完60公顷的水稻每台大收割机至少要工作多少小时?23. 如图,OC⊥OD,OB⊥OA,求∠AOD+∠BOC的度数.24. 如图,直线AC与x轴、y轴分别交于点C(−2,0)、A(0,4),B点坐标为(4,0),过点B作BD⊥AC于D,BD交OA于点H.(1)请求点H的坐标;(2)有两个动点P和Q分别从点C和点O同时沿x轴正方向匀速运动,速度分别为2个单位每秒和1个单位每秒,设△PQH的面积为S,点P、点Q的运动时间为t秒,请求S与t之间的函数关系式.(请直接写出相应的自变量t的取值范围);(3)请问t为何值时,△PQH的面积是△B0H的面积的1.4【答案与解析】1.答案:B解析:解:实数−8,−3,−5,0中最小的数是−8,故选:B.根据有理数的大小比较法则比较即可.本题考查了对有理数的大小比较法则的应用,能熟记法则内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.2.答案:A解析:解:①绝对值等于本身的数是非负数,故不符合题意;②连接两点的线段的长度就是两点间的距离;故符合题意;③若AC=BC,则点C是线段AB的中点,错误,因为点A、B、C不一定共线;故不符合题意;④在同一平面内,不相交的两条直线是平行线,故不符合题意;故选:A.根据两点之间的距离,绝对值,平行线,线段的中点的定义对各小题分析判断即可得解.本题考查两点间距离、线段的长度等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.3.答案:D解析:本题考查了不等式的性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.根据不等式的性质逐项判断即可.解:A.不等式两边同减3,不等号的方向不变,正确,故A不符合题意;B.两边都乘以,不等号的方向不变,正确,故B不符合题意;C.两边都加3,不等号的方向不变,正确,故C不符合题意;D.两边都乘以−3,不等号的方向改变,错误,故D符合题意;故选D .4.答案:B解析:解:∵点P(m,n −1)在第三象限, ∴m <0,n −1<0, ∴n −2<0,−m >0, ∴点Q(n −2,−m)在第二象限. 故选:B .据第三象限点的横坐标与纵坐标都是负数,然后判断点Q 所在的象限即可.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).5.答案:A解析:解:不等式组整理得{x <mx <−2,∵不等式组的解集为x <−2, ∴m ≥−2,分式方程去分母,得:1−mx −3=2−x , 解得:x =41−m , ∵分式方程有正整数解,∴1−m =4或1−m =2或1−m =1, 解得:m =−3或m =−1或m =0, 当m =−1时,x =2为增根,故舍去, ∵m ≥−2,∴符合条件的整数m 的值有0这1个, 故选:A .根据已知不等式的解集确定出m 的范围,再由分式方程有整数解,确定出m 的个数即可. 此题考查了分式方程的解以及解一元一次不等式组,熟练掌握运算法则,求得m 的取值范围以及解分式方程是解本题的关键.6.答案:C解析:本题考查抽样调查中的可靠性,样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.解:A.为了解某地区居民的防火意识,对该地区的初中生进行调查,不具代表性,故A 错误; B .为了解某商场的平均日营业额,选在周末进行调查,不具代表性,故B 错误;C .为了解某校1200名学生的视力情况,随机抽取该校120名学生进行调查,具有代表性、广泛性,故C 正确;D .为了解全校学生课外小组的活动情况,对该校的男生进行调查不具代表性,故D 错误; 故选:C .7.答案:A解析:解:{x −3≤0 ①x +2>0 ②,由①得:x ≤3, 由②得:x >−2,则不等式组的解集为−2<x ≤3, 故选:A .分别求出不等式组中两不等式的解集,找出两解集的方法部分即可. 此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.8.答案:C解析:解:随机抽取了50名学生的成绩进行统计,共有20名学生成绩达到优秀, ∴样本优秀率为:20÷50=40%,又∵某校九年级共1100名学生参加“二诊”考试,∴该校这次“二诊”考试总成绩达到优秀的人数大约为:1100×40%=440人. 故选:C .随机抽取的50名学生的成绩是一个样本,可以用这个样本的优秀率去估计总体的优秀率,从而求得该校九年级学生在这次测试中达到优秀的人数.本题考查了用样本估计总体,这是统计的基本思想,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.9.答案:A解析:解:①经过不在同一直线上的三点一定可以作圆,本小题说法是假命题; ②任意三角形都有且只有一个外接圆,本小题说法是真命题; ③平分弦(不是直径)的直径垂直于这条弦,本小题说法是假命题; ④在同圆或等圆中,相等的圆周角所对的弧相等,本小题说法是假命题; 故选:A .根据过三点的圆、三角形的外接圆、垂径定理的推论、圆周角定理判断即可.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.答案:C解析:解:∵方程组{2a −3b =103a +2b =28的解是{a =8b =2,∴方程组{2(x +2)−3(y −1)=103(x +2)+2(y −1)=28的解是{x +2=8y −1=2,即{x =6y =3,故选:C .仿照已知方程组的解确定出所求方程组的解即可.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.11.答案:(0,−5)解析:解:∵M(a +2,a −3)在y 轴上, ∴a +2=0, a =−2,∴点M 的坐标为(0,−5).故答案填(0,−5).让点M 的横坐标为0即可求得a 的值,进而求得点M 的坐标.解决本题的关键是掌握好坐标轴上的点的坐标的特征.用到的知识点为:y 轴上的点的横坐标为0.12.答案:15 B解析:解:∵在A 地铁站“乘车等待时间不超过15分钟有50+50=100人, ∴在A 地铁站“乘车等待时间不超过15分钟”的概率为100500=15, ∵A 线路不超过20分钟的有50+50+152=252人, B 线路不超过20分钟的有45+215+167=427人, ∴选择B 线路, 故答案为:15,B .用“用时不超过15分钟”的人数除以总人数即可求得概率;先分别求出A线路不超过20分钟的人数和B线路不超过20分钟的人数,再进行比较即可得出答案.此题考查了用频率估计概率的知识,能够读懂图是解答本题的关键,难度不大;用到的知识点为:概率=所求情况数与总情况数之比.13.答案:2<a<10解析:解:由三角形三边关系定理得:7−4<a+1<4+7,解得:2<a<10,即a的取值范围是2<a<10.故答案为:2<a<10.根据三角形三边关系:“任意两边之和大于第三边,任意两边之差小于第三边”即可求x的取值范围.考查了三角形的三边关系及解一元一次不等式组的知识,此类求范围的问题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.p+1)14.答案:(53倍大1,”得出的数量关系为:爸爸今解析:试题分析:由“爸爸今年的年龄比儿子今年年龄的123+1,直接表示出爸爸的年龄即可.年的年龄=儿子今年年龄×123p+1)岁.爸爸今年年龄为(53p+1.故答案为:5315.答案:(17,1)解析:解:令P点第n次运动到的点为P n点(n为自然数).观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,−1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,−1).∵17=4×4+1,∴P第17次运动到点(17,1).故答案为:(17,1).令P点第n次运动到的点为P n点(n为自然数).列出部分P n点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,−1)”,根据该规律即可得出结论.。
湖北省武汉市洪山区七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)5的平方根是()A.B.﹣C.±D.52.(3分)下列调查中,适合采用抽样调查的是()A.了解神舟飞船的设备零件的质量情况B.了解一批袋装食品是否含有防腐剂C.全国人口普查D.企业招聘,对应聘人员进行面试3.(3分)如图,下列四个选项中,不能判断AB∥DC的是()A.∠1=∠3B.∠B+∠BCD=180°C.∠2=∠4D.∠D+∠BAD=180°4.(3分)若是关于x和y的二元一次方程ax+y=3的解,则a的值等于()A.﹣1B.0C.1D.25.(3分)若a<b,下列不等式不一定成立的是()A.1﹣a>1﹣b B.﹣2a>﹣2b C.2a+1<2b+3D.m2a<m2b 6.(3分)已知点Q(2x,﹣y)在第一象限,则点P(x,y)在()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)用含药30%和75%的两种防腐药水,配制含药50%的防腐药水27千克,两种药水各需()A.18千克,9千克B.17千克,10千克C.15千克,12千克D.16千克,11千克8.(3分)若不等式的解都能使不等式3x<2x+a成立,则a的取值范围是()A.B.C.D.9.(3分)在平面直角坐标系中,A(m,﹣3),B(2,n),C(2,6﹣m),其中m+n=2,并且3≤2m+n≤8,则△ABC面积的最大值为()A.7B.8C.9D.1010.(3分)作业本中有这样一道题:“小明去郊游上午8时30分从家中出发,先走平路,然后登山,中午12时到达山顶,原地休息1h后沿原路返回,正好下午3时到家.若他平路每小时走4km,登山每小时走3km,下山每小时走6km,求小明家到山顶的路程.”小李查看解答时发现答案中的方程组中有污损:,则答案中另一个方程应为()A.3a+b=12B.C.D.二、填空题(共6小题,每小题3分,共18分)11.(3分)写出一个二元一次方程:,使它有一个解为.12.(3分)学校为了考察我校八年级同学的视力情况,从八年级的14个班共740名学生中,抽取了70名同学的视力情况进行分析,在这个问题中,样本的容量是.13.(3分)已知第二象限内的点P坐标为(4﹣a,3a﹣14),且P点到两坐标轴的距离相等,则a的值为.14.(3分)若关于x的不等式组恰好有4个整数解,则m的取值范围是.15.(3分)如图,图①是四边形纸条ABCD,其中AB∥CD,E,F分别为AB、CD上的两个点,将纸条ABCD沿EF折叠得到图②,再将图②沿DF折叠得到图③,若在图③中,∠FEM=24°,则∠EFC为.16.(3分)如图,点A,B分别在直线MN,ST上,点C在MN与ST之间,点E在线段BC上,已知∠MAC+∠ACB+∠SBC=360°.有以下列结论:①MN∥ST;②∠ACB=∠CAN+∠CBT;③若∠ACB=60°,AD∥CB,且∠DAE=3∠CBT,则∠CAE=3∠CAN;④若为整数且n≥1),∠MAE=(n+1)∠CBT,则∠CAE:∠CAN=n.其中结论正确的有(填写正确结论的序号).三、解答题(共8小题,共72分)17.(8分)(1)计算:;(2)解方程组:.18.(8分)解不等式组,请按下列步骤完成解答:(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(IV)原不等式组的解集为.19.(8分)4月18日,为迎接第28个世界读书日,我校初一年级开展了《名著知识知多少》答题比赛.现随机抽取了若干个学生的答题成绩(单位:分,满分100分)进行整理分析,并绘制了如下不完整的统计图:(数据分为4组:A组:0≤x<70,B组:70≤x<80,C组:80≤x<90,D组:90≤x≤100,x表示成绩,成绩为整数).请根据图中信息,解答下列问题:(1)本次抽取学生人数为人,m=,扇形统计图中A组所对应的扇形圆心角的度数为°;(2)补全频数分布直方图;(3)我校初一年级共有3200名学生,请据此估计我校初一年级学生答题成绩处于C组和D组的共有多少人.20.(8分)如图,点D,H分别在AB,AC上,点E,F都在BC上,DE交FH于点G,AG平分∠BAC,∠BED=∠C,∠1+∠2=90°.(1)求证:FH⊥DE;(2)若∠3=∠4,∠BAC=68°,求∠DFH的度数.21.(8分)如图,在平面直角坐标系中,已知A(﹣1,4),B(﹣4,0),且AB=5.将线段AB向右平移4个单位,再向下平移3个单位得到线段DC(A对应D,B对应C).(1)画出线段CD,连接AD,BC;(2)线段AB与CD的位置关系为,数量关系为;(3)四边形ABCD的面积为;(4)已知点E(3,﹣3),点F在线段CD上运动,则EF的最小值为.22.(10分)如图1所示的A型(1×1)正方形板材和B型(3×1)长方形板材,可用于制作成如图2所示的竖式和横式两种无盖箱子(不计损耗).已知板材每平方米20元.(1)若用7800元的资金去购买A,B两种型号板材,并全部制作竖式箱子,问可以制作竖式箱子多少个?(2)若有A型板材67张,B型板材135张,用这批板材制作两种类型的箱子共40个,问有哪几种制作方案?(3)若有A型板材162张,B型板材a张,做成上述两种箱子,板材恰好用完.已知290<a<306.直接写出a的所有可能的取值.23.(10分)已知:E,F分别是直线AB和CD上的点,AB∥CD,G,H点为平面内两个动点.(1)如图1,G,H在两条直线之间时,∠G=∠H,试说明:∠AEG=∠HFD;(2)如图2,作直线EF,G点在CD下方,H点在AB和CD之间,连接EH,HF,∠HEF和∠HFM的角平分线交于点G.探究∠H与∠G的数量关系;(3)如图3,H,G在直线EF上,射线EH绕点E以每秒12°的速度逆时针旋转,射线FG在EH旋转6秒后开始绕点F以每秒8°的速度顺时针旋转.射线FG旋转160°后两条射线同时停止.设射线FG旋转t秒时,射线EH∥FG,直接写出t的值.24.(12分)如图,平面直角坐标系中,已知点,0),B(0,1),点P(x,y)在直线AB上.(1)请找到x与y之间的数量关系y=(用含x的式子表示);(2)已知点C(3,0),M(a,b)和N(a+2,b+1),且有b=3a:①若P(1,y),且线段PC与线段MN有交点,求a的取值范围;②若a=1,将线段MC向右平移2个单位,且在平移过程中,存在△PMC的面积等于3,求P点横坐标x的取值范围.湖北省武汉市洪山区七年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)5的平方根是()A.B.﹣C.±D.5【分析】根据平方根定义求出即可.【解答】解:5的平方根是±,故选:C.【点评】本题考查了平方根的应用,能理解平方根定义是解此题的关键,注意:一个正数有两个平方根,它们互为相反数.2.(3分)下列调查中,适合采用抽样调查的是()A.了解神舟飞船的设备零件的质量情况B.了解一批袋装食品是否含有防腐剂C.全国人口普查D.企业招聘,对应聘人员进行面试【分析】根据全面调查与抽样调查的定义,逐一判断即可解答.【解答】解:A、了解神舟飞船的设备零件的质量情况,适合普查,故A不符合题意;B、了解一批袋装食品是否含有防腐剂,适合抽样调查,故B符合题意;C、全国人口普查,适合普查,故C不符合题意;D、企业招聘,对应聘人员进行面试,适合普查,故D不符合题意;故选:B.【点评】本题考查了抽样调查和全面调查,熟练掌握全面调查与抽样调查的定义是解题的关键.3.(3分)如图,下列四个选项中,不能判断AB∥DC的是()A.∠1=∠3B.∠B+∠BCD=180°C.∠2=∠4D.∠D+∠BAD=180°【分析】根据平行线的判定定理对各选项进行判断即可.【解答】解:A、∠1=∠3,能判定AB∥CD,故不符合题意;B、∠B+∠BCD=180°,能判定AB∥CD,故不符合题意;C、∠2=∠4,能判定AD∥CD,故符合题意;D、∠D+∠BAD=180°,能判定AB∥CD,故不符合题意.故选:C.【点评】本题考查了平行线的判定,掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.4.(3分)若是关于x和y的二元一次方程ax+y=3的解,则a的值等于()A.﹣1B.0C.1D.2【分析】将方程的解代入方程得到关于a的方程,从而可求得a的值.【解答】解:将是代入方程ax+y=3得:﹣a+2=3,解得:a=﹣1.故选:A.【点评】本题考查了二元一次方程的解,熟记方程的解:就是使方程的左右两边相等的未知数的值是解题的关键.5.(3分)若a<b,下列不等式不一定成立的是()A.1﹣a>1﹣b B.﹣2a>﹣2b C.2a+1<2b+3D.m2a<m2b【分析】根据不等式的性质逐个判断即可.【解答】解:A.∵a<b,∴﹣a>﹣b,∴1﹣a>1﹣b,故本选项不符合题意;B.∵a<b,∴﹣2a>﹣2b,故本选项不符合题意;C.∵a<b,∴2a<2b,∴2a+1<2b+3,故本选项不符合题意;D.当m=0时,m2a=m2b,故本选项符合题意.故选:D.【点评】此题主要考查了不等式的性质:(1)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;(2)不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边同时乘(或除以)同一个负数,不等号的方向改变.6.(3分)已知点Q(2x,﹣y)在第一象限,则点P(x,y)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特点得出x,y的取值范围,进而得出答案.【解答】解:∵点Q(2x,﹣y)在第一象限,∴2x>0,﹣y>0,∴x>0,y<0,∴点P(x,y)在第四象限.故选:D.【点评】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).7.(3分)用含药30%和75%的两种防腐药水,配制含药50%的防腐药水27千克,两种药水各需()A.18千克,9千克B.17千克,10千克C.15千克,12千克D.16千克,11千克【分析】根据含药30%和75%的两种防腐药水中的药的质量和等于含药50%的防腐药水27千克中药的质量列方程可解得答案.【解答】解:设含药30%的防腐药水需x千克,则含药75%的防腐药水(27﹣x)千克,根据题意得:30%x+75%(27﹣x)=50%×27,解得:x=15,∴27﹣x=27﹣15=12,∴含药30%的防腐药水需15千克,含药75%的防腐药水12千克,故选:C.【点评】本题考查一元一次方程的应用,解题的关键是读懂题意,找到等量关系列方程.8.(3分)若不等式的解都能使不等式3x<2x+a成立,则a的取值范围是()A.B.C.D.【分析】按照解一元一次不等式的步骤,进行计算即可解答.【解答】解:,2(x+1)﹣3(2x﹣5)≥12,2x+2﹣6x+15≥12,2x﹣6x≥12﹣2﹣15,﹣4x≥﹣5,x≤,∵3x<2x+a,∴3x﹣2x<a,∴x<a,∵不等式的解都能使不等式3x<2x+a成立,∴a>,故选:C.【点评】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的步骤是解题的关键.9.(3分)在平面直角坐标系中,A(m,﹣3),B(2,n),C(2,6﹣m),其中m+n=2,并且3≤2m+n≤8,则△ABC面积的最大值为()A.7B.8C.9D.10【分析】观察三个点的坐标可知BC=6﹣m﹣n=4,再由m+n=2,并且3≤2m+n≤8可得1≤m≤6,可得BC边上高的最大值,再根据三角形面积公式即可求解.【解答】解:∵B(2,n),C(2,6﹣m),m+n=2,∴BC=6﹣m﹣n=4,∵m+n=2,并且3≤2m+n≤8,∴1≤m≤6,∴BC边上高的最大值是4,∴△ABC面积的最大值为4×4÷2=8.故选:B.【点评】考查了坐标与图形性质,三角形的面积,关键是得到BC的长和BC边上高的最大值.10.(3分)作业本中有这样一道题:“小明去郊游上午8时30分从家中出发,先走平路,然后登山,中午12时到达山顶,原地休息1h后沿原路返回,正好下午3时到家.若他平路每小时走4km,登山每小时走3km,下山每小时走6km,求小明家到山顶的路程.”小李查看解答时发现答案中的方程组中有污损:,则答案中另一个方程应为()A.3a+b=12B.C.D.【分析】由3a=6b可知a表示上山所用时间,b表示下山所用时间,分别求出从家到山顶、从山顶到家所用的时间,两者之差等于上山与下山所用时间之差,由此列出方程即可.【解答】解:由题意知,3a=6b表示上山的路程等于下山的路程,∴a表示上山用的时间,b表示下山用的时间,由题意知,小明从家到山顶所用时间为12﹣8.5=3.5(h),从山顶回到家所用时间为3﹣1=2(h),∴上山比下山多用时间为:3.5﹣2=1.5(h),∴a﹣b=,故选:D.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.二、填空题(共6小题,每小题3分,共18分)11.(3分)写出一个二元一次方程:(答案不唯一),使它有一个解为.【分析】根据所给二元一次方程组的解写出符合条件的二元一次方程组即可.【解答】解:∵二元一次方程组的解为,∴二元一次方程组为,故答案为:(答案不唯一).【点评】本题考查二元一次方程组的解,熟练掌握二元一次方程组的解与二元一次方程的关系是解题的关键.12.(3分)学校为了考察我校八年级同学的视力情况,从八年级的14个班共740名学生中,抽取了70名同学的视力情况进行分析,在这个问题中,样本的容量是70.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:学校为了考察我校八年级同学的视力情况,从八年级的14个班共740名学生中,抽取了70名同学的视力情况进行分析,在这个问题中,样本的容量是70.故答案为:70.【点评】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.13.(3分)已知第二象限内的点P坐标为(4﹣a,3a﹣14),且P点到两坐标轴的距离相等,则a的值为5.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】解:∵第二象限内的点P坐标为(4﹣a,3a﹣14),且P点到两坐标轴的距离相等,∴4﹣a=﹣(3a﹣14),解得a=5.故答案是:5.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.14.(3分)若关于x的不等式组恰好有4个整数解,则m的取值范围是6≤m<7.【分析】先根据求不等式组解集的规律求出不等式组的解集,根据不等式组恰好有4个整数解得出﹣8<﹣1﹣m≤﹣7,再求出m的范围即可.【解答】解:,解不等式①,得x<﹣3,解不等式②,得x≥﹣1﹣m,所以不等式组的解集是﹣1﹣m≤x<﹣3,∵关于x的不等式组恰好有4个整数解(是﹣4,﹣5,﹣6,﹣7),∴﹣8<﹣1﹣m≤﹣7,解得:6≤m<7.故答案为:6≤m<7.【点评】本题考查了解一元一次不等式组和一元一次不等式组的整数解,能得出关于m 的不等式﹣8<﹣1﹣m≤﹣7是解此题的关键.15.(3分)如图,图①是四边形纸条ABCD,其中AB∥CD,E,F分别为AB、CD上的两个点,将纸条ABCD沿EF折叠得到图②,再将图②沿DF折叠得到图③,若在图③中,∠FEM=24°,则∠EFC为108°.【分析】利用折叠,得到全等图形,会得到相等的角、相等的边这一性质推理即可.【解答】解:第一次折叠后,∵∠B′EF=∠BEF,∠FEM=24°,∴∠B′EM=2∠FEM=48°,∵AB′∥DF,∴∠B′EM=∠FMB=48°,∠B′EF=∠EFM=24°,第二次折叠后,∵BM∥CF,∴∠BMF=∠FMB″=48°,∠BMF+∠MFC=180°,∴∠MFC=180°﹣48°=132°,∵∠MFC=∠EFM+EFC,∴∠EFC=132°﹣24°=108°.故答案为:108°.【点评】本题考查了折叠问题,解题的关键是熟练掌握平行线的性质和折叠后的对应角相等.16.(3分)如图,点A,B分别在直线MN,ST上,点C在MN与ST之间,点E在线段BC上,已知∠MAC+∠ACB+∠SBC=360°.有以下列结论:①MN∥ST;②∠ACB=∠CAN+∠CBT;③若∠ACB=60°,AD∥CB,且∠DAE=3∠CBT,则∠CAE=3∠CAN;④若为整数且n≥1),∠MAE=(n+1)∠CBT,则∠CAE:∠CAN=n.其中结论正确的有①②③④(填写正确结论的序号).【分析】利用平行线的判定和性质,将角度进行转化求解.【解答】解:如图,连接AB,作CF∥ST,∵∠MAC+∠ACB+∠SBC=360°,∠ACB+∠ABC+∠BAC=180°,∴∠MAB+∠SBA=180°,∴MN∥ST,故①正确;∵CF∥ST,MN∥ST,∴MN∥ST∥CF,∴∠CAN=∠ACF,∠CBT=∠BCF,∴∠ACB=∠ACF+∠BCF=∠CAN+∠CBT,故②正确;设∠CBT=α,则∠DAE=2α,∠BCF=∠CBT=α,∠CAN=∠ACF=60°﹣α,∵AD∥BC,∠ACB=60°,∴∠DAC=180°﹣∠ACB=120°,∴∠CAE=120°﹣∠DAE=120°﹣2α=2(60°﹣α),∴∠CAE≠=2∠CAN,故③正确;设∠CBT=β,则∠MAE=nβ,∵CF∥ST,∴∠CBT=∠BCF=β,∴∠ACF=∠CAN=,∴∠CAE=180°﹣∠MAE﹣∠CAN=180°﹣nβ﹣,∴∠CAE:∠CAN=(180°﹣nβ):=:=n﹣1,故④正确,故答案为:①②③④.【点评】本题主要考查平行线的性质和判定,解题关键是角度的灵活转换,构建数量关系式.三、解答题(共8小题,共72分)17.(8分)(1)计算:;(2)解方程组:.【分析】根据绝对值的性质计算;利用二元一次方程组的解法解方程即可.【解答】解:(1)原式=﹣1﹣8+2﹣=﹣7﹣.(2)解方程组:,②﹣①×2得:7y=7,解得y=1,将y=1代入①中,解得x=6,∴原方程组的解为:.【点评】本题为计算题,考查了学生的运算能力,解决问题的关键是明确解方程组的解法即可.18.(8分)解不等式组,请按下列步骤完成解答:(Ⅰ)解不等式①,得x<1;(Ⅱ)解不等式②,得x≥﹣1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(IV)原不等式组的解集为﹣1≤x<1.【分析】按照解一元一次不等式组的步骤,进行计算即可解答.【解答】解:(Ⅰ)解不等式①,得x<1;(Ⅱ)解不等式②,得x≥﹣1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(IV)原不等式组的解集为﹣1≤x<1;故答案为:(Ⅰ)x<1;(Ⅱ)x≥﹣1;(Ⅳ)﹣1≤x<1.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,熟练掌握解一元一次不等式组的步骤是解题的关键.19.(8分)4月18日,为迎接第28个世界读书日,我校初一年级开展了《名著知识知多少》答题比赛.现随机抽取了若干个学生的答题成绩(单位:分,满分100分)进行整理分析,并绘制了如下不完整的统计图:(数据分为4组:A组:0≤x<70,B组:70≤x<80,C组:80≤x<90,D组:90≤x≤100,x表示成绩,成绩为整数).请根据图中信息,解答下列问题:(1)本次抽取学生人数为60人,m=60,扇形统计图中A组所对应的扇形圆心角的度数为36°;(2)补全频数分布直方图;(3)我校初一年级共有3200名学生,请据此估计我校初一年级学生答题成绩处于C组和D组的共有多少人.【分析】(1)根据D组人数和所占百分比即可求出本次抽取学生人数;C组人数除以总人数化成百分比即可求出m;求出A组所占百分比,再乘以360°即可得到扇形统计图中A组所对应的扇形圆心角的度数;(2)先求出B组人数,再补全频数分布直方图即可;(3)将学生答题成绩处于C组和D组所占百分比的和乘以3200即可作出估计.【解答】解:(1)∵D组6人,占10%,∴本次抽取学生人数为:6÷10%=60(人);∵C组36人,∴m%=,∴m=60;A组所对应的扇形圆心角的度数为:=36°.故答案为:60,60,36;(2)B组人数为:60﹣6﹣36﹣6=12(人),补全频数分布直方图如下:(3)估计我校初一年级学生答题成绩处于C组和D组的共有:(60%+10%)×3200=2240(人),答:估计我校初一年级学生答题成绩处于C组和D组的共有2240人.【点评】本题考查频数分布直方图,扇形统计图,用样本估计总体,能从统计图中获取有用信息,熟悉样本估计总体的方法是解题的关键.20.(8分)如图,点D,H分别在AB,AC上,点E,F都在BC上,DE交FH于点G,AG平分∠BAC,∠BED=∠C,∠1+∠2=90°.(1)求证:FH⊥DE;(2)若∠3=∠4,∠BAC=68°,求∠DFH的度数.【分析】(1)由∠BED=∠C,得到DE∥AC,由角平分线定义得到∠1=∠GAH,又∠1+∠2=90°,因此∠2+∠GAH=90°,得到GH⊥AC,即可证明HF⊥DE;(2)由角平分线定义得到∠GAH=∠BAC=34°,即可求出∠2的度数,由条件可以证明DF∥AG,得到∠DFH=∠2.【解答】(1)证明:∵∠BED=∠C,∴DE∥AC,∵AG平分∠BAC,∴∠1=∠GAH,∵∠1+∠2=90°,∴∠2+∠GAH=90°,∴GH⊥AC,∴HF⊥DE;(2)解:∵AG平分∠BAC,∴∠GAH=∠BAC=34°,∴∠2=90°﹣34°=56°,∵DE∥AC,∴∠3=∠GAH,∵∠1=∠GAH,∴∠1=∠3,∵∠3=∠4,∴∠3=∠4,∴DF∥AG,∴∠DFH=∠2=56°.【点评】本题考查平行线的判定和性质,垂线,熟练掌握平行线的判定和性质是解题的关键.21.(8分)如图,在平面直角坐标系中,已知A(﹣1,4),B(﹣4,0),且AB=5.将线段AB向右平移4个单位,再向下平移3个单位得到线段DC(A对应D,B对应C).(1)画出线段CD,连接AD,BC;(2)线段AB与CD的位置关系为AB∥DC,数量关系为AB=DC;(3)四边形ABCD的面积为25;(4)已知点E(3,﹣3),点F在线段CD上运动,则EF的最小值为.【分析】(1)根据平移的性质、线段的画法画出图形;(2)由平移的性质可直接得出结论;(3)利用间接法,平行四边形的面积由一个矩形的面积减去4个大小一样的三角形的面积,由此即可得结果;(4)由垂线段最短,利用三角形的面积法可求EF的最小值.【解答】解:(1)画出线段CD,连接AD,BC,图形如下;(2)根据平移的性质可得:AB∥DC,AB=DC,故答案为:AB∥DC,AB=DC.(3)∵A(﹣1,4),B(﹣4,0),C(0,﹣3),D(3,1),∴平行四边形ABCD的面积是:7×7﹣×3×4×4=25,故答案为:25.(4)如图,连接DE、CE,∵E是CE外一点,∴当EF⊥CE时,EF最小;C(0,﹣3),D(3,1),E(3,﹣3),则△CDE是直角三角形,CE=3,DE=4,又∵CD=AB=5,∴,∴,故答案为:.【点评】本题考查了平移作图、点坐标的平移变换、平行四边形的面积、坐标与图形,垂线段最短等内容,熟练掌握平移作图是解题关键.22.(10分)如图1所示的A型(1×1)正方形板材和B型(3×1)长方形板材,可用于制作成如图2所示的竖式和横式两种无盖箱子(不计损耗).已知板材每平方米20元.(1)若用7800元的资金去购买A,B两种型号板材,并全部制作竖式箱子,问可以制作竖式箱子多少个?(2)若有A型板材67张,B型板材135张,用这批板材制作两种类型的箱子共40个,问有哪几种制作方案?(3)若有A型板材162张,B型板材a张,做成上述两种箱子,板材恰好用完.已知290<a<306.直接写出a的所有可能的取值293或298或303.【分析】(1)根据题意列方程求解;(2)根据题意列不等式组求解;(3)根据题意列方程和不等式混合组求解.【解答】解:(1)设制作竖式箱子x个,则:x+4×2x=7800÷20,解得:x=30,答:制作竖式箱子30个;(2)设制作竖式箱子x个.则横式箱子(40﹣x)个,则:,解得:13≤x≤15,∴x的整数解有13,14,15三个,∴有三种方案,为:①制作竖式箱子13个,则横式箱子27个;②制作竖式箱子14个.则横式箱子26个;③制作竖式箱子15个.则横式箱子25个;(3)设制作竖式箱子x个.则横式箱子y个,则:,且x,y,a都为整数,解得:,,,故答案为:293或298或303.【点评】本题考查了一元一次方程和一元一次不等式组的应用,理解题意找出相等关系或不等关系是解题的关键.23.(10分)已知:E,F分别是直线AB和CD上的点,AB∥CD,G,H点为平面内两个动点.(1)如图1,G,H在两条直线之间时,∠G=∠H,试说明:∠AEG=∠HFD;(2)如图2,作直线EF,G点在CD下方,H点在AB和CD之间,连接EH,HF,∠HEF和∠HFM的角平分线交于点G.探究∠H与∠G的数量关系;(3)如图3,H,G在直线EF上,射线EH绕点E以每秒12°的速度逆时针旋转,射线FG在EH旋转6秒后开始绕点F以每秒8°的速度顺时针旋转.射线FG旋转160°后两条射线同时停止.设射线FG旋转t秒时,射线EH∥FG,直接写出t的值.【分析】(1)过点G作GM∥AB,过点H作HN∥CD,然后利用平行线的性质和等角的补角相等即可得证;(2)根据角平分线的意义以及三角形的一个外角等于与它不相邻的两个内角的和探究出∠H与∠G的数量关系;(3)根据旋转的意义和平行线的性质列出关于t的方程,解方程即可求出t值.【解答】(1)证明:如图1,过点G作GM∥AB,过点H作HN∥CD,又∵AB∥CD,∴GM∥HN,∴∠MGH=∠NHG,又∵∠EGH=∠GHF,∴∠EGM=∠FHN,∵GM∥AB,HN∥CD,∴∠BEG=∠EGM,∠CHF=∠FHN,∴∠CHF=∠BEG,又∵∠AEG+∠BEG=180°,∠CHF+∠HFD=180°,∴∠AEG=∠HFD;(2)证明:∵EG平分∠HEF,EG平分∠HFM,∴∠HEM=2∠GEM,∠HEF=2∠GEF,又∵∠HEM=∠HEF+∠H,∠GEM=∠GEF+∠G,∴∠HEF+∠H=2∠GEF+2∠G,∴∠H=2∠G;(3)解:分两种情况:如图3①,由题意得,∠HEH'=12×(6+t),∠GFG'=8t,则∠EFG'=180﹣8t,当EH'∥FG'时,∠HEH'=∠EFG',∴12×(6+t)=180﹣8t,解得:t=;如图3②,∠FEH“=12×(6+t)﹣180,∠EFG“=180﹣8t,当EH“∥FG“时,∠FEH“=∠EFG“,∴12×(6+t)﹣180=180﹣8t,解得:t=;综上所述,t的值为或;【点评】本题为几何变换综合题,主要考查平行线的性质,角平分线定义,三角形的外角以及旋转的意义,深入理解题意,熟练运用分类讨论是解决问题的关键.24.(12分)如图,平面直角坐标系中,已知点,0),B(0,1),点P(x,y)在直线AB上.(1)请找到x与y之间的数量关系y=2x+1(用含x的式子表示);(2)已知点C(3,0),M(a,b)和N(a+2,b+1),且有b=3a:①若P(1,y),且线段PC与线段MN有交点,求a的取值范围;②若a=1,将线段MC向右平移2个单位,且在平移过程中,存在△PMC的面积等于3,求P点横坐标x的取值范围.【分析】(1)用待定系数法求出直线AB解析式为y=2x+1,因点P(x,y)在直线AB上,故y=2x+1;(2)①求出P(1,3),得直线PC解析式为y=﹣x+,由M(a,b),N(a+2,b+1),且有b=3a,知M(a,3a),N(a+2,3a+1),直线MN的解析式为y=x+a,可得直线PC与直线MN的交点坐标为(,),根据线段PC与线段MN有交点,得1≤≤3,即可解得a的取值范围是﹣≤a≤1;②当a=1时,M(1,3),得直线MC解析式为y=﹣x+,将线段MC向右平移2个单位得M'(3,3),C(5,0),直线M'C'解析式为y=﹣x+,过P作PH∥y轴交直线MC于H,当P在MC左侧时,PH=(﹣x+)﹣(2x+1)=﹣x+,(﹣x+)×(3﹣1)=3,x=;当P'在M'C'右侧时,P'H'=(2x+1)﹣(﹣x+)=x﹣,(x﹣)×(5﹣3)=3,得x=,即可得P点横坐标x的取值范围是≤x≤.【解答】解:(1)设直线AB解析式为y=kx+b,把,0),B(0,1)代入得:,解得,∴直线AB解析式为y=2x+1,∵点P(x,y)在直线AB上,∴y=2x+1;故答案为:2x+1;(2)①在y=2x+1中,令x=1得y=3,∴P(1,3),由P(1,3),C(3,0)得直线PC解析式为y=﹣x+,∵M(a,b),N(a+2,b+1),且有b=3a,∴M(a,3a),N(a+2,3a+1),∴直线MN的解析式为y=x+a,联立,解得:,∴直线PC与直线MN的交点坐标为(,),∵线段PC与线段MN有交点,∴1≤≤3,解得﹣≤a≤1,∴a的取值范围是﹣≤a≤1;②当a=1时,M(1,3),∵C(3,0),∴直线MC解析式为y=﹣x+,将线段MC向右平移2个单位得M'(3,3),C(5,0),∴直线M'C'解析式为y=﹣x+,过P作PH∥y轴交直线MC于H,如图:当P在MC左侧时,P(x,2x+1),H(x,﹣+),∴PH=(﹣x+)﹣(2x+1)=﹣x+,当S△PMC=3时,(﹣x+)×(3﹣1)=3,解得x=;当P'在M'C'右侧时,P'(x,2x+1),H'(x,﹣x+),∴P'H'=(2x+1)﹣(﹣x+)=x﹣,当S△P'M'C'=3时,(x﹣)×(5﹣3)=3,解得x=,由图可知,当P在线段PP'上时,存在△PMC的面积等于3,∴P点横坐标x的取值范围是≤x≤.【点评】本题考查几何变换综合应用,涉及待定系数法,函数图象上点坐标特征,三角形面积等知识,解题的关键是用含x的代数式表示相关线段的长度和三角形面积.。
2019—2020学年度第二学期期末调研测试七 年 级 数 学 试 题(全卷共五个大题 满分150分 考试时间120分钟)注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑. 1.方程20x =的解是A .2x =-B .0x =C .12x =- D .12x =2.以下四个标志中,是轴对称图形的是A .B .C .D .3.解方程组⎩⎨⎧=+=-②①,.102232y x y x 时,由②-①得A .28y =B .48y =C .28y -=D .48y -= 4.已知三角形两边的长分别是6和9,则这个三角形第三边的长可能为 A .2 B .3 C .7 D .16 5.一个一元一次不等式组的解集在数轴上表示如右图,则此不等式组的解集是 A .x >3 B .x ≥3 C .x >1 D .x ≥6.将方程31221+=--x x 去分母,得到的整式方程是 A .()()12231+=--x x B .()()13226+=--x x C .()()12236+=--x x D .22636+=--x x 7.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,则△ABC 的形状是A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形 8.已知x m =是关于x 的方程26x m +=的解,则m 的值是A .-3B .3C .-2D .29.下列四组数中,是方程组20,21,32x y z x y z x y z ++=⎧⎪--=⎨⎪--=⎩的解是5题图。
· 43 2 -1118题图AD BCP QA .1,2,3.x y z =⎧⎪=-⎨⎪=⎩B .1,0,1.x y z =⎧⎪=⎨⎪=⎩C .0,1,0.x y z =⎧⎪=-⎨⎪=⎩D .0,1,2.x y z =⎧⎪=⎨⎪=-⎩10.将△ABC 沿BC 方向平移3个单位得△DEF .若 △ABC 的周长等于8, 则四边形ABFD 的周长为A .14B .12C .10D .811.如图是由相同的花盆按一定的规律组成的正多边形图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第8个图形中花盆的个数为A .56B .64C .72D .9012.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A B C ''.若A ∠=40°,'B ∠=110°,则∠BCA '的度数为A .30°B .50°C .80°D .90°二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.在方程21x y -=中,当1x =-时,y = . 14.一个正八边形的每个外角等于 度.15.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 . 16.不等式32>x 的最小整数解是 . 17.若不等式组0,x b x a -<⎧⎨+>⎩的解集为23x <<,则关于x ,y 的方程组5,21ax y x by +=⎧⎨-=⎩的解为 .18.如图,长方形ABCD 中,AB =4,AD =2.点Q 与点P 同时从点A 出 发,点Q 以每秒1个单位的速度沿A →D →C →B 的方向运动,点P 以每秒3个单位的速度沿A →B →C →D 的方向运动,当P ,Q 两点 相遇时,它们同时停止运动.设Q 点运动的时间为x (秒),在整个运动过程中,当△APQ 为直角三角形时,则相应的x 的值或取值 范围是 .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.解方程组:,.202321x y x y -=⎧⎨+=⎩20.解不等式组:20,2(21)15.x x x -<⎧⎨-≤+⎩…ABECDF10题图12题图ABCB ′′15题图DEABC四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上. (1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得P C P C 21+的值最小.22.一件工作,甲单独做15小时完成,乙单独做10小时完成.甲先单独做9小时,后因甲有其它任务调离,余下的任务由乙单独完成.那么乙还需要多少小时才能完成?23.如图,AD 是ABC ∆边BC 上的高,BE 平分ABC ∠ 交AD 于点E .若︒=∠60C ,︒=∠70BED . 求ABC ∠和BAC ∠的度数. ADBCE23题图21题图24.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有5% 的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 25.阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为12x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2x =±. 例2.解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.(1)方程|x +3|=4的解为 ; -21-1342-20 1226.如图1,点D 为△ABC 边BC 的延长线上一点.(1)若:3:4A ABC ∠∠=,︒=∠140ACD ,求A ∠的度数;(2)若ABC ∠的角平分线与ACD ∠的角平分线交于点M ,过点C 作CP ⊥BM 于点P . 求证:1902MCP A ∠=︒-∠; (3)在(2)的条件下,将△MBC 以直线BC 为对称轴翻折得到△NBC ,NBC ∠的角平分线与NCB ∠的角平分线交于点Q (如图2),试探究∠BQC 与∠A 有怎样的数量关系,请写出你的猜想并证明.CABDMP26题图1BDMNAC PQ26题图2参考答案一、选择题:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BABCACBDAADC二、填空题:13.3-; 14.45; 15.4; 16.2x =; 17.4,3.x y =-⎧⎨=-⎩ 18.0<x ≤43或2x =.三、解答题:19.解:由①,得 2x y =.③………………………………………………………………1分将③代入②,得 4321y y +=.解得 3y =.…………………………………………………………………………3分将3y =代入①,得 6x =.………………………………………………………6分 ∴原方程组的解为6,3.x y =⎧⎨=⎩ ………………………………………………………7分20.解:解不等式①,得 2x <.……………………………………………………………3分解不等式②,得 x ≥3-.…………………………………………………………6分∴ 不等式组的解集为:3-≤2x <.………………………………………………7分 四、解答题: 21.作图如下:22.解:设乙还需要x 小时才能完成.根据题意,得………………………………………1分911510x+=.…………………………………………………………………………5分 (1)正确画出△A 1B 1C 1. (4)分(2)正确画出△A 2B 2C 2. (8)分(3)正确画出点P . ……………………10分21题答图经检验,4x =符合题意.答:乙还需要4小时才能完成.……………………………………………………10分 23.解:∵AD 是ABC ∆的高,∴︒=∠90ADB ,……………………………………………………………………2分 又∵180DBE ADB BED ∠+∠+∠=︒,︒=∠70BED ,∴18020DBE ADB BED ∠=︒-∠-∠=︒.……………………………………4分 ∵BE 平分ABC ∠,∴︒=∠=∠402DBE ABC . ………………………………………………………6分 又∵︒=∠+∠+∠180C ABC BAC ,60C ∠=︒,∴C ABC BAC ∠-∠-︒=∠180︒=80.……………………………………………10分24.解:(1)设该水果店两次分别购买了x 元和y 元的水果.根据题意,得……………1分2200,2.40.54x y yx +=⎧⎪⎨=⨯⎪-⎩………………………………………………………………3分 解得 800,1400.x y =⎧⎨=⎩………………………………………………………………5分经检验,800,1400x y =⎧⎨=⎩符合题意.答:水果店两次分别购买了800元和1400元的水果.……………………6分 (2)第一次所购该水果的重量为800÷4=200(千克).第二次所购该水果的重量为200×2=400(千克). 设该水果每千克售价为a 元,根据题意,得[200(1-3%)+400(1-5%)]8001400a --≥1244.………………………8分 解得 6a ≥.答:该水果每千克售价至少为6元. ······························································ 10分五、解答题:25.解:(1)1x =或7x =-.………………………………………………………………4分(2)在数轴上找出|x -3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为-2或8, ∴方程|x -3|=5的解为x =-2或x =8,∴不等式|x -3|≥5的解集为x ≤-2或x ≥8. ············································· 8分 (3)在数轴上找出|x -3|+|x +4|=9的解.A M PCM BMCP A ABC ACD M ABCMBC ACD MCD ABCACD MB MC ABCACD A MBC MCD M MBC MCD ∠-︒=∠-︒=∠∴⊥∠=∠-∠=∠∴∠=∠∠=∠∴∠∠∠-∠=∠∠-∠=∠∴∠21909021)(212121∵又,、分别平分、∵同理可证:的外角是△∵由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于9的点对应的x 的值.∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边.若x 对应的点在3的右边,可得x =4;若x 对应的点在-4的左边,可得x =-5, ∴方程|x -3|+|x +4|=9的解是x =4或x =-5,∴不等式|x -3|+|x +4|≥9的解集为x ≥4或x ≤-5. ······························· 12分26.(1)解:∵4:3:=∠∠B A ,∴可设3,4A k B k ∠=∠=.又∵ACD A B ∠=∠+∠140=°, ∴ 34140k k +=°, 解得 20k =°.∴360A k ∠==°. ····························································································· 4分(2)证明:(3)猜想A BQC ∠+︒=∠4190. ··························································································· 9分 证明如下:∵BQ 平分∠CBN ,CQ 平分∠BCN , ∴BCN QCB CBN QBC ∠=∠∠=∠2121,, ∴ )(BCN CBN Q ∠+∠-︒=∠21180)N ∠-︒-︒=180(21180N ∠+︒=2190. ··············································· 10分由(2)知:A M ∠=∠21,又由轴对称性质知:∠M =∠N ,………………………………………8分………………………………………6分1、只要朝着一个方向努力,一切都会变得得心应手。
2019-2020学年七年级下学期数学期末考试试卷(附答案)一、选择题(共10题;共20分)1.下列各命题中,属于假命题的是()A. 若a-b=0,则a=b=0B. 若a-b>0,则a>bC. 若a-b<0,则a<bD. 若a-b≠0,则a≠b2.已知等式3a=b+2c,那么下列等式中不一定成立的是( )A. 3a﹣b=2cB. 4a=a+b+2cC. a=b+ cD. 3=+3.下列因式分解正确的是()A. x2-9=(x-3)2B. -1+4a2=(2a+1)(2a-1)C. 8ab-2a2=a(8b-2a)D. 2x2-4x+2=2(x2-2x+1)4.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准;②检测某地区空气的质量;③调查全市中学生一天的学习时间.A. ①②B. ①③C. ②③D. ①②③5.如果两个相似多边形的面积比是4:9,那么它们的周长比是()A. 4:9B. 2:3C.D. 16:816.如果方程有增根,那么m的值为()A. 0B. -1C. 3D. 17.如图,E是平行四边形ABCD的边BC的延长线上的一点,连结AE交CD于F,则图中共有相似三角形()A. 1对B. 2对C. 3对D. 4对8.一次函数y=kx+b(k,b是常数,k≠0 )的图象如图所示,则不等式kx+b>0的解集是( )A. x>-2B. x>0C. x<-2D. x<09.如图,正方形ABCD内有两点E、F满足AE=1,EF=FC=3,AE⊥EF,CF⊥EF,则正方形ABCD的面积为()A. B. 10 C. 20 D. 2010.如图,点E、F分别为正方形ABCD的边BC、CD上一点,AC、BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①△AOM∽△ADF;②EF=BE+DF;③∠AEB=∠AEF=∠ANM;④S△AEF=2S△AMN,以上结论中,正确的个数有()个.A. 1B. 2C. 3D. 4二、填空题(共6题;共7分)11.当x=________时,分式的值为1;当x=________时,分式的值为﹣1.12.设点O为投影中心,长度为1的线段AB平行于它在面H内的投影A′B′,投影A′B′的长度为3,且O到直线AB的距离为1.5,那么直线AB与直线A′B′的距离为________.13.若a=2,a+b=3,则a2+ab=________.14.当a=3,a﹣b=2时,代数式a2﹣ab的值是________.15.如图,l是四边形ABCD的对称轴,如果AD∥BC,有下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC,其中正确的结论是________(把你认为正确的结论的序号都填上).16题16.如图,在中,和的平分线交于点,过点作交于,交于,若,那么线段的长为________.三、解答题(共8题;共63分)17.解不等式组:.18.先化简,再求值:,其中x=4sin45°-2sin30°19.利用位似图形的方法把四边形ABCD缩小为原来的.20.如图,△ABC中,∠A=40°,∠B=76°,CE平分∠ACB,CD⊥AB于点D,DF⊥CE于点F,求∠CDF的度数.21.八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:类别频数(人数)频率小说 0.5戏剧 4散文 10 0.25其他 6合计 m 1(1)计算m=________ (2)在扇形统计图中,“其他”类所占的百分比为________(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.22.已知:如图,在△ABC 中,∠C=90°,∠BAC 的平分线AD 交BC于点D,过点D 作DE⊥AD 交AB 于点E,以AE 为直径作⊙O.(1)求证:BC 是⊙O 的切线;(2)若AC=3,BC=4,求BE 的长.(3)在(2)的条件中,求cos∠EAD 的值.23.如图,已知菱形ABCD,对角线AC、BD相交于点O,AC=6,BD=8.点E是AB边上一点,求作矩形EFGH,使得点F、G、H分别落在边BC、CD、AD上.设AE=m.(1)如图①,当m=1时,利用直尺和圆规,作出所有满足条件的矩形EFGH;(保留作图痕迹,不写作法)(2)写出矩形EFGH的个数及对应的m的取值范围.24.8月25日,高德公司发布了《2015年第二季度中国主要城市交通分析报告》,在国内城市拥堵排行中,北京、杭州、广州位列前三,山城重庆排第九.为了解重庆市交通拥堵情况,经调查统计:菜园坝长江大桥上的车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的一次函数,且满足v=﹣x+88(其中20≤x≤220).(1)在交通高峰时段,为使菜园坝长江大桥上车流速度不小于48千米/时且不大于60千米/时,应控制菜园坝长江大桥上的车流密度在什么范围内?(2)若规定车流量(单位:辆/时)是单位时间内通过桥上某观测点的车辆数.即:车流量=车流速度×车流密度.那在(1)的条件下.菜园坝长江大桥上车流量的最大值是多少?(3)当车流量为4680辆/时时,为了使桥上的更畅通,则桥上的车流密度应为多少?答案一、选择题1. A2. D3. B4. D5. B6. D7.C8. A9.A 10. D二、填空题11.﹣;12.3 13. 6 14.6 15.①、②、④ 16. 10三、解答题17. 解:,由①得x>2,由②得x<3,所以原不等式组的解集是2<x<318. 解:原式= =其中x= 4sin45°-2sin30°=则原式= =19.解:作图如下:20.解:∵∠A=40°,∠B=76°,∴∠ACB=180°-40°-76°=64°,∵CE平分∠ACB,∴∠ACE=∠BCE=32°,∴∠CED=∠A+∠ACE=72°,∵CD⊥AB ∴∠CDE=90°,∵DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=∠CED=72°.21. (1)40(2)15%(3)解:画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.22. (1)证明:连接OD,如图所示.在Rt△ADE中,点O为AE的中心,∴DO=AO=EO= AE,∴点D在⊙O上,且∠DAO=∠ADO.又∵AD平分∠CAB,∴∠CAD=∠DAO,∴∠ADO=∠CAD,∴AC∥DO.∵∠C=90°,∴∠ODB=90°,即OD⊥BC.又∵OD为半径,∴BC是⊙O的切线(2)解:在Rt△ACB中,∵AC=3,BC=4,∴AB=5.设OD=r,则BO=5﹣r.∵OD∥AC,∴△BDO∽△BCA,∴,即,解得:r= ,∴BE=AB﹣AE=5﹣=(3)解:∵△BDO∽△BCA,∴,即,BD= ,∴CD=BC﹣BD= ,∴AD= ,∴cos∠EAD= .23. (1)解:如图①,如图②(也可以用图①的方法,取⊙O与边BC、CD、AD的另一个交点即可)(2)解:∵O到菱形边的距离为,当⊙O与AB相切时AE= ,当过点A,C时,⊙O与AB交于A,E两点,此时AE= ×2= ,根据图像可得如下六种情形:①当m=0时,如图,存在1个矩形EFGH;②当0<m<时,如图,存在2个矩形EFGH;③当m=时,如图,存在1个矩形EFGH;④当<m≤ 时,如图,存在2个矩形EFGH;⑤当<m<5时,如图,存在1个矩形EFGH;⑥当m=5时,不存在矩形EFGH24. (1)解:由题意,得,解得:70≤x≤120.故应控制大桥上的车流密度在70≤x≤120范围内(2)解:设车流量y与x之间的关系式为y=vx,当70≤x≤120时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆(3)解:当y=4680时,即4680=﹣(x﹣110)2+4840,解得:x=130,或x=90,故当车流量为4680辆/时时,为了使桥上的更畅通,则桥上的车流密度应为130辆/千米,或90辆/千米。
七年级数学试题 第1页 共4页2019—2020学年度第二学期期末考试七年级数学试题注意事项:1.本试卷考试时间为100分钟,试卷满分120分.考试形式闭卷. 2.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.3. 答题前,务必将自己的学校、班级、姓名、准考证号填写在答题纸上相应位置. 一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上) 1.四边形的内角和为A .180°B .360°C .540°D .720°2.下列图形中,可以由其中一个图形通过平移得到的是A. B .CD .3.下列由左到右的变形中,因式分解正确的是A .21(1)(1)x x x -=+-B .22(1)21x x x +=++C .221(2)1x x x x -+=-+D .2(1)(1)1x x x +-=-4.满足不等式10x +>的最小整数解是A .1-B .0C .1D .25.已知24x x k ++是一个完全平方式,则常数k 为A .2B .-2C .4D .-46.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒.现有18张白铁皮,设用x 张制作盒身、y 张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是A .181016x y x y +=⎧⎨=⎩B .1821016x y x y +=⎧⎨⨯=⎩C .1810216x y x y +=⎧⎨=⨯⎩D .181610x y x y +=⎧⎨=⎩7.已知01()2a =-,22b -=-,2(2)c -=-,则a 、b 、c 的大小关系为A .c b a <<B .a b c <<C .b a c <<D .b c a <<七年级数学试题 第2页 共4页8. 对于有理数x ,我们规定{}x 表示不小于x 的最小整数,如{}2.23=,{}22=,{}2.52-=-,若4310x +⎧⎫=⎨⎬⎩⎭,则x 的取值可以是A .10B .20C .30D .40二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题纸相应位置上)9. 如图,直线a 、b 被直线c 所截,a ∥b ,∠1=70°,则∠2= ▲ °.10.命题“若a b =,则a b -=-”的逆命题是 ▲ . 11.太阳的半径约为700 000 000米,数据700 000 000用科学记数法表示为 ▲ . 12.计算:23()b b ÷= ▲ .13.如图,△ABC 中,∠1=∠2,∠BAC =60°,则∠APB = ▲ °.14.已知方程组123a b b c c a +=-⎧⎪+=⎨⎪+=⎩,则a b c ++= ▲ .15.计算:100920181(9)()3-⨯= ▲ .16.计算:2416(21)(21)(21)(21)1+++⋅⋅⋅++= ▲ .三、解答题(本大题共有10小题,共72分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 17.(本题满分6分)分解因式:(1)23x x -;(2)2242a a -+. 18.(本题满分6分)解方程组:2351x y x y +=⎧⎨=-⎩19.(本题满分6分)化简并求值:2(2)(21)2n n n +--,其中13n =.20.(本题满分6分)利用数轴确定不等式组2413122x x ≥-⎧⎪⎨+<⎪⎩的解集.第9题图a b1c2第13题图ABP12七年级数学试题 第3页 共4页21.(本题满分6分)如图,在方格纸上,以格点为顶点的三角形叫做格点三角形,请按要求完成下列操作: (1)将△ABC 先向右平移2个单位,再向上平移4个单位,画出平移后的△A 1B 1C 1; (2)连接AA 1、BB 1,则线段AA 1、BB 1的位置关系为 ▲ 、数量关系为 ▲ ; (3)画出△ABC 的AB 边上的中线CD 以及BC 边上的高AE .22.(本题满分6分)已知:如图,是一个形如“5”字的图形,AC ∥DE ,AB ∥CD ,∠D +∠E =180°.求证:∠A =∠E . 证明:∵ ▲( 已知 ) ∴∠A +∠C =180° ( ▲ ) ∵AC ∥DE( ▲ )∴∠ ▲ =∠D ( ▲ ) 又∠D +∠E =180° ( 已知 ) ∴∠A =∠E( ▲ )23.(本题满分8分)已知关于x 、y 的二元一次方程组23,2 6.x y m x y -=⎧⎨-=⎩(1)若方程组的解满足4x y -=,求m 的值; (2)若方程组的解满足0x y +<,求m 的取值范围.24.(本题满分8分)一家公司加工蔬菜,有粗加工和精加工两种方式.如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨.该公司从市场上收购蔬菜150吨,并用14天加工完这批蔬菜.请问粗加工蔬菜和精加工蔬菜各多少吨?ABC AB C EDF七年级数学试题 第4页 共4页25.(本题满分8分)小军、小华、小峰三人身上各有一些1元和5角的硬币.小军:我有1元和5角的硬币共13枚,总币值为9元. 小华:我有1元和5角的硬币共13枚,总币值小于8.5元. 小峰:我有1元和5角的硬币若干,这些硬币的总币值为4元. 这三人身上哪一个的5角硬币最多呢?请写出解答过程.26.(本题满分12分)三角形内角和定理告诉我们:三角形三个内角的和等于180°.如何证明这个定理呢?我们知道,平角是180°,要证明这个定理就是把三角形的三个内角转移到一个平角中去.请根据如下条件,证明定理. 【定理证明】已知:△ABC (如图①). 求证:∠A +∠B +∠C =180°. 【定理推论】如图②,在△ABC 中,有∠A +∠B +∠ACB =180°,点D 是BC 延长线上一点,由平角的定义可得∠ACD +∠ACB =180°,所以∠ACD = ▲ .从而得到三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和.【初步运用】如图③,点D 、E 分别是△ABC 的边AB 、AC 延长线上一点. (1)若∠A =80°,∠DBC =150°,则∠ACB = ▲ °; (2)若∠A =80°,则∠DBC +∠ECB = ▲ °. 【拓展延伸】如图④,点D 、E 分别是四边形ABPC 的边AB 、AC 延长线上一点. (1)若∠A =80°,∠P =150°,则∠DBP +∠ECP = ▲ °;(2)分别作∠DBP 和∠ECP 的平分线,交于点O ,如图⑤,若∠O =50°,则∠A 和∠P的数量关系为 ▲ ; (3)分别作∠DBP 和∠ECP 的平分线BM 、CN ,如图⑥,若∠A =∠P ,求证:BM ∥CN .图④B ACDE P 图⑤B ACDE P O图⑥B ACD EP MN B A C D 图② 图③B A CD EA C 图①七年级数学试题 第5页 共4页七年级数学参考答案与评分细则一、选择题(每小题3分,共24分)1.B 2.C 3.A 4.B 5.C6.B7.D8.B二、填空题(每小题3分,共24分)9. 7010.若a b -=-,则a b = 11.8710⨯12.5b 13.120 14.2 15.1-16.322三、解答题 17.解:(1)23x x -=(3)x x -······································································ 3分(2)2242a a -+=22(1a -) ······························································ 6分18.解:23x y =-⎧⎨=⎩······················································································· 6分(x 、y 的值作对一个得3分)19.解:原式=32n - ················································································· 4分当13n =时,原式=1- ··········································································· 6分20.解: 2413122x x ≥-⎧⎪⎨+<⎪⎩①② 由①得2x ≥- ················································································ 1分 由②得1x < ·················································································· 2分 在数轴上表示不等式①、②的解集·························4分所以,不等式组的解集是21x -≤< ··············6分21.解:(1)如图 ·················································2分(2)AA 1∥BB 1、AA 1=BB 1·········································· 4分 (3)如图·················································6分ABC A 1B 1C 1D┐E七年级数学试题 第6页 共4页22.解: AB ∥CD ················································································································· 1分(两直线平行,同旁内角互补) ········································ 2分 (已知) ······································································ 3分∠C (两直线平行,内错角相等) ··········································· 5分(等角的补角相等) ······················································· 6分23.解:2326x y m x y -=⎧⎨-=⎩①②(1)方法一:由题得4x y -=③③-②得 2y =- ··········································································· 1分 把2y =-代人②得 2x = ·································································· 2分把22x y =⎧⎨=-⎩代入①解得 2m = ··············································································· 4分方法二:①+②得 3336x y m -=+即2x y m -=+ ··············································································· 2分 由③得 24m +=解得 2m = ··············································································································· 4分 (2)①-②得 36x y m +=- ··································································· 6分又0x y +< 所以360m -<解得2m < ···················································································· 8分24.解:设粗加工蔬菜为x 吨,精加工蔬菜为y 吨 ············································ 1分得15014155x y x y +=⎧⎪⎨+=⎪⎩ ············································································· 4分解得12030x y =⎧⎨=⎩················································································ 7分答:粗加工蔬菜为120吨,精加工蔬菜为30吨 ···································· 8分25.解:设小军身上有1元硬币x 枚,5角硬币y 枚得 130.59x y x y +=⎧⎨+=⎩解得 58x y =⎧⎨=⎩·················································································· 2分所以,小军身上有5角硬币8枚设小华身上有5角硬币m 枚七年级数学试题 第7页 共4页得 130.58.5m m -+<, 解得 9m >所以,小军身上有5角硬币至少10枚 ················································· 4分 设小峰身上有1元硬币a 枚,5角硬币b 枚 得 0.54a b +=82b a =- 所以,小峰身上有5角硬币不超过8枚(写出不超过6或不超过8的正整数解也可以) ··································· 6分 综上所述,可得小华身上5角硬币最多 ··············································· 8分26.【定理证明】证明:方法一:过点A 作直线MN ∥BC ,如图所示∴∠MAB =∠B ,∠NAC =∠C ∵∠MAB +∠BAC +∠NAC =180°∴∠BAC +∠B +∠C =180° ······························································ 3分 方法二:延长BC 到点D ,过点C 作CE ∥AB ,如图所示 ∴∠A =∠ACE ,∠B =∠ECD ∵∠ACB +∠ACE +∠ECD =180° ∴∠A +∠B +∠ACB =180° ······························································ 3分【定理推论】∠A +∠B ·················································································································· 4分 【初步运用】(1)70° ························································································ 5分 (2)260° ······················································································ 6分 【拓展延伸】(1)230° ······················································································ 7分 (2)∠P =∠A +100° ······································································· 9分 (3)证明:延长BP 交CN 于点Q ∵BM 平分∠DBP ,CN 平分∠ECP ∴2DBP MBP ∠=∠2ECP NCP ∠=∠∵DBP ECP A BPC ∠+∠=∠+∠A BPC ∠=∠∴222MBP NCP A BPC BPC ∠+∠=∠+∠=∠ ∴BPC MBP NCP ∠=∠+∠ ∵BPC PQC NCP ∠=∠+∠ ∴MBP PQC ∠=∠∴BM ∥CN ············································································································· 12分BACMNA CDEB AC DE PMNQ。
2019-2020学年武汉市初一下期末统考数学试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题只有一个答案正确)1.已知a>b,c≠0,则下列关系一定成立的是().A.ac>bc B.a bc c>C.c-a>c-b D.c+a>c+b【答案】D【解析】【分析】根据不等式的基本性质一一判断可得答案.【详解】解:A、当c<0时,不等式a>b的两边同时乘以负数c,则不等号的方向发生改变,即ac<bc.故本选项错误;B、当c<0时,不等式a>b的两边同时除以负数c,则不等号的方向发生改变,即a bc c<.故本选项错误;C、在不等式a>b的两边同时乘以负数-1,则不等号的方向发生改变,即-a<-b;然后再在不等式的两边同时加上c,不等号的方向不变,即c-a<c-b.故本选项错误;D、在不等式a>b的两边同时加上c,不等式仍然成立,即a+c>b+c;故本选项正确.故选D.【点睛】本题主要考查的是不等式的基本性质.不等式的性质1: 不等式两边加(或减)同一个数(或式子), 不等号的方向不变.即如果a>b, 那么a±c>b±c; 不等式的性质2: 不等式两边乘(或除)以同一个正数, 不等号的方向不变.即如果a>b, c>0, 那么ac>bc或(ac>bc);不等式的性质3: 不等式两边乘(或除)以同一个负数,不等号的方向改变.即如果a>b,c<0,那么ac<bc或(ac<bc).2.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==【答案】A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.“杨絮”纤维的直径约为0.0000107米,则0.0000107用科学记数法表示为:()A.51.0710-⨯B.40.10710-⨯C.40.10710⨯D.51.0710⨯【答案】A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000107=51.0710-⨯,故选A.【点睛】本题考查科学记数法表示较小的数,需注意对于一般形式a×10-n,1≤a<10,n等于原数左边起第一个不为零的数字前面的0的个数.4.不等式组2201xx+>⎧⎨-≥-⎩的解在数轴上表示为( )A.B.【答案】D【解析】【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1;解不等式②得,x≤1;∴不等式组的解集是﹣1<x≤1.不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.5.某商场为促销某种商品,将定价为5元/件的该商品按如下方式销售:若购买不超过5件商品,按原价销售;若一次性购买超过5件,按原价的八折进行销售.小明现有29元,则最多可购买该商品( ) A .5件B .6件C .7件D .8件 【答案】C【解析】【分析】 关系式为:原价×10折扣数×件数≤29,把相关数值代入计算求得最大的正整数解即可. 【详解】设可以购买x 件这样的商品,由题意,得5×0.8x ≤29,解得x ≤7.25,则最多可以购买该商品的件数是7,故选C .【点睛】本题考查了一元一次不等式的应用,弄清题意,找准不等关系列出不等式是解题的关键.6.如果21xy=-⎧⎨=⎩是二元一次方程mx+y=3的一个解,则m的值是()A.-2 B.2 C.-1 D.1 【答案】C【解析】【分析】把x与y的值代入方程计算即可求出m的值.【详解】把21xy=-⎧⎨=⎩代入方程得:-2m+1=3,解得:m=-1,故选:C.7.下列多项式中,不能用平方差公式计算的是()A.(﹣a﹣b)(a﹣b)B.(﹣a﹣b)(﹣a+b)C.(﹣a+b)(a﹣b)D.(a+b)(﹣a+b)【答案】C【解析】【分析】根据平方差公式的特点对各个选项分析判断后,即可得到答案【详解】A. (﹣a﹣b)(a﹣b)=﹣(a+b)(a﹣b),能用平方差公式计算,故A项不符合题意;B. (﹣a﹣b)(﹣a+b)=﹣(a+b)(﹣a+b),能用平方差公式计算,故B项不符合题意;C. (﹣a+b)(a﹣b)=﹣(a﹣b)(a﹣b),不能用平方差公式计算,故C项符合题意;D. (a+b)(﹣a+b)能用平方差公式计算,故D项不符合题意;故选择C项.【点睛】本题考查平方差公式,解题的关键是熟练掌握平方差公式.8.下列调查中,适宜抽样调查的是()A.了解某班学生的身高情况B.选出某校短跑最快的学生参加全市比赛C.了解全班同学每天体育锻炼的时间D.调查某批次汽车的抗撞击能力【解析】【分析】普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据此特征进行判断.【详解】A、范围较小,容易操作,适合普查,故该选项错误;B、要求比较严格,适合普查,故该选项错误;C、范围较小,容易操作,适合普查,故该选项错误;D、破坏性大,适合抽样调查,故本选项正确.故选:D.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查,无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度高的调查、事关重大的调查往往选用普查.9.下列各数中属于无理数的是()A.3.14B.4C.35D.1 3【答案】C【解析】【分析】分别根据无理数、有理数的定义进行判定即可得出答案.【详解】3.14,143,是有理数,35是无理数,故选C.【点睛】本题考查了无理数的定义.牢记无限不循环小数为无理数是解题的关键. 10.下列四个图案中,是轴对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意.故选:C.【点睛】本题考查了轴对称图形,掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题11.一个自然数若能表示为相邻两个自然数的平方差,则这个自然数为“智慧数”,比如:22-12=3,3就是智慧数,从0开始,不大于2019的智慧数共有_______ 个.【答案】1【解析】【分析】根据“智慧数”的定义得出智慧数的分布规律,进而得出答案.【详解】∵(n+1)2-n2=2n+1,∴所有的奇数都是智慧数,∵2019÷2=1009…1,∴不大于2019的智慧数共有:1009+1=1.故答案为:1.此题考查了新定义,平方差公式,理解“智慧数”的定义是解题关键.12.如果关于 x 的不等式 x <a +5 和 2x <4 的解集相同,则 a =_____.【答案】-2【解析】【分析】求得不等式1x <4的解集是x <1,由两不等式的解集相同,得a+5=1.【详解】不等式1x <4的解集是x <1.∵两不等式的解集相同,∴a+5=1,解得a=-2.故答案为:-2.【点睛】考核知识点:解一元一次不等式.解不等式是关键.13.已知关于x 的不等式组52112x x a ->-⎧⎪⎨->⎪⎩无解,请写出符合题意的一个整数值a 是_____________. 【答案】2(1a ≥即可)【解析】【分析】 先将52112x x a ->-⎧⎪⎨->⎪⎩变形得到6212x x a >⎧⎨->⎩,化简得到32+1x x a >⎧⎨>⎩,再结合题意得到2+13a ≥,计算即可得到答案.【详解】52112x x a ->-⎧⎪⎨->⎪⎩变形得到6212x x a >⎧⎨->⎩,化简得到32+1x x a >⎧⎨>⎩,因为关于x 的不等式组52112x x a ->-⎧⎪⎨->⎪⎩无解,所以2+13a ≥,解得1a ≥,故可取a=2.【点睛】本题考查解一元一次不等式组,解题的关键是掌握解一元一次不等式组的方法.14.请写出一个比1大比2小的无理数:________________.(答案不唯一)【分析】利用1<2<4,再根据算术平方根的定义,有1<2<2,这样就可得到满足条件的无理数.【详解】∵1<2<4,∴1<2<2,故答案为:2(答案不唯一).【点睛】此题主要考查了估算无理数的大小,注意首先估算被开方数在哪两个相邻的平方数之间,再估算该无理数在哪两个相邻的整数之间.15.关于,x y 的方程11235m n x y +-+=是二元一次方程,则m n -=__________.【答案】-2.【解析】【分析】根据二元一次方程的定义,可得x 和y 的指数分别都为1,列关于m 、n 的方程,然后求解即可.【详解】根据二元一次方程的定义,11,11m n +=-=,解得0,2m n ==.所以022m n -=-=-.【点睛】本题考查二元一次方程的定义. 含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.16.如图,长宽分别为 a ,b 的长方形的周长为 14,面积为 10,则 a 3b+ab 3的值为_____.【答案】1【解析】【分析】直接利用矩形的性质结合完全平方公式将原式变形得出答案.【详解】∴a+b=7,ab=10,∴a 3b+ab 3=ab[(a+b )2-2ab]=10×(72-20)=1.故答案为:1.【点睛】此题主要考查了提取公因式法以及完全平方公式,正确将原式变形是解题关键.17.如图,有两个大小不同的正方形A 和B ,现将A 、B 并列放置后构造新的正方形得到图①,其阴影部分的面积为16;将B 放在A 的内部得到图②,其阴影部分(正方形)的面积为4,则正方形A 、B 的面积之差为________________.【答案】12【解析】【分析】设正方形A 的边长为a ,正方形B 的边长为b ,由图①得22216a b a b +--=() ,2ab=16,由图②得2224a b a b b ---⨯=() 即2224a b ab +-=,进一步得24a b -=(),2222436a b a b ab ab +=+-+=(),据此求得a+b 和a-b 的值,由平方差公式可得答案. 【详解】设正方形A 的边长为a ,正方形B 的边长为b ,由图①得22216a b a b +--=(),2ab=16,由图②得2224a b a b b ---⨯=() 即2224a b ab +-=所以24a b -=(),2222436a b a b ab ab +=+-+=(),∴2,6a b a b -=±+=±,∵a>b>0∴a-b=2,a+b=6∴()()2212a b a b a b -=+-= , 则正方形A 、B 的面积之差为12,故答案为12.【点睛】三、解答题18.如图,已知AB =AD ,∠ABC =∠ADC .试判断AC 与BD 的位置关系,并说明理由.【答案】AC ⊥BD ,理由见解析.【解析】【分析】AC 与BD 垂直,理由为:由AB=AD ,利用等边对等角得到一对角相等,利用等式性质得到∠BDC=∠DBC ,利用等角对等边得到DC=BC ,利用SSS 得到三角形ABC 与三角形ADC 全等,利用全等三角形对应角相等得到∠DAC=∠BAC ,再利用三线合一即可得证.【详解】AC ⊥BD ,理由为:∵AB =AD (已知),∴∠ADB =∠ABD (等边对等角),∵∠ABC =∠ADC (已知),∴∠ABC ﹣∠ABD =∠ADC ﹣∠ADB (等式性质),即∠BDC =∠DBC ,∴DC =BC (等角对等边),在△ABC 和△ADC 中,AB AD AC AC BC DC =⎧⎪=⎨⎪=⎩∴△ABC ≌△ADC (SSS ),∴∠DAC =∠BAC (全等三角形的对应角相等),又∵AB =AD ,∴AC ⊥BD (等腰三角形三线合一).【点睛】此题考查了全等三角形的判定与性质,等腰三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.19.如图,在△ABC 中,∠1=110°,∠C =80°,∠2=13∠3,BE 平分∠ABC ,求∠4的度数.【答案】∠4=40°【解析】【分析】根据三角形的外角求出∠3,求出∠2,求出∠BAC ,根据三角形内角和定理求出∠ABC ,根据角平分线的性质求出∠ABE ,根据三角形外角性质求出即可.【详解】解:∵∠1=110°,∠C =80°,∴3130C ∠=∠-∠=︒,∵∠2=13∠3, ∴∠2=10°,∴2340BAC ∠=∠+∠=︒,∴180180408060ABC BAC C ∠︒∠-∠=︒-︒-︒=︒=﹣,∵BE 平分∠ABC , ∴1302ABE ABC ∠=∠=︒, ∴∠4=∠ABE+∠2=30°+10°=40°.【点睛】本题考查了角平分线的性质、三角形内角和定理和三角形外角性质,能求出∠ABE 的度数是解此题的关键. 20.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2015年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)实际每年绿化面积为多少万平方米?(2)为加大创建力度,市政府决定从2018年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?【答案】(1)实际每年绿化面积为54万平方米;(2)实际平均每年绿化面积至少还要增加45万平方米.【解析】【分析】(1)设原计划每年绿化面积为x 万平方米,则实际每年绿化面积为1.6x 万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程;(2)设平均每年绿化面积增加a 万平方米.则由“完成新增绿化面积不超过2年”列出不等式.【详解】(1)设原计划每年绿化面积为x 万平方米,则实际每年绿化面积为1.6x 万平方米,根据题意,得解得:x=33.75,经检验x=33.75是原分式方程的解,则1.6x=1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米;(2)设平均每年绿化面积增加a 万平方米,根据题意得54×2+2(54+a )≥360解得:a≥1.答:则至少每年平均增加1万平方米.21.某体育用品商店购进乒乓球拍和羽毛球拍进行销售,已知羽毛球拍比乒乓球拍每副进价高20元,用10000元购进羽毛球拍与用8000元购进乒乓球拍的数量相等.(1)求每副乒乓球拍、羽毛球拍的进价各是多少元?(2)该体育用品商店计划用不超过8840元购进乒乓球拍、羽毛球拍共100副进行销售,且乒乓球拍的进货量不超过60副,请求出该商店有几种进货方式?【答案】(1)每副乒乓球拍、羽毛球拍进价分别为80元、100元;(2)共有3种进货方式,详见解析.【解析】【分析】(1)可设购买1副乒乓球拍需x 元,根据用10000元购进羽毛球拍与用8000元购进乒乓球拍的数量相等,列出分式方程,解方程检验即可.(2)可设购买了乒乓球拍y 副,根据该体育用品商店计划用不超过8840元购进乒乓球拍、羽毛球拍共100副,列出不等式求解,再根据乒乓球拍的进货量不超过60副取公共部分的整数,可知共有3种.【详解】(1)设每副乒乓球拍进价为x 元,由题意得:10000800020=+x x解得:80x =,经检验80x =是原方程的解,且符合题意,此时20100x +=.答:每副乒乓球拍、羽毛球拍进价分别为80元、100元.(2)设购进乒乓球拍y 副,由题意得:80100(100)8840+-≤y y解得:58≥y ,因为60,≤y 所以5860≤≤y ,所以58,59,60=y .故共有3种进货方式:①购买58副乒乓球拍,42副羽毛球拍;②购买59副乒乓球拍,41副羽毛球拍;③购买60副乒乓球拍,40副羽毛球拍.【点睛】本题考查了分式方程的应用及一元一次不等式组的应用,解题的关键是仔细审题,找到等量关系及不等关系,列出方程与不等式组,难度一般.22.在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.比如在学习“同底数幂的乘法法则”过程中,利用有理数的乘方概念和乘法结合律,可由“特殊”抽象概括出“一般”,具体如下22×23=25,23×24=27,22×26=28…→2m •2n =2m +n …→a m •a n =a m +n (m 、n 都是正整数)我们亦知: 221331+<+, 222332+<+, 223333+<+, 224334+<+… (1)请你根据上面的材料,用字母a 、b 、c 归纳出a 、b 、c (a >b >0,c >0)之间的一个数学关系式. (2)请尝试说明(1)中关系式的正确性.(3)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:“若m 克糖水里含有n 克糖,再加入k 克糖(仍不饱和),则糖水更甜了”【答案】(1)b bc a a c +<+;(2)见解析;(3)见解析. 【解析】【分析】(1)探究规律,利用规律即可解决问题;(2)利用求差法比较大小即可;(3)利用(1)中结论,即可解决问题;【详解】解:(1)b b c a a c+<+. (2)∵b b c a a c+-+=()()()ab bc ab ac c b a a a c a a c +---=++, ∵a >b >0,c >0,∴a +c >0,b ﹣a <0,∴()()c b aa a c-+<0,∴b b ca a c+<+.(3)∵原来糖水里含糖的质量分数为nm,加入k克糖后的糖水里含糖的质量分数为n km k++,由(1)可知:nm<n km k++,所以糖水更甜了.【点睛】本题考查分式的混合运算、同底数幂的乘法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,∠ADC =70°.(1)求∠EDC的度数;(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示),不改变,请说明理由.【答案】(1)25°(2)12n°+35°(3)215°-12n°【解析】试题分析:(1)根据角平分线直接得出答案;(2)过点E作EF∥AB,然后根据平行线的性质和角平分线的性质求出角度;(3)首先根据题意画出图形,然后过点E作EF∥AB,按照第二小题同样的方法进行计算角度.试题解析:(1)∵DE平分∠ADC,∠ADC=70°,∴∠EDC=12∠ADC=12×70°=35°;(2)过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=35°,∴∠BED=∠BEF+∠DEF=12n°+35°;(3)过点E作EF∥AB∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°∴∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=35°∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-12n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°-12n°+35°=215°-12n°.考点:平行线的性质.24.线段AB=12cm,点C在线段AB上,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,求DE的长.(2)若AC=4cm,求DE的长.(3)若点C为线段AB上的一个动点(点C不与A,B重合),求DE的长.【答案】(1)DE的长为6cm;(2)DE=6cm;(3)DE=6cm.【解析】【分析】(1)根据线段中点的性质计算即可;(2)根据线段中点的性质和给出的数据,结合图形计算;(3)同(1)的解法相同;由AB=12cm,点D. E分别是AC和BC的中点,即可推出DE=12(AC+BC)=12AB=6cm;由AC=4cm,AB=12cm,即可推出BC=8cm,然后根据点D. E分别是AC和BC的中点,即可推出AD=DC=2cm,BE=EC=4cm,即可推出DE的长度;【详解】(1)∵点D是AC中点,∴AC=2AD=6,又∵D、E分别是AC和BC的中点,∴DE=DC+CE=12AC+12BC=12AB=6;故DE的长为6cm;(2)∵AB=12cm,AC=4cm,∴BC=8cm,∵点D、E分别是AC和BC的中点,∴DC=12AC=2,CE=12BC=4,∴DE=6cm;(3)∵DE=DC+CE=12AC+12BC=12AB而AB=12,∴DE=6cm.【点睛】本题考查角的计算及角平分线的定义,熟练掌握计算法则及角平分线的性质是解题关键.25.(2016广西玉林市崇左市)为了了解学校图书馆上个月借阅情况,管理老师从学生对艺术、经济、科普及生活四类图书借阅情况进行了统计,并绘制了下列不完整的统计图,请根据图中信息解答下列问题:(1)上个月借阅图书的学生有多少人?扇形统计图中“艺术”部分的圆心角度数是多少?(2)把条形统计图补充完整;(3)从借阅情况分析,如果要添置这四类图书300册,请你估算“科普”类图书应添置多少册合适?【答案】(1)240,11°;(2)作图见解析;(3)1.【解析】【分析】(1)、用借“生活”类的书的人数除以它所占的百分比即可得到调查的总人数;然后用360°乘以借阅“艺术“的人数所占的百分比得到“艺术”部分的圆心角度;(2)、先计算出借阅“科普“的学生数,然后补全条形统计图;(3)、利用样本估计总体,用样本中“科普”类所占的百分比乘以300即可.【详解】(1)、上个月借阅图书的学生总人数为60÷25%=240(人);扇形统计图中“艺术”部分的圆心角度数=360°×100240=11°;(2)、借阅“科普“的学生数=240﹣100﹣60﹣40=40(人),条形统计图为:(3)、300×40240=1,估计“科普”类图书应添置1册合适.考点:(1)、条形统计图;(2)、用样本估计总体;(3)、扇形统计图。
2019—2020学年度第二学期期末调研测试七年级数学试题(全卷共五个大题满分150分考试时间120分钟)注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.方程20x=的解是A.2x=-B.0x=C.12x=-D.12x=2.以下四个标志中,是轴对称图形的是A.B.C.D.3.解方程组⎩⎨⎧=+=-②①,ΛΛΛΛ.102232yxyx时,由②-①得A.28y=B.48y=C.28y-=D.48y-=4.已知三角形两边的长分别是6和9,则这个三角形第三边的长可能为A.2B.3C.7D.165.一个一元一次不等式组的解集在数轴上表示如右图,则此不等式组的解集是A.x>3 B.x≥3 C.x>1 D.x≥6.将方程31221+=--xx去分母,得到的整式方程是A.()()12231+=--xx B.()()13226+=--xxC.()()12236+=--xx D.22636+=--xx7.在△ABC中,∠A∶∠B∶∠C=1∶2∶3,则△ABC的形状是A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形8.已知x m=是关于x的方程26x m+=的解,则m的值是A.-3 B.3 C.-2 D.29.下列四组数中,是方程组20,21,32x y zx y zx y z++=⎧⎪--=⎨⎪--=⎩的解是5题图。
·432-1 118题图AD BCP QA .1,2,3.x y z =⎧⎪=-⎨⎪=⎩B .1,0,1.x y z =⎧⎪=⎨⎪=⎩C .0,1,0.x y z =⎧⎪=-⎨⎪=⎩D .0,1,2.x y z =⎧⎪=⎨⎪=-⎩10.将△ABC 沿BC 方向平移3个单位得△DEF .若 △ABC 的周长等于8, 则四边形ABFD 的周长为A .14B .12C .10D .811.如图是由相同的花盆按一定的规律组成的正多边形图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第8个图形中花盆的个数为A .56B .64C .72D .9012.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A B C ''.若A ∠=40°,'B ∠=110°,则∠BCA '的度数为A .30°B .50°C .80°D .90°二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.在方程21x y -=中,当1x =-时,y = . 14.一个正八边形的每个外角等于 度.15.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 . 16.不等式32>x 的最小整数解是 . 17.若不等式组0,x b x a -<⎧⎨+>⎩的解集为23x <<,则关于x ,y 的方程组5,21ax y x by +=⎧⎨-=⎩的解为 .18.如图,长方形ABCD 中,AB =4,AD =2.点Q 与点P 同时从点A 出 发,点Q 以每秒1个单位的速度沿A →D →C →B 的方向运动,点P 以每秒3个单位的速度沿A →B →C →D 的方向运动,当P ,Q 两点 相遇时,它们同时停止运动.设Q 点运动的时间为x (秒),在整个运动过程中,当△APQ 为直角三角形时,则相应的x 的值或取值 范围是 .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.解方程组:,.202321x y x y -=⎧⎨+=⎩20.解不等式组:20,2(21)15.x x x -<⎧⎨-≤+⎩…ABECDF10题图12题图ABCB ′′15题图DEABC四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上. (1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得P C P C 21+的值最小.22.一件工作,甲单独做15小时完成,乙单独做10小时完成.甲先单独做9小时,后因甲有其它任务调离,余下的任务由乙单独完成.那么乙还需要多少小时才能完成?23.如图,AD 是ABC ∆边BC 上的高,BE 平分ABC ∠ 交AD 于点E .若︒=∠60C ,︒=∠70BED . 求ABC ∠和BAC ∠的度数. ADBCE23题图21题图24.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有5% 的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 25.阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为12x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2x =±. 例2.解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.(1)方程|x +3|=4的解为 ; -21-1342-20 1226.如图1,点D 为△ABC 边BC 的延长线上一点.(1)若:3:4A ABC ∠∠=,︒=∠140ACD ,求A ∠的度数;(2)若ABC ∠的角平分线与ACD ∠的角平分线交于点M ,过点C 作CP ⊥BM 于点P . 求证:1902MCP A ∠=︒-∠; (3)在(2)的条件下,将△MBC 以直线BC 为对称轴翻折得到△NBC ,NBC ∠的角平分线与NCB ∠的角平分线交于点Q (如图2),试探究∠BQC 与∠A 有怎样的数量关系,请写出你的猜想并证明.CABDMP26题图1BDMNAC PQ26题图2参考答案一、选择题:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BABCACBDAADC13.3-; 14.45; 15.4; 16.2x =; 17.4,3.x y =-⎧⎨=-⎩ 18.0<x ≤43或2x =.三、解答题:19.解:由①,得 2x y =.③………………………………………………………………1分将③代入②,得 4321y y +=.解得 3y =.…………………………………………………………………………3分将3y =代入①,得 6x =.………………………………………………………6分 ∴原方程组的解为6,3.x y =⎧⎨=⎩ ………………………………………………………7分20.解:解不等式①,得 2x <.……………………………………………………………3分解不等式②,得 x ≥3-.…………………………………………………………6分∴ 不等式组的解集为:3-≤2x <.………………………………………………7分 四、解答题: 21.作图如下:22.解:设乙还需要x 小时才能完成.根据题意,得………………………………………1分911510x+=.…………………………………………………………………………5分 (1)正确画出△A 1B 1C 1. (4)分(2)正确画出△A 2B 2C 2. (8)分(3)正确画出点P . ……………………10分21题答图经检验,4x =符合题意.答:乙还需要4小时才能完成.……………………………………………………10分 23.解:∵AD 是ABC ∆的高,∴︒=∠90ADB ,……………………………………………………………………2分 又∵180DBE ADB BED ∠+∠+∠=︒,︒=∠70BED ,∴18020DBE ADB BED ∠=︒-∠-∠=︒.……………………………………4分 ∵BE 平分ABC ∠,∴︒=∠=∠402DBE ABC . ………………………………………………………6分 又∵︒=∠+∠+∠180C ABC BAC ,60C ∠=︒,∴C ABC BAC ∠-∠-︒=∠180︒=80.……………………………………………10分24.解:(1)设该水果店两次分别购买了x 元和y 元的水果.根据题意,得……………1分2200,2.40.54x y yx +=⎧⎪⎨=⨯⎪-⎩………………………………………………………………3分 解得 800,1400.x y =⎧⎨=⎩………………………………………………………………5分经检验,800,1400x y =⎧⎨=⎩符合题意.答:水果店两次分别购买了800元和1400元的水果.……………………6分 (2)第一次所购该水果的重量为800÷4=200(千克).第二次所购该水果的重量为200×2=400(千克). 设该水果每千克售价为a 元,根据题意,得[200(1-3%)+400(1-5%)]8001400a --≥1244.………………………8分 解得 6a ≥.答:该水果每千克售价至少为6元. ······························································ 10分五、解答题:25.解:(1)1x =或7x =-.………………………………………………………………4分(2)在数轴上找出|x -3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为-2或8, ∴方程|x -3|=5的解为x =-2或x =8,∴不等式|x -3|≥5的解集为x ≤-2或x ≥8. ············································· 8分 (3)在数轴上找出|x -3|+|x +4|=9的解.A M PCM BMCP A ABC ACD M ABCMBC ACD MCD ABCACD MB MC ABCACD A MBC MCD M MBC MCD ∠-︒=∠-︒=∠∴⊥∠=∠-∠=∠∴∠=∠∠=∠∴∠∠∠-∠=∠∠-∠=∠∴∠21909021)(212121∵又,、分别平分、∵同理可证:的外角是△∵由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于9的点对应的x 的值.∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边.若x 对应的点在3的右边,可得x =4;若x 对应的点在-4的左边,可得x =-5, ∴方程|x -3|+|x +4|=9的解是x =4或x =-5,∴不等式|x -3|+|x +4|≥9的解集为x ≥4或x ≤-5. ······························· 12分26.(1)解:∵4:3:=∠∠B A ,∴可设3,4A k B k ∠=∠=.又∵ACD A B ∠=∠+∠140=°, ∴ 34140k k +=°, 解得 20k =°.∴360A k ∠==°. ····························································································· 4分(2)证明:(3)猜想A BQC ∠+︒=∠4190. ··························································································· 9分 证明如下:∵BQ 平分∠CBN ,CQ 平分∠BCN , ∴BCN QCB CBN QBC ∠=∠∠=∠2121,, ∴ )(BCN CBN Q ∠+∠-︒=∠21180)N ∠-︒-︒=180(21180N ∠+︒=2190. ··············································· 10分由(2)知:A M ∠=∠21,又由轴对称性质知:∠M =∠N ,………………………………………8分………………………………………6分1、读书破万卷,下笔如有神。
2019-2020初一下数学期末学业水平质量检测2020年7月考生须知:1.本试卷共有三个大题,29个小题,共6页,满分100分.2.考试时间为90分钟,请用蓝色或黑色钢笔、圆珠笔答卷.一、精心选一选:(每小题只有一个正确答案,每题3分,共30分)1. 下列运算,正确的是( )A .34a a aB .222a b a bC .1025a a aD .236()a a2.下列各式由左边到右边的变形中,是因式分解的是( )A . a x y ax ayB .24444x x x x C .2105521x x x x D .2163443x x x x x3.不等式23x 的最小整数解是( )A .-1B .0C .2D .34. 如图,∠AOB =15°,∠AOC =90°,点B 、O 、D 在同一直线上,那么∠COD 的度数为( ) A .75° B .15° C .105° D . 165°5. 计算2342515205m m n m m 结果正确的是( )A .2134mn m B .2134m m C .2431m mn D .243m mn6. 已知一组数据8,9,10,m ,6的众数是8,那么这组数据的中位数是( )A. 6B. 8C. 8.5D. 97. 已知22a b ,那么代数式2244a b b 的值是 ( )A .2 B .0 C .4 D .68.如图,下列能判定AB ∥CD 的条件有( )个.(1) 180BCD B ; (2)21 ; (3)43 ; (4) 5 B .A .1B .2C .3D .4第4题图COBAE54321第8题图D CB A9.如图,从边长为1a 的正方形纸片中剪去一个边长为1a 的正方形(a >1),剩余部分沿虚线A .2B . 2aC . 4aD . 1a 10.将正整数1i j )A .i jB .in jC . 1n i jD .(1)i n j二、专心填一填:(每题2分,共16分)11.已知32y x 是方程570x ky 的一个解,那么k .12.水是生命之源,水是由氢原子和氧原子组成的,其中氢原子的直径为0.0000000001m ,把数0.0000000001用科学记数法表示为_______________________.13. 计算:2220142013 ____________.14. 如图,一把矩形直尺沿直线断开并错位,点E ,D ,B ,F 在同一条直线上,如果∠ADE =128°,那么∠DBC 的度数为___________.15.如果关于的不等式组12x m x m,的解集是1x ,那么m ________.16. 将命题“对顶角相等”改写成“如果……,那么……”的形式为______________________________________________.17. 某班40如果这个班的数学平均成绩是69分,那么x =___________,y =____________.第14题图FED CB A18. 定义一种新的运算叫对数,如果有na N ,那么log a N n , 其中0a 且1a ,0N . 例如,如果328 ,那么2log 83 ;如果3128 ,那么21log 8 _________.由于,22log 816log 1287 ,因此,222log 8log 16log 816 . 可以验证log log log a a a M N MN . 请根据上述知识计算:228log 6log 3_______.三、耐心做一做:(共54分)19. (3分)计算:2211(ð2014)()33; 20.(3分)计算:2322643xy y x ; 21.把下列各式进行因式分解:(每题3分,共6分)(1)22363ax axy ay ; (2)2x x y y x ;22. (4分)解方程组25,437.x y x y 23. (4分) 解不等式组: 26(3),5(2)14(1).x x x x24.(5分)已知425x y ,求222282x y x y x y xy y 的值.25.看图填空:(6分)如图,∠1的同位角是___________________,F E A∠1的内错角是___________________,如果∠1=∠BCD ,那么 ∥ ,根据是 ;如果∠ACD =∠EGF ,那么 ∥ ,根据是 .26. (4分)对于形如222x xa a这样的二次三项式,可以用公式法将它分解成2x a 的形式.但对于二次三项式2223x xa a ,就不能直接运用公式了. 小红是这样想的:在二次三项式2223x xa a 中先加上一项2a ,使它与22x xa 的和成为一个完全平方式,再减去2a ,整个式子的值不变,于是有:2222222323x xa a x ax a a a 224x a a222x a a3x a x a 像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.参考小红思考问题的方法,利用“配方法”把268a a 进行因式分解.27. 列方程(组)解应用题:(5分)漕运码头的游船有两种类型,一种有4个座位,另一种有6个座位.这两种游船的收费标准是:一条4座游船每小时的租金为60元,一条6座游船每小时的租金为100元.某公司组织38名员工到漕运码头租船游览,如果每条船正好坐满,并且1小时共花费租金600元,求该公司分别租用4座游船和6座游船的数量.28. (5分)某校为了更好地开展“阳光体育一小时”活动,围绕着“你最喜欢的体育活动项目是什么(只写一项)?”的问题,对本校学生进行了随机抽样调查,以下是根据得到的相关数据绘制的统计图的一部分.各年级学生人数统计表请根据以上信息解答下列问题:(1)该校对多少名学生进行了抽样调查?(2)请将图1和图2补充完整;(3)已知该校七年级学生比九年级学生少20人,请你补全上表,并利用样本数据估计全校学生中最喜欢踢毽子运动的人数约为多少?图2图1%其它 10%踢毽子 20%跳绳 40%投篮各运动项目的喜欢人数占抽样总人数百分比统计图抽样调查学生最喜欢的运动项目的人数统计图好人29.(9分)直线1l 平行于直线2l ,直线3l 、4l 分别与1l 、2l 交于点B 、F 和A 、E ,点D 是直线3l 上一动点,AB DC //交4l 于点C .(1)如图,当点D 在1l 、2l 两线之间运动时,试找出BAD 、DEF 、ADE 之间的等量关系,并说明理由;(2)当点D 在1l 、2l 两线外侧运动时,试探索BAD 、DEF 、ADE 之间的等量关系(点D 和B 、F 不重合),画出图形,直接写出结论.初一数学期末学业水平质量检测参考答案一、精心选一选:(每小题只有一个正确答案,每题3分,共30分)二、专心填一填:(每题2分,共16分)三、耐心做一做:(共54分)19. 解:原式= 1199 ; ………………… 2分;= 2; ………………… 3分.第29题图FED C B A l2l3l 4l 120. 解:原式=43229(4)36x y x y ; ………………… 2分;=43223636x y x y ; =2x y . ………………… 3分.21. 把下列各式进行因式分解:(每题3分,共6分)(1)解:原式= 2232a x xy y ; ………………… 1分; =23a x y . ………………… 3分.(2)解:原式=2x x y x y ; ………………… 1分;= 21x y x ; ………………… 2分;=11x y x x . ………………… 3分.22. (4分)解方程组25,437.x y x y①②解:3 ①②得:2=8x ; ………………… 1分;4x=, ………………… 2分;把4x=代入①得,5y= ,3y= . ………………… 3分;所以原方程组的解为=4= 3.x y………………… 4分.23. (4分) 解不等式组: 6(3)5(2)14(1).x x x x, ①②解:解不等式①,2618x x+ ; 520x ; 4x< ; ………………… 1分;解不等式②,510144x x ; 15x ; ………………… 2分;分;所以这个不等式组的解集是4x . ………………… 4分.24. 解:原式=2222[4448](2)x xy y x y xy y ; ……………… 2分;=2222[4448](2)x xy y x y xy y ; =2(42)(2)xy y y ; ………………… 3分;=2x y . ………………… 4分;∵425x y ,∴522x y. ………………… 5分.25.看图填空:(6分)如图,∠1的同位角是∠EFG , ………………… 1分;∠1的内错角是∠BCD 、∠AED , ………………… 2分;(少写一个扣0.5分,用它控制满分)如果∠1=∠BCD ,那么 DE ∥ BC , ………………… 3分;根据是内错角相等,两直线平行; ………………… 4分;如果∠ACD =∠EGF ,那么 FG ∥ DC , ………………… 5分;根据是同位角相等,两直线平行. ………………… 6分.26. (4分)利用“配方法”把268a a 进行因式分解.解:原式=26989a a ; ………………… 1分;=231a ; ………………… 2分;=3131a a ; ………………… 3分;=24a a . ………………… 4分.备注:学生用十字相乘法分解且结果正确只能给1分.27. 解:设租用4座游船x 条,租用6座游船y 条. 根据题意得:4638,60100600.x y x y①②; ………………… 2分; 解得:5,3x y. ………………… 4分;答:租用4座游船5条,租用6座游船3条. ………………… 5分.28.(1)解:408020=200.20%40%10%或(名) ……………………… 1分;(2)如图所示: ……………………… 3分;(3)表中填200. …………………… 4分;(180+120+200) 20%=100. …………………… 5分.答:全校学生中最喜欢踢毽子运动的人数约为100名.29.(1)结论:BAD DEF ADE . ……………… 1分; 证明:∵AB DC //,(已知)∴BAD ADC (两直线平行,内错角相等); ……………… 2分;∵1l ∥2l ,AB DC //,(已知)30人好抽样调查学生最喜欢的运动项目的人数统计图各运动项目的喜欢人数占抽样总人数百分比统计图投篮跳绳 40%踢毽子 20%其它 10%%图1图2∴//DC EF ,(平行于同一条直线的两条直线平行); ……………… 3分;∴CDE DEF (两直线平行,内错角相等); ……………… 4分;∵ADC CDE ADE ,∴BAD DEF ADE (等量代换). ……………… 5分.注:理由注错不扣分,其它证法酌情给分.(2)画图正确,……………… 6分;当点D 在直线1l 上方运动时,DEF BAD ADE , ……………… 7分;画图正确,……………… 8分;当点D 在直线2l下方运动时,BAD DEF ADE . ……………… 9分.第29题图FED C BA l2l3l4l 1第29题图F E D CBAl2l3l 4l 1。