2018年高考数学二轮复习专题(江苏版)3个附加题综合仿真练四(含答案)
- 格式:doc
- 大小:105.00 KB
- 文档页数:6
3个附加题综合仿真练(五)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 是半圆的直径,C 是半圆上一点,D 是弧AC 的中点,DE⊥AB 于E ,AC 与DE 交于点M ,求证:AM =DM .证明:连结AD ,因为AB 为直径,所以AD ⊥BD , 又DE ⊥AB ,所以∠ABD =∠ADE .因为D 是弧AC 的中点, 所以∠DAC =∠ABD , 所以∠ADE =∠DAC . 所以AM =DM .B .[选修4-2:矩阵与变换] 已知向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量.在平面直角坐标系xOy 中,点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3),求矩阵A .解:设A =⎣⎢⎡⎦⎥⎤a b cd ,因为向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量, 所以⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤a -b c -d =(-1)⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-11. 所以⎩⎪⎨⎪⎧a -b =-1,c -d =1.①因为点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3), 所以⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤a +b c +d =⎣⎢⎡⎦⎥⎤33.所以⎩⎪⎨⎪⎧a +b =3,c +d =3.②由①②解得a =1,b =2,c =2,d =1,所以A =⎣⎢⎡⎦⎥⎤1221. C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy中,已知直线⎩⎪⎨⎪⎧x =-32+22n ,y =22n (n 为参数)与曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)相交于A ,B 两点,求线段AB 的长.解:法一:将曲线⎩⎪⎨⎪⎧x =18t 2,y =t (t 为参数)化为普通方程为y 2=8x .将直线⎩⎪⎨⎪⎧x =-32+22n ,y =22n(n 为参数)代入y 2=8x 得,n 2-82n +24=0,解得n 1=22,n 2=6 2. 则|n 1-n 2|=42, 所以线段AB 的长为4 2. 法二:将曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)化为普通方程为y 2=8x,将直线⎩⎪⎨⎪⎧x =-32+22n ,y =22n (n 为参数)化为普通方程为x -y +32=0,由⎩⎪⎨⎪⎧y 2=8x ,x -y +32=0,得⎩⎪⎨⎪⎧x =12,y =2或⎩⎪⎨⎪⎧x =92,y =6.所以AB 的长为⎝ ⎛⎭⎪⎫92-122+-2=4 2.D .[选修4-5:不等式选讲]已知函数f (x )=3x +6,g (x )=14-x ,若存在实数x 使f (x )+g (x )>a 成立,求实数a 的取值范围.解:存在实数x 使f (x )+g (x )>a 成立, 等价于f (x )+g (x )的最大值大于a , 因为f (x )+g (x ) =3x +6+14-x=3×x +2+1×14-x , 由柯西不等式得,(3×x +2+1×14-x )2≤(3+1)(x +2+14-x )=64,所以f (x )+g (x )=3x +6+14-x ≤8,当且仅当x =10时取“=”,故实数a 的取值范围是(-∞,8).2.如图,在四棱锥O ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =45°,OA ⊥底面ABCD ,OA =2,M 为OA 的中点.(1)求异面直线AB 与MD 所成角的大小;(2)求平面OAB 与平面OCD 所成锐二面角的余弦值.解:作AP ⊥CD 于点P ,分别以AB ,AP ,AO 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),B (1,0,0),P ⎝ ⎛⎭⎪⎫0,22,0,D ⎝ ⎛⎭⎪⎫-22,22,0, O (0,0,2),M (0,0,1).(1)设直线AB 与MD 所成角为θ,由AB ―→=(1,0,0),BD ―→=⎝ ⎛⎭⎪⎫-22,22,-1,则cos θ=|cos 〈AB ―→,BD ―→〉|=222=12, 故AB 与MD 所成角为60°.(2)OP ―→=⎝ ⎛⎭⎪⎫0,22,-2,OD ―→=⎝ ⎛⎭⎪⎫-22,22,-2,设平面OCD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·OP ―→=0,n ·OD ―→=0,即⎩⎪⎨⎪⎧22y -2z =0,-22x +22y -2z =0,取z =2,则n =(0,4,2).易得平面OAB 的一个法向量为m =(0,1,0),cos 〈n ,m 〉=432×1=223,故平面OAB 与平面OCD 所成锐二面角的余弦值为223.3.设a >b >0,n 是正整数,A n =1n +1(a n +a n -1b +a n -2b 2+…+a 2b n -2 +ab n -1+b n) ,B n =⎝⎛⎭⎪⎫a +b 2n .(1)证明:A 2>B 2;(2)比较A n 与B n (n ∈N *)的大小,并给出证明.解:(1)证明:A 2-B 2=13(a 2+ab +b 2)-⎝ ⎛⎭⎪⎫a +b 22=112(a -b )2>0.(2)A n ≥B n ,证明如下: 当n =1时,A 1=B 1; 当n ≥3时,A n =1n +1·a n +1-bn +1a -b,B n =⎝⎛⎭⎪⎫a +b 2n ,令a +b =x ,a -b =y ,且x >0,y >0,于是A n =1n +1·⎝ ⎛⎭⎪⎫x +y 2n +1-⎝ ⎛⎭⎪⎫x -y 2n +1y=12n +1n +y[(x +y )n +1-(x -y )n +1],B n =⎝ ⎛⎭⎪⎫x 2n,因为[(x +y )n +1-(x -y )n +1]=(2C 1n +1x ny +2C 3n +1·xn -2y 3+…)≥2C 1n +1x ny ,所以A n ≥12n +1n +y·2C 1n +1x ny =x n 2n =⎝ ⎛⎭⎪⎫x 2n=B n .。
3个附加题综合仿真练(一)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,A ,B ,C 是圆O 上不共线的三点,OD ⊥AB 于D ,BC 和AC 分别交DO 的延长线于P 和Q ,求证:∠OBP =∠CQP .证明:连结OA ,因为OD ⊥AB ,OA =OB , 所以∠BOD =∠AOD =12∠AOB ,又∠ACB =12∠AOB ,所以∠ACB =∠DOB ,又因为∠BOP =180°-∠DOB ,∠QCP =180°-∠ACB , 所以∠BOP =∠QCP , 所以B ,O ,C ,Q 四点共圆, 所以∠OBP =∠CQP . B .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤211 3,B =⎣⎢⎡⎦⎥⎤1 10 -1.求矩阵C ,使得AC =B . 解:因为⎪⎪⎪⎪⎪⎪2113=2×3-1×1=5,所以A-1=⎣⎢⎢⎡⎦⎥⎥⎤35 -15-15 25, 又AC =B ,所以C =A-1B =⎣⎢⎢⎡⎦⎥⎥⎤ 35 -15-15 25⎣⎢⎡⎦⎥⎤1 10 -1=⎣⎢⎢⎡⎦⎥⎥⎤3545-15-35. C .[选修4-4:坐标系与参数方程]在极坐标系中,已知圆C 的圆心在极轴上,且过极点和点⎝⎛⎭⎪⎫32,π4,求圆C 的极坐标方程. 解:法一:因为圆心C 在极轴上且过极点, 所以设圆C 的极坐标方程为ρ=a cos θ,又因为点⎝⎛⎭⎪⎫32,π4在圆C 上, 所以32=a cos π4,解得a =6.所以圆C 的极坐标方程为ρ=6cos θ.法二:点⎝⎛⎭⎪⎫32,π4的直角坐标为(3,3), 因为圆C 过点(0,0),(3,3), 所以圆心C 在直线为x +y -3=0上. 又圆心C 在极轴上,所以圆C 的直角坐标方程为(x -3)2+y 2=9. 所以圆C 的极坐标方程为ρ=6cos θ. D .[选修4-5:不等式选讲]已知x ,y ,z 为不全相等的正数.求证:x yz +y zx +z xy >1x +1y +1z.证明:因为x ,y ,z 都是正数, 所以x yz +y zx =1z ⎝ ⎛⎭⎪⎫x y +y x ≥2z. 同理可得y zx +z xy ≥2x ,z xy +x yz ≥2y,将上述三个不等式两边分别相加,并除以2, 得x yz +y zx +z xy ≥1x +1y +1z. 由于x ,y ,z 不全相等,因此上述三个不等式中等号至少有一个取不到, 所以x yz +y zx +z xy >1x +1y +1z. 2.口袋中装有大小相同的卡片八张,其中三张标有数字1,三张标有数字2,两张标有数字3.第一次从口袋中任意抽取一张,放回口袋后第二次再任意抽取一张,记第一次与第二次取到卡片上数字之和为ξ.(1)ξ为何值时,其发生的概率最大?说明理由; (2)求随机变量ξ的数学期望E (ξ).解:(1)依题意,随机变量ξ的取值是2,3,4,5,6. 因为P (ξ=2)=3×382=964; P (ξ=3)=2×3×382=932; P (ξ=4)=3×3+2×3×282=2164;P (ξ=5)=2×3×282=316; P (ξ=6)=2×28=116. 所以当ξ=4时,其发生的概率最大,最大值为P (ξ=4)=2164.(2)由(1)知E (ξ)=2×964+3×932+4×2164+5×316+6×116=154,所以随机变量ξ的数学期望E (ξ)=154. 3.在平面直角坐标系xOy 中,直线l :x =-1,点T (3,0).动点P 满足PS ⊥l ,垂足为S ,且OP ―→·ST ―→=0.设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设Q 是曲线C 上异于点P 的另一点,且直线PQ 过点(1,0),线段PQ 的中点为M ,直线l 与x 轴的交点为N .求证:向量SM ―→与NQ ―→共线.解:(1)设P (x ,y )为曲线C 上任意一点 .因为PS ⊥l ,垂足为S ,又直线l :x =-1,所以S (-1,y ). 因为T (3,0),所以OP ―→=(x ,y ),ST ―→=(4,-y ). 因为OP ―→·ST ―→=0,所以4x -y 2=0,即y 2=4x . 所以曲线C 的方程为y 2=4x . (2)证明:因为直线PQ 过点(1,0),故设直线PQ 的方程为x =my +1,P (x 1,y 1),Q (x 2,y 2).联立方程⎩⎪⎨⎪⎧y 2=4x ,x =my +1,消去x ,得y 2-4my -4=0.所以y 1+y 2=4m ,y 1y 2=-4.因为M 为线段PQ 的中点,所以M 的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,即M (2m 2+1,2m ).又因为S (-1,y 1),N (-1,0),所以SM ―→=(2m 2+2,2m -y 1),NQ ―→=(x 2+1,y 2)=(my 2+2,y 2).因为(2m 2+2)y 2-(2m -y 1)(my 2+2)=(2m 2+2)y 2-2m 2y 2+my 1y 2-4m +2y 1=2(y 1+y 2)+my 1y 2-4m =8m -4m -4m =0.所以向量SM ―→与NQ ―→共线.3个附加题综合仿真练(二)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,四边形ABCD 是圆的内接四边形,BC =BD ,BA 的延长线交CD 的延长线于点E .求证:AE 是四边形ABCD 的外角∠DAF 的平分线. 证明:因为四边形ABCD 是圆的内接四边形, 所以∠DAE =∠BCD ,∠FAE =∠BAC =∠BDC . 因为BC =BD ,所以∠BCD =∠BDC , 所以∠DAE =∠FAE ,所以AE 是四边形ABCD 的外角∠DAF 的平分线. B .[选修4-2:矩阵与变换]已知变换T 将平面上的点⎝ ⎛⎭⎪⎫1,12,(0,1)分别变换为点⎝ ⎛⎭⎪⎫94,-2,⎝ ⎛⎭⎪⎫-32,4.设变换T 对应的矩阵为M .(1)求矩阵M ;(2)求矩阵M 的特征值. 解:(1)设M =⎣⎢⎡⎦⎥⎤a b c d , 则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤112=⎣⎢⎢⎡⎦⎥⎥⎤94-2,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤01=⎣⎢⎢⎡⎦⎥⎥⎤-324, 即⎩⎪⎨⎪⎧a +12b =94,c +12d =-2,b =-32,d =4,解得⎩⎪⎨⎪⎧a =3,b =-32,c =-4,d =4,则M =⎣⎢⎢⎡⎦⎥⎥⎤3 -32-44. (2)设矩阵M 的特征多项式为f (λ),可得f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-3 324 λ-4=(λ-3)(λ-4)-6=λ2-7λ+6, 令f (λ)=0,可得λ=1或λ=6. C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.直线l :2ρsin ⎝ ⎛⎭⎪⎫θ-π4=m (m ∈R),圆C 的参数方程为⎩⎪⎨⎪⎧x =1+3cos t ,y =-2+3sin t (t 为参数).当圆心C 到直线l 的距离为2时,求m 的值. 解:由2ρsin ⎝⎛⎭⎪⎫θ-π4=m , 得2ρsin θcos π4-2ρcos θsin π4=m ,即x -y +m =0,即直线l 的直角坐标方程为x -y +m =0, 圆C 的普通方程为(x -1)2+(y +2)2=9, 圆心C 到直线l 的距离d =|1--+m |2=2,解得m =-1或m =-5. D .[选修4-5:不等式选讲]已知x ,y ,z 都是正数且xyz =8,求证:(2+x )(2+y )·(2+z )≥64. 证明:因为x 为正数,所以2+x ≥22x . 同理2+y ≥22y ,2+z ≥22z .所以(2+x )( 2+y )( 2+z )≥22x ·22y ·22z =88xyz . 因为xyz =8,所以(2+x )( 2+y )( 2+z )≥64.2.在平面直角坐标系xOy 中,点F (1,0),直线x =-1与动直线y =n 的交点为M ,线段MF 的中垂线与动直线y =n 的交点为P .(1)求动点P 的轨迹E 的方程;(2)过动点M 作曲线E 的两条切线,切点分别为A ,B ,求证:∠AMB 的大小为定值.解:(1)因为直线y =n 与x =-1垂直,所以MP 为点P 到直线x =-1的距离. 连结PF (图略),因为P 为线段MF 的中垂线与直线y =n 的交点,所以MP =PF . 所以点P 的轨迹是抛物线. 焦点为F (1,0),准线为x =-1. 所以曲线E 的方程为y 2=4x .(2)证明:由题意,过点M (-1,n )的切线斜率存在,设切线方程为y -n =k (x +1), 联立方程⎩⎪⎨⎪⎧y =kx +k +n ,y 2=4x ,得ky 2-4y +4k +4n =0,所以Δ1=16-4k (4k +4n )=0,即k 2+kn -1=0 (*),因为Δ2=n 2+4>0,所以方程(*)存在两个不等实根,设为k 1,k 2, 因为k 1·k 2=-1,所以∠AMB =90°,为定值.3.对于给定的大于1的正整数n ,设x =a 0+a 1n +a 2n 2+…+a n n n,其中a i ∈{0,1,2,…,n -1},i =0,1,2,…,n -1,n ,且a n ≠0,记满足条件的所有x 的和为A n .(1)求A 2; (2)设A n =n n n -f n2,求f (n ).解:(1)当n =2时,x =a 0+2a 1+4a 2,a 0∈{0,1},a 1∈{0,1},a 2=1, 故满足条件的x 共有4个,分别为x =0+0+4,x =0+2+4,x =1+0+4,x =1+2+4,它们的和是22,所以A 2=22. (2)由题意得,a 0,a 1,a 2,…,a n -1各有n 种取法;a n 有n -1种取法,由分步计数原理可得a 0,a 1,a 2…,a n -1,a n 的不同取法共有n ·n ·…·n ·(n -1)=n n(n -1), 即满足条件的x 共有n n(n -1)个,当a 0分别取0,1,2,…,n -1时,a 1,a 2,…,a n -1各有n 种取法,a n 有n -1种取法, 故A n 中所有含a 0项的和为(0+1+2+…+n -1)·nn -1(n -1)=n n n -22;同理,A n 中所有含a 1项的和为(0+1+2+…+n -1)nn -1(n -1)·n =n n n -22·n ; A n 中所有含a 2项的和为(0+1+2+…+n -1)·n n -1(n -1)·n 2=n n n -22·n 2;A n 中所有含a n -1项的和为(0+1+2+…+n -1)·n n -1(n -1)·n n -1=n n n -22·nn -1;当a n 分别取i =1,2,…,n -1时,a 0,a 1,a 2,…,a n -1各有n 种取法, 故A n 中所有含a n 项的和为(1+2+…+n -1)n n·n n=n n +1n -2·n n.所以A n =n n n -22(1+n +n 2+…+nn -1)+n n +1n -2·n n=n n n -22·n n -1n -1+n n +1n -2·n n=n n n -2(nn +1+n n-1),故f (n )=nn +1+n n-1.3个附加题综合仿真练(三)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 为圆O 的切线,A 为切点,C 为线段AB 的中点,过C 作圆O 的割线CED (E 在C ,D 之间).求证:∠CBE =∠BDE .证明:因为CA 为圆O 的切线, 所以CA 2=CE ·CD ,又CA =CB , 所以CB 2=CE ·CD , 即CB CE =CD CB, 又∠BCD =∠BCD , 所以△BCE ∽△DCB , 所以∠CBE =∠BDE .B .[选修4-2:矩阵与变换]设a ,b ∈R.若直线l :ax +y -7=0在矩阵A =⎣⎢⎡⎦⎥⎤3 0-1 b 对应的变换作用下,得到的直线为l ′:9x+y -91=0.求实数a ,b 的值.解:法一:在直线l :ax +y -7=0上取点M (0,7),N (1,7-a ),由⎣⎢⎡⎦⎥⎤3 0-1 b ⎣⎢⎡⎦⎥⎤07=⎣⎢⎡⎦⎥⎤ 07b ,⎣⎢⎡⎦⎥⎤3 0-1 b ⎣⎢⎡⎦⎥⎤17-a =⎣⎢⎡⎦⎥⎤ 3 b -a -1,可知点M (0,7),N (1,7-a )在矩阵A 对应的变换作用下分别得到点M ′(0,7b ),N ′(3,b (7-a )-1),由题意可知:M ′,N ′在直线9x +y -91=0上,∴⎩⎪⎨⎪⎧7b -91=0,27+b -a -1-91=0,解得⎩⎪⎨⎪⎧a =2,b =13,∴实数a ,b 的值分别为2,13.法二:设直线l 上任意一点P (x ,y ),点P 在矩阵A 对应的变换作用下得到Q (x ′,y ′),则⎣⎢⎡⎦⎥⎤3 0-1 b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, ∴⎩⎪⎨⎪⎧x ′=3x ,y ′=-x +by ,由Q (x ′,y ′)在直线l ′:9x +y -91=0上, ∴27x +(-x +by )-91=0, 即26x +by -91=0, ∵点P 在ax +y -7=0上, ∴26a =b 1=-91-7, 解得a =2,b =13.∴实数a ,b 的值分别为2,13. C .[选修4-4:坐标系与参数方程]在极坐标系中,直线l 和圆C 的极坐标方程分别为ρcos ⎝ ⎛⎭⎪⎫θ+π6=a (a ∈R)和ρ=4sin θ.若直线l 与圆C 有且只有一个公共点,求a 的值.解:由ρcos ⎝⎛⎭⎪⎫θ+π6=a ,得32ρcos θ-12ρsin θ=a , 故化为直角坐标方程为3x -y -2a =0,由圆C 的极坐标方程ρ=4sin θ,得ρ2=4ρsin θ, 化为直角坐标方程为x 2+(y -2)2=4,若直线l 与圆C 只有一个公共点,则圆心C 到直线l 的距离等于半径,故d =|-2-2a |2=2,解得a =1或a =-3. D .[选修4-5:不等式选讲]已知a ,b ∈R ,a >b >e(其中e 是自然对数的底数),求证:b a>a b. 证明:∵b a>0,a b>0,∴要证b a>a b, 只要证a ln b >b ln a, 只要证ln b b >ln a a,构造函数f (x )=ln xx,x ∈(e ,+∞).则f ′(x )=1-ln xx 2,x ∈(e ,+∞),f ′(x )<0在区间(e ,+∞)上恒成立,所以函数f (x )在x ∈(e ,+∞)上是单调递减的, 所以当a >b >e 时,有f (b )>f (a ), 即ln b b >ln a a,故b a >a b得证.2.从0,1,2,3,4这五个数中任选三个不同的数组成一个三位数,记X 为所组成三位数的各位数字之和.(1)求X 是奇数的概率;(2)求X 的概率分布及数学期望. 解:(1)记“X 是奇数”为事件A , 能组成的三位数的个数是4×4×3=48.X 是奇数的个数是C 12C 23A 33-C 12C 12A 22=28,所以P (A )=2848=712.故X 是奇数的概率为712.(2)X 的可能取值为3,4,5,6,7,8,9.当X =3时,组成的三位数是由0,1,2三个数字组成, 所以P (X =3)=448=112; 当X =4时,组成的三位数是由0,1,3三个数字组成, 所以P (X =4)=448=112; 当X =5时,组成的三位数是由0,1,4或0,2,3组成, 所以P (X =5)=848=16; 当X =6时,组成的三位数是由0,2,4或1,2,3组成, 所以P (X =6)=1048=524;当X =7时,组成的三位数是由0,3,4或1,2,4组成, 所以P (X =7)=1048=524;当X =8时,组成的三位数是由1,3,4三个数字组成, 所以P (X =8)=648=18; 当X =9时,组成的三位数是由2,3,4三个数字组成, 所以P (X =9)=648=18. 所以X 的概率分布为:故E (X )=3×112+4×12+5×6+6×24+7×24+8×8+9×8=4.3.设P (n ,m )=∑k =0n(-1)k C knmm +k,Q (n ,m )=C n n +m ,其中m ,n ∈N *.(1)当m =1时,求P (n,1)·Q (n,1)的值;(2)对∀m ∈N *,证明:P (n ,m )·Q (n ,m )恒为定值.解:(1)当m =1时,P (n,1)=∑k =0n(-1)k C kn11+k =1n +1∑k =0n (-1)k C k +1n +1=1n +1, 又Q (n,1)=C 1n +1=n +1,显然P (n,1)·Q (n,1)=1.(2)证明:P (n ,m )=∑k =0n(-1)k C knm m +k=1+∑k =1n -1(-1)k(C kn -1+C k -1n -1)m m +k+(-1)nmm +n=1+∑k =1n -1(-1)k Ck n -1m m +k+∑k =1n(-1)k C k -1n -1mm +k=P (n -1,m )+∑k =1n(-1)k C k -1n -1m m +k=P (n -1,m )-m n ∑k =0n (-1)k C k n m m +k=P (n -1,m )-m nP (n ,m ) 即P (n ,m )=nm +nP (n -1,m ), 由累乘,易求得P (n ,m )=n !m !n +m !P (0,m )=1C n n +m,又Q (n ,m )=C nn +m ,所以P (n ,m )·Q (n ,m )=1.3个附加题综合仿真练(四)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 是圆O 的直径,C 为圆O 外一点,且AB =AC ,BC 交圆O于点D ,过D 作圆O 的切线交AC 于点E .求证:DE ⊥AC . 解:如图,连结OD .因为AB =AC ,所以∠B =∠C . 由圆O 知OB =OD , 所以∠B =∠BDO .从而∠BDO =∠C ,所以OD ∥AC . 又DE 为圆O 的切线,所以DE ⊥OD , 所以DE ⊥AC .B .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤2x y2,X =⎣⎢⎡⎦⎥⎤-1 1,且AX =⎣⎢⎡⎦⎥⎤12 ,其中x ,y ∈R. (1)求x ,y 的值;(2)若B =⎣⎢⎡⎦⎥⎤1 -10 2,求(AB )-1.解:(1)AX =⎣⎢⎡⎦⎥⎤2 x y 2 ⎣⎢⎡⎦⎥⎤-1 1 = ⎣⎢⎡⎦⎥⎤x -22-y .因为AX =⎣⎢⎡⎦⎥⎤12,所以⎩⎪⎨⎪⎧x -2=1,2-y =2,解得x =3,y =0.(2)由(1)知A =⎣⎢⎡⎦⎥⎤2302 ,又B =⎣⎢⎡⎦⎥⎤1 -102 , 所以AB =⎣⎢⎡⎦⎥⎤2 30 2⎣⎢⎡⎦⎥⎤1 -10 2=⎣⎢⎡⎦⎥⎤2 40 4 .设(AB )-1= ⎣⎢⎡⎦⎥⎤a b cd ,则⎣⎢⎡⎦⎥⎤2 40 4⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 001,即⎣⎢⎡⎦⎥⎤2a +4c 2b +4d 4c 4d =⎣⎢⎡⎦⎥⎤1 001.所以⎩⎪⎨⎪⎧2a +4c =1,4c =0,2b +4d =0,4d =1,解得a =12,b =-12,c =0,d =14,即 (AB )-1= ⎣⎢⎢⎡⎦⎥⎥⎤12 -12 0 14 .C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),以坐标原点O为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0,已知直线l 与曲线C 相交于A ,B 两点,求线段AB 的长.解:因为曲线C 的极坐标方程为ρsin 2θ-4cos θ=0,所以ρ2sin 2θ=4ρcos θ,即曲线C 的直角坐标方程为y 2=4x .将直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t 代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝⎛⎭⎪⎫1-22t , 即t 2+82t =0,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2. D .[选修4-5:不等式选讲] 设函数f (x )=|2x +1|-|x -2|. (1)求不等式f (x )>2的解集; (2)若∀x ∈R ,f (x )≥t 2-112t 恒成立,求实数t 的取值范围. 解:(1)不等式f (x )>2可化为⎩⎪⎨⎪⎧x >2,2x +1-x +2>2或⎩⎪⎨⎪⎧-12≤x ≤2,2x +1+x -2>2或⎩⎪⎨⎪⎧x <-12,-2x -1+x -2>2,解得x <-5或x >1,所以所求不等式的解集为{x |x <-5或x >1}.(2)由f (x )=|2x +1|-|x -2|=⎩⎪⎨⎪⎧x +3,x >2,3x -1,-12≤x ≤2,-x -3,x <-12,可得f (x )≥-52,若∀x ∈R ,f (x )≥t 2-112t 恒成立,则t 2-112t ≤-52,即2t 2-11t +5≤0,解得12≤t ≤5. 故实数t 的取值范围为⎣⎢⎡⎦⎥⎤12,5. 2.如图,在直三棱柱ABC A 1B 1C 1中,已知AB ⊥AC ,AB =2,AC =4,AA 1=3.D 是线段BC 的中点.(1)求直线DB 1与平面A 1C 1D 所成角的正弦值; (2)求二面角B 1A 1D C 1的余弦值.解:因为在直三棱柱ABC A 1B 1C 1中,AB ⊥AC ,所以分别以AB ,AC,AA1所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (0,4,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3), 因为D 是BC 的中点,所以D (1,2,0), (1)因为A 1C 1――→=(0,4,0),A 1D ―→=(1,2,-3), 设平面A 1C 1D 的法向量n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·A 1C 1――→=0,n 1·A 1D ―→=0,即⎩⎪⎨⎪⎧4y 1=0,x 1+2y 1-3z 1=0,取⎩⎪⎨⎪⎧x 1=3,y 1=0,z 1=1,所以平面A 1C 1D 的法向量n 1=(3,0,1),而DB 1―→=(1,-2,3),设直线DB 1与平面A 1C 1D 所成角为θ,所以sin θ=|cos 〈n 1,DB 1―→〉|=|n 1·DB 1―→||n 1|·|DB 1―→|=|3+3|10×14=33535,所以直线DB 1与平面A 1C 1D 所成角的正弦值为33535.(2) A 1B 1――→=(2,0,0),DB 1―→=(1,-2,3), 设平面B 1A 1D 的法向量n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 2·A 1B 1――→=0,n 2·DB 1―→=0,即⎩⎪⎨⎪⎧2x 2=0,x 2-2y 2+3z 2=0,取⎩⎪⎨⎪⎧x 2=0,y 2=3,z 2=2,所以平面B 1A 1D 的法向量n 2=(0,3,2),所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=210×13=13065,故结合图象知二面角B 1A 1D C 1的余弦值13065. 3.已知集合X ={1,2,3},Y n ={1,2,3,…,n }(n ∈N *),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,b ∈Y n },令f (n )表示集合S n 所含元素的个数.(1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明. 解:(1)Y 6={1,2,3,4,5,6},S 6中的元素(a ,b )满足:若a =1,则b =1,2,3,4,5,6;若a =2,则b =1,2,4,6;若a =3,则b =1,3,6.所以f (6)=13. (2)当n ≥6时,f (n )=⎩⎪⎪⎪⎨⎪⎪⎪⎧n +2+⎝ ⎛⎭⎪⎫n 2+n 3,n =6t ,n +2+⎝ ⎛⎭⎪⎫n -12+n -13,n =6t +1,n +2+⎝ ⎛⎭⎪⎫n 2+n -23,n =6t +2,n +2+⎝ ⎛⎭⎪⎫n -12+n 3,n =6t +3,n +2+⎝ ⎛⎭⎪⎫n 2+n -13,n =6t +4,n +2+⎝ ⎛⎭⎪⎫n -12+n -23,n =6t +5(t ∈N *).下面用数学归纳法证明:①当n =6时,f (6)=6+2+62+63=13,结论成立.②假设n =k (k ≥6)时结论成立,那么n =k +1时,S k +1在S k 的基础上新增加的元素在(1,k +1),(2,k +1),(3,k +1)中产生,分以下情形讨论:a .若k +1=6t ,则k =6(t -1)+5,此时有f (k +1)=f (k )+3=k +2+k -12+k -23+3=(k +1)+2+k +12+k +13,结论成立;b .若k +1=6t +1,则k =6t ,此时有f (k +1)=f (k )+1=k +2+k 2+k3+1=(k +1)+2+k +-12+k +-13,结论成立;c .若k +1=6t +2,则k =6t +1,此时有f (k +1)=f (k )+2=k +2+k -12+k -13+2=(k +1)+2+k +12+k +-23,结论成立;d .若k +1=6t +3,则k =6t +2,此时有f (k +1)=f (k )+2=k +2+k 2+k -23+2=(k +1)+2+k +-12+k +13,结论成立;e .若k +1=6t +4,则k =6t +3,此时有f (k +1)=f (k )+2=k +2+k -12+k3+2 =(k +1)+2+k +12+k +-13,结论成立;f .若k +1=6t +5,则k =6t +4,此时有f (k +1)=f (k )+1=k +2+k 2+k -13+1=(k +1)+2+k +-12+k +-23,结论成立.综上所述,结论对满足n ≥6的自然数n 均成立.3个附加题综合仿真练(五)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 是半圆的直径,C 是半圆上一点,D 是弧AC 的中点,DE ⊥AB 于E ,AC 与DE 交于点M ,求证:AM =DM .证明:连结AD ,因为AB 为直径,所以AD ⊥BD , 又DE ⊥AB ,所以∠ABD =∠ADE .因为D 是弧AC 的中点, 所以∠DAC =∠ABD , 所以∠ADE =∠DAC . 所以AM =DM .B .[选修4-2:矩阵与变换]已知向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量.在平面直角坐标系xOy 中,点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3),求矩阵A .解:设A =⎣⎢⎡⎦⎥⎤ab c d ,因为向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量, 所以⎣⎢⎡⎦⎥⎤a b cd ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤a -b c -d =(-1)⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-11. 所以⎩⎪⎨⎪⎧a -b =-1,c -d =1.①因为点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3),所以⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤a +b c +d =⎣⎢⎡⎦⎥⎤33.所以⎩⎪⎨⎪⎧a +b =3,c +d =3.②由①②解得a =1,b =2,c =2,d =1,所以A =⎣⎢⎡⎦⎥⎤1 22 1.C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知直线⎩⎪⎨⎪⎧x =-32+22n ,y =22n (n 为参数)与曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t为参数)相交于A ,B 两点,求线段AB 的长.解:法一:将曲线⎩⎪⎨⎪⎧x =18t 2,y =t (t 为参数)化为普通方程为y 2=8x .将直线⎩⎪⎨⎪⎧x =-32+22n ,y =22n(n 为参数)代入y 2=8x 得,n 2-82n +24=0,解得n 1=22,n 2=6 2. 则|n 1-n 2|=42, 所以线段AB 的长为4 2. 法二:将曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)化为普通方程为y 2=8x,将直线⎩⎪⎨⎪⎧x =-32+22n ,y =22n(n 为参数)化为普通方程为x -y +32=0,由⎩⎪⎨⎪⎧y 2=8x ,x -y +32=0,得⎩⎪⎨⎪⎧x =12,y =2或⎩⎪⎨⎪⎧x =92,y =6.所以AB 的长为⎝ ⎛⎭⎪⎫92-122+-2=4 2.D .[选修4-5:不等式选讲]已知函数f (x )=3x +6,g (x )=14-x ,若存在实数x 使f (x )+g (x )>a 成立,求实数a 的取值范围.解:存在实数x 使f (x )+g (x )>a 成立, 等价于f (x )+g (x )的最大值大于a , 因为f (x )+g (x ) =3x +6+14-x=3×x +2+1×14-x , 由柯西不等式得,(3×x +2+1×14-x )2≤(3+1)(x +2+14-x )=64,所以f (x )+g (x )=3x +6+14-x ≤8,当且仅当x =10时取“=”,故实数a 的取值范围是(-∞,8).2.如图,在四棱锥O ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =45°,OA ⊥底面ABCD ,OA =2,M 为OA 的中点.(1)求异面直线AB 与MD 所成角的大小;(2)求平面OAB 与平面OCD 所成锐二面角的余弦值. 解:作AP ⊥CD 于点P ,分别以AB ,AP ,AO 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),B (1,0,0),P ⎝ ⎛⎭⎪⎫0,22,0,D ⎝ ⎛⎭⎪⎫-22,22,0, O (0,0,2),M (0,0,1).(1)设直线AB 与MD 所成角为θ,由AB ―→=(1,0,0),BD ―→=⎝ ⎛⎭⎪⎫-22,22,-1,则cos θ=|cos 〈AB ―→,BD ―→〉|=222=12,故AB 与MD 所成角为60°.(2)OP ―→=⎝ ⎛⎭⎪⎫0,22,-2,OD ―→=⎝ ⎛⎭⎪⎫-22,22,-2,设平面OCD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·OP ―→=0,n ·OD ―→=0,即⎩⎪⎨⎪⎧22y -2z =0,-22x +22y -2z =0,取z =2,则n =(0,4,2).易得平面OAB 的一个法向量为m =(0,1,0),cos 〈n ,m 〉=432×1=223,故平面OAB 与平面OCD 所成锐二面角的余弦值为223.3.设a >b >0,n 是正整数,A n =1n +1(a n +a n -1b +a n -2b 2+…+a 2b n -2 +ab n -1+b n) ,B n =⎝ ⎛⎭⎪⎫a +b 2n . (1)证明:A 2>B 2;(2)比较A n 与B n (n ∈N *)的大小,并给出证明.解:(1)证明:A 2-B 2=13(a 2+ab +b 2)-⎝ ⎛⎭⎪⎫a +b 22=112(a -b )2>0. (2)A n ≥B n ,证明如下: 当n =1时,A 1=B 1; 当n ≥3时,A n =1n +1·a n +1-b n +1a -b,B n =⎝⎛⎭⎪⎫a +b 2n ,令a +b =x ,a -b =y ,且x >0,y >0,于是A n =1n +1·⎝ ⎛⎭⎪⎫x +y 2n +1-⎝ ⎛⎭⎪⎫x -y 2n +1y=12n +1n +y[(x +y )n +1-(x -y )n +1],B n =⎝ ⎛⎭⎪⎫x 2n,因为[(x +y )n +1-(x -y )n +1]=(2C 1n +1x ny +2C 3n +1·xn -2y 3+…)≥2C 1n +1x ny ,所以A n ≥12n +1n +y·2C 1n +1x ny =x n 2n =⎝ ⎛⎭⎪⎫x 2n=B n .3个附加题综合仿真练(六)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 为半圆O 的直径,直线PC 切半圆O 于点C ,AP ⊥PC ,P 为垂足.求证:(1)∠PAC =∠CAB ; (2)AC 2=AP ·AB .证明:(1)因为PC 切半圆O 于点C ,所以∠PCA =∠CBA . 因为AB 为半圆O 的直径,所以∠ACB =90°. 因为AP ⊥PC ,所以∠APC =90°. 因此∠PAC =∠CAB .(2)由(1)知,△APC ∽△ACB ,故AP AC =AC AB, 即AC 2=AP ·AB .B .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤110,B =⎣⎢⎡⎦⎥⎤1 002.(1)求AB ;(2)若曲线C 1:x 28+y 22=1在矩阵AB 对应的变换作用下得到另一曲线C 2,求C 2的方程. 解:(1)因为A =⎣⎢⎡⎦⎥⎤11 0,B =⎣⎢⎡⎦⎥⎤1 002,所以AB =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤1 00 2=⎣⎢⎡⎦⎥⎤0 210.(2)设Q (x 0,y 0)为曲线C 1上的任意一点, 它在矩阵AB 对应的变换作用下变为P (x ,y ),则⎣⎢⎡⎦⎥⎤0 21 0⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,即⎩⎪⎨⎪⎧2y 0=x ,x 0=y ,所以⎩⎪⎨⎪⎧x 0=y ,y 0=x2.因为点Q (x 0,y 0)在曲线C 1上,则x 208+y 202=1,从而y 28+x 28=1,即x 2+y 2=8.因此曲线C 1在矩阵AB 对应的变换作用下得到曲线C 2:x 2+y 2=8. C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =sin α-2(α为参数).以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=β,若圆C 与直线l 相切,求直线l 的极坐标方程.解:圆的直角坐标方程为x 2+(y -2)2=1, 设直线l 对应的直角坐标方程为y =kx , 因为圆C 与直线l 相切, 所以d =|2|1+k2=1,得到k =±3,故直线l 的极坐标方程θ=π3或θ=2π3. D .[选修4-5:不等式选讲]已知a ,b ,c ,d 为实数,且a 2+b 2=4,c 2+d 2=16,证明:ac +bd ≤8. 证明:由柯西不等式可得:(ac +bd )2≤(a 2+b 2)(c 2+d 2). 因为a 2+b 2=4,c 2+d 2=16, 所以(ac +bd )2≤64,因此ac +bd ≤8.2.已知正六棱锥S ABCDEF 的底面边长为2,高为1.现从该棱锥的7个顶点中随机选取3个点构成三角形,设随机变量X 表示所得三角形的面积.(1)求概率P (X =3)的值;(2)求X 的概率分布,并求其数学期望E (X ). 解:(1)从7个顶点中随机选取3个点构成三角形, 共有C 37=35种取法.其中X =3的三角形如△ABF , 这类三角形共有6个. 因此P (X =3)=635.(2)由题意,X 的可能取值为3,2,6,23,3 3. 其中X =3的三角形如△ABF ,这类三角形共有6个;其中X =2的三角形有两类,如△SAD (3个),△SAB (6个),共有9个; 其中X =6的三角形如△SBD ,这类三角形共有6个; 其中X =23的三角形如△CDF ,这类三角形共有12个; 其中X =33的三角形如△BDF ,这类三角形共有2个. 因此P (X =3)=635,P (X =2)=935,P (X =6)=635,P (X =23)=1235,P (X =33)=235.所以随机变量X 的概率分布为:所求数学期望E (X )=3×635+2×935+6×635+23×1235+33×235=363+66+1835.3.已知数列{a n }满足:a 1=1,对任意的n ∈N *,都有a n +1=⎝⎛⎭⎪⎫1+1n 2+n a n +12n . (1)求证:当n ≥2时,a n ≥2;(2)利用“∀x >0,ln(1+x )<x ”,证明:a n <2e 34(其中e 是自然对数的底数).证明:(1)①由题意,a 2=⎝ ⎛⎭⎪⎫1+12×1+12=2,故当n =2时,a 2=2,不等式成立.21 ②假设当n =k (k ≥2,k ∈N *)时不等式成立,即a k ≥2,则当n =k +1时,a k +1=⎝ ⎛⎭⎪⎫1+1k k +a k +12>2. 所以,当n =k +1时,不等式也成立.根据①②可知,对所有n ≥2,a n ≥2成立. (2)当n ≥2时,由递推公式及(1)的结论有a n +1=⎝⎛⎭⎪⎫1+1n 2+n a n +12n ≤⎝ ⎛⎭⎪⎫1+1n 2+n +12n +1a n (n ≥2). 两边取对数,并利用已知不等式ln(1+x )<x ,得 ln a n +1≤ln ⎝ ⎛⎭⎪⎫1+1n 2+n +12n +1+ln a n <ln a n +1n 2+n +12n +1, 故ln a n +1-ln a n <1n 2+n +12n +1(n ≥2), 求和可得ln a n -ln a 2<12×3+1 3×4+…+1n -n +123+124+…+12n =⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +123·1-12n -21-12=12-1n +122-12n <34. 由(1)知,a 2=2,故有ln a n 2<34,即a n <2e 34(n ≥2), 而a 1=1<2e 34,所以对任意正整数n ,有a n <2e 34.。
6个解答题综合仿真练(四)1.如图,四棱锥P ABCD 中, 底面ABCD 为菱形,且PA ⊥底面ABCD ,PA =AC ,E 是PA 的中点,F 是PC 的中点.(1)求证:PC ∥平面BDE ;(2)求证:AF ⊥平面BDE .证明:(1)连结OE ,因为O 为菱形ABCD 对角线的交点,所以O 为AC 的中点.又因为E 为PA 的中点,所以OE ∥PC .又因为OE ⊂平面BDE ,PC ⊄平面BDE ,所以PC ∥平面BDE .(2)因为PA =AC ,△PAC 是等腰三角形,又F 是PC 的中点,所以AF ⊥PC .又OE ∥PC ,所以AF ⊥OE .又因为PA ⊥底面ABCD ,BD ⊂平面ABCD ,所以PA ⊥BD .又因为AC ,BD 是菱形ABCD 的对角线,所以AC ⊥BD .因为PA ∩AC =A ,所以BD ⊥平面PAC ,因为AF ⊂平面PAC ,所以AF ⊥BD .因为OE ∩BD =O ,所以AF ⊥平面BDE .2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a 2+c 2+2ac =b 2,sin A =1010. (1)求sin C 的值;(2)若a =2,求△ABC 的面积.解:(1)由a 2+c 2+2ac =b 2, 得cos B =a 2+c 2-b 22ac =-22, 又B ∈(0,π),所以B =3π4. 因为sin A =1010,且B 为钝角,所以cos A =31010, 所以sin C =sin ⎝⎛⎭⎪⎫A +3π4=1010×⎝ ⎛⎭⎪⎫-22+31010×22=55.(2)由正弦定理得a sin A =csin C, 所以c =a sin C sin A =2×551010=22, 所以△ABC 的面积S △ABC =12ac sin B =12×2×22×22=2. 3.已知椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B ,一个焦点为F (-1,0),点F 到相应准线的距离为3.经过点F 的直线l 与椭圆M 交于C ,D 两点.(1)求椭圆M 的方程;(2)记△ABD 与△ABC 的面积分别为S 1和S 2,求|S 1-S 2|的最大值.解:(1)由焦点F (-1,0)知c =1,又a 2c-c =3, 所以a 2=4,从而b 2=a 2-c 2=3.所以椭圆M 的方程为x 24+y 23=1. (2)若直线l 的斜率不存在,则直线l 的方程为x =-1,此时S 1=S 2,|S 1-S 2|=0; 若直线l 的斜率存在,可设直线l 的方程为y =k (x +1),k ≠0,C (x 1,y 1),D (x 2,y 2). 联立⎩⎪⎨⎪⎧ y =k x +,x 24+y 23=1,消去y ,得(3+4k 2)x 2+8k 2x +4k 2-12=0, 所以x 1+x 2=-8k 23+4k 2. 此时|S 1-S 2|=12·AB ·||y 1|-|y 2||=2|y 1+y 2| =2|k (x 1+1)+k (x 2+1)|=2|k ||(x 1+x 2)+2|=2|k |⎪⎪⎪⎪⎪⎪-8k23+4k 2+2=2|k |⎪⎪⎪⎪⎪⎪63+4k 2=12|k |3+4k 2. 因为k ≠0,所以|S 1-S 2|=123|k |+4|k |≤1223|k |·4|k |=1243=3, 当且仅当3|k |=4|k |,即k =±32时取等号. 所以|S 1-S2|的最大值为 3.4.如图,矩形ABCD 是一个历史文物展览厅的俯视图,点E 在AB 上,在梯形BCDE 区域内部展示文物,DE 是玻璃幕墙,游客只能在△ADE 区域内参观.在AE 上点P 处安装一可旋转的监控摄像头,∠MPN 为监控角,其中M ,N 在线段DE (含端点)上,且点M在点N 的右下方.经测量得知:AD =6米,AE =6米,AP =2米,∠MPN =π4.记∠EPM =θ(弧度),监控摄像头的可视区域△PMN 的面积为S 平方米.(1)求S 关于θ的函数关系式,并写出θ的取值范围;⎝⎛⎭⎪⎫参考数据:tan 54≈3 (2)求S 的最小值.解:(1)法一:在△PME 中,∠EPM =θ,PE =AE -AP =4米,∠PEM =π4,∠PME =3π4-θ,由正弦定理得PM sin ∠PEM =PE sin ∠PME, 所以PM =PE ·sin∠PEM sin ∠PME =22sin ⎝ ⎛⎭⎪⎫3π4-θ=4sin θ+cos θ, 在△PNE 中,由正弦定理得PN sin ∠PEN =PE sin ∠PNE, 所以PN =PE ·sin∠PEN sin ∠PNE =22sin ⎝ ⎛⎭⎪⎫π2-θ=22cos θ, 所以△PMN 的面积S =12PM ·PN ·sin ∠MPN =4cos 2θ+sin θcos θ=41+cos 2θ2+12sin 2θ =8sin 2θ+cos 2θ+1=82sin ⎝ ⎛⎭⎪⎫2θ+π4+1,当M 与E 重合时,θ=0;当N 与D 重合时,tan ∠APD =3,即∠APD =54,θ=3π4-54,所以0≤θ≤3π4-54. 综上可得,S =82sin ⎝ ⎛⎭⎪⎫2θ+π4+1,θ∈⎣⎢⎡⎦⎥⎤0,3π4-54. 法二:在△PME 中,∠EPM =θ,PE =AE -AP =4米,∠PEM =π4,∠PME =3π4-θ,由正弦定理得ME sin θ=PE sin ∠PME, 所以ME =PE ·sin θsin ∠PME =4sin θsin ⎝ ⎛⎭⎪⎫3π4-θ=42sin θsin θ+cos θ, 在△PNE 中,由正弦定理得NE sin ∠EPN =PE sin ∠PNE, 所以NE =PE ·sin ⎝⎛⎭⎪⎫θ+π4sin ⎝ ⎛⎭⎪⎫π2-θ=4sin ⎝ ⎛⎭⎪⎫θ+π4cos θ =22θ+cos θcos θ, 所以MN =NE -ME =22cos 2θ+sin θcos θ, 又点P 到DE 的距离为d =4sin π4=22, 所以△PMN 的面积S =12MN ·d =4cos 2θ+sin θcos θ=41+cos 2θ2+12sin 2θ =8sin 2θ+cos 2θ+1=82sin ⎝ ⎛⎭⎪⎫2θ+π4+1,当M 与E 重合时,θ=0;当N 与D 重合时,tan ∠APD =3,即∠APD =54,θ=3π4-54, 所以0≤θ≤3π4-54. 综上可得,S =82sin ⎝ ⎛⎭⎪⎫2θ+π4+1,θ∈⎣⎢⎡⎦⎥⎤0,3π4-54. (2)当2θ+π4=π2,即θ=π8∈⎣⎢⎡⎦⎥⎤0,3π4-54时,S 取得最小值为82+1=8(2-1). 所以可视区域△PMN 面积的最小值为8(2-1)平方米.5.设a >0且a ≠1,函数f (x )=a x +x 2-x ln a -a .(1)当a =e 时,求函数f (x )的单调区间;(2)求函数f (x )的最小值;(3)指出函数f (x )的零点个数,并说明理由.解:(1)当a =e 时,f (x )=e x +x 2-x -e ,f ′(x )=e x+2x -1.设g (x )=e x +2x -1,则g (0)=0,且g ′(x )=e x +2>0.所以g (x )在(-∞,+∞)上单调递增,当x >0时,g (x )>g (0)=0;当x <0时,g (x )<g (0)=0.即当x >0时,f ′(x )>0;当x <0时,f ′(x )<0.综上,函数f (x )的单调递增区间是(0,+∞),单调递减区间是(-∞,0).(2)f ′(x )=a x ln a +2x -ln a =(a x -1)ln a +2x ,①当a >1时,若x >0,则a x >1,ln a >0,所以f ′(x )>0,若x <0,则a x <1,ln a >0,所以f ′(x )<0.②当0<a <1时,若x >0,则a x <1,ln a <0,所以f ′(x )>0,若x <0,则a x >1,ln a <0,所以f ′(x )<0,所以f (x )在(-∞,0)上单调递减,(0,+∞)上单调递增.所以f (x )min =f (0)=1-a .(3)由(2)得,a >0,a ≠1,f (x )min =1-a .①若1-a >0,即0<a <1时,f (x )min =1-a >0,函数f (x )不存在零点.②若1-a <0,即a >1时,f (x )min =1-a <0. f (x )的图象在定义域内是不间断的曲线,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.f (a )=a a +a 2-a ln a -a >a 2-a ln a -a =a (a -ln a -1).令t (a )=a -ln a -1(a >1),t ′(a )=1-1a>0,所以t (a )在(1,+∞)上单调递增; 所以t (a )>t (1)=0.所以f (a )>0.故f (x )在(0,a )上有一个零点.又f (-a )=a -a +a 2+a ln a -a >a 2-a =a (a -1)>0,故f (x )在(-a,0)上有一个零点.所以f (x )在(-∞,0)上和(0,+∞)上各有一个零点,即f (x )有2个零点.综上,当0<a <1时,函数f (x )不存在零点;当a >1时,函数f (x )有2个零点.6.已知数列{a n }的通项公式a n =2n -(-1)n ,n ∈N *.设an 1,an 2,…,an i (其中n 1<n 2<…<n i ,i ∈N *)成等差数列.(1)若i =3.①当n 1,n 2,n 3为连续正整数时,求n 1的值;②当n1=1时,求证:n3-n2为定值;(2)求i的最大值.解:(1)①依题意,an1,an1+1,an1+2成等差数列,即2an1+1=an1+an1+2,从而2[2n1+1-(-1)n1+1]=2n1-(-1)n1+2n1+2-(-1)n1+2,当n1为奇数时,解得2n1=-4,不存在这样的正整数n1;当n1为偶数时,解得2n1=4,所以n1=2.②证明:依题意,a1,an2,an3成等差数列,即2an2=a1+an3,从而2[2n2-(-1)n2]=3+2n3-(-1)n3,当n2,n3均为奇数时,2n2-2n3-1=1,左边为偶数,故矛盾;当n2,n3均为偶数时,2n2-1-2n3-2=1,左边为偶数,故矛盾;当n2为偶数,n3奇数时,2n2-2n3-1=3,左边为偶数,故矛盾;当n2为奇数,n3偶数时,2n2+1-2n3=0,即n3-n2=1.(2)设a s,a r,a t(s<r<t)成等差数列,则2a r=a s+a t,即2[2r-(-1)r]=2s-(-1)s+2t-(-1)t,整理得,2s+2t-2r+1=(-1)s+(-1)t-2(-1)r,若t=r+1,则2s=(-1)s-3(-1)r,因为2s≥2,所以(-1)s-3(-1)r只能为2或4,所以s只能为1或2;若t≥r+2,则2s+2t-2r+1≥2s+2r+2-2r+1≥2+24-23=10,(-1)s+(-1)t-2(-1)r≤4,故矛盾,综上,只能a1,a r,a r+1成等差数列或a2,a r,a r+1成等差数列,其中r为奇数,从而i的最大值为3.。
3个附加题综合仿真练(五)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 是半圆的直径,C 是半圆上一点,D 是弧AC 的中点,DE ⊥AB 于E ,AC 与DE 交于点M ,求证:AM =DM .证明:连结AD ,因为AB 为直径,所以AD ⊥BD ,又DE ⊥AB ,所以∠ABD =∠ADE .因为D 是弧AC 的中点, 所以∠DAC =∠ABD , 所以∠ADE =∠DAC . 所以AM =DM .B .[选修4-2:矩阵与变换]已知向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量.在平面直角坐标系xOy 中,点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3),求矩阵A .解:设A =⎣⎢⎡⎦⎥⎤a b c d ,因为向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量, 所以⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎢⎡⎦⎥⎥⎤a -b c -d =(-1)⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-11. 所以⎩⎪⎨⎪⎧a -b =-1,c -d =1.①因为点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3),所以⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤a +b c +d =⎣⎢⎡⎦⎥⎤33.所以⎩⎪⎨⎪⎧a +b =3,c +d =3.② 由①②解得a =1,b =2,c =2,d =1,所以A =⎣⎢⎡⎦⎥⎤1 22 1. C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知直线⎩⎨⎧x =-32+22n ,y =22n (n 为参数)与曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)相交于A ,B 两点,求线段AB 的长.解:法一:将曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)化为普通方程为y 2=8x .将直线⎩⎨⎧x =-32+22n ,y =22n (n 为参数)代入y 2=8x 得,n 2-82n +24=0,解得n 1=22,n 2=6 2. 则|n 1-n 2|=42, 所以线段AB 的长为4 2.法二:将曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)化为普通方程为y 2=8x,将直线⎩⎨⎧x =-32+22n ,y =22n(n 为参数)化为普通方程为x -y +32=0,由⎩⎪⎨⎪⎧ y 2=8x ,x -y +32=0,得⎩⎪⎨⎪⎧ x =12,y =2或⎩⎪⎨⎪⎧x =92,y =6.所以AB 的长为⎝⎛⎭⎫92-122+(6-2)2=4 2.D .[选修4-5:不等式选讲]已知函数f (x )=3x +6,g (x )=14-x ,若存在实数x 使f (x )+g (x )>a 成立,求实数a 的取值范围.解:存在实数x 使f (x )+g (x )>a 成立,等价于f (x )+g (x )的最大值大于a , 因为f (x )+g (x )=3x +6+14-x=3×x +2+1×14-x ,由柯西不等式得,(3×x +2+1×14-x )2≤(3+1)(x +2+14-x )=64,所以f (x )+g (x )=3x +6+14-x ≤8,当且仅当x =10时取“=”,故实数a 的取值范围是(-∞,8).2.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =45°,OA ⊥底面ABCD ,OA =2,M 为OA 的中点.(1)求异面直线AB 与MD 所成角的大小;(2)求平面OAB 与平面OCD 所成锐二面角的余弦值.解:作AP ⊥CD 于点P ,分别以AB ,AP ,AO 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),B (1,0,0),P ⎝⎛⎭⎫0,22,0,D ⎝⎛⎭⎫-22,22,0, O (0,0,2),M (0,0,1).(1)设直线AB 与MD 所成角为θ,由AB ―→=(1,0,0),BD ―→=⎝⎛⎭⎫-22,22,-1, 则cos θ=|cos 〈AB ―→,BD ―→〉|=222=12,故AB 与MD 所成角为60°.(2)OP ―→=⎝⎛⎭⎫0,22,-2,OD ―→=⎝⎛⎭⎫-22,22,-2,设平面OCD 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·OP ―→=0,n ·OD ―→=0,即⎩⎨⎧22y -2z =0,-22x +22y -2z =0,取z =2,则n =(0,4,2).易得平面OAB 的一个法向量为m =(0,1,0),cos 〈n ,m 〉=432×1=223,故平面OAB 与平面OCD 所成锐二面角的余弦值为223.3.设a >b >0,n 是正整数,A n =1n +1(a n +a n -1b +a n -2b 2+…+a 2b n -2 +ab n -1+b n ) ,B n =⎝⎛⎭⎫a +b 2n.(1)证明:A 2>B 2;(2)比较A n 与B n (n ∈N *)的大小,并给出证明.解:(1)证明:A 2-B 2=13(a 2+ab +b 2)-⎝ ⎛⎭⎪⎫a +b 22=112(a -b )2>0. (2)A n ≥B n ,证明如下: 当n =1时,A 1=B 1;当n ≥3时,A n =1n +1·a n +1-b n +1a -b,B n =⎝ ⎛⎭⎪⎫a +b 2n ,令a +b =x ,a -b =y ,且x >0,y >0,于是A n =1n +1·⎝⎛⎭⎪⎫x +y 2n +1-⎝ ⎛⎭⎪⎫x -y 2n +1y=12n +1(n +1)y[(x +y )n +1-(x -y )n +1],B n =⎝⎛⎭⎫x 2n , 因为[(x +y )n +1-(x -y )n +1]=(2C 1n +1x n y +2C 3n +1·x n -2y 3+…)≥2C 1n +1x ny , 所以A n ≥12n +1(n +1)y·2C 1n +1x ny =x n 2n =⎝⎛⎭⎫x 2n =B n .。
3个附加题综合仿真练(六)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 为半圆O 的直径,直线PC 切半圆O 于点C ,AP ⊥PC ,P为垂足.求证:(1)∠PAC =∠CAB ; (2)AC 2=AP ·AB .证明:(1)因为PC 切半圆O 于点C ,所以∠PCA =∠CBA . 因为AB 为半圆O 的直径,所以∠ACB =90°. 因为AP ⊥PC ,所以∠APC =90°. 因此∠PAC =∠CAB .(2)由(1)知,△APC ∽△ACB ,故AP AC =AC AB , 即AC 2=AP ·AB .B .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤0 11 0,B =⎣⎢⎡⎦⎥⎤1 002.(1)求AB ;(2)若曲线C 1:x 28+y 22=1在矩阵AB 对应的变换作用下得到另一曲线C 2,求C 2的方程.解:(1)因为A =⎣⎢⎡⎦⎥⎤0 11 0,B =⎣⎢⎡⎦⎥⎤100 2,所以AB =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤1 00 2=⎣⎢⎡⎦⎥⎤0 210. (2)设Q (x 0,y 0)为曲线C 1上的任意一点, 它在矩阵AB 对应的变换作用下变为P (x ,y ),则⎣⎢⎡⎦⎥⎤0 210⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,即⎩⎪⎨⎪⎧2y 0=x ,x 0=y ,所以⎩⎪⎨⎪⎧x 0=y ,y 0=x2. 因为点Q (x 0,y 0)在曲线C 1上,则x 208+y 202=1,从而y 28+x 28=1,即x 2+y 2=8.因此曲线C 1在矩阵AB 对应的变换作用下得到曲线C 2:x 2+y 2=8. C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =sin α-2(α为参数).以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=β,若圆C 与直线l 相切,求直线l 的极坐标方程.解:圆的直角坐标方程为x 2+(y -2)2=1, 设直线l 对应的直角坐标方程为y =kx , 因为圆C 与直线l 相切, 所以d =|2|1+k 2=1,得到k =±3, 故直线l 的极坐标方程θ=π3或θ=2π3.D .[选修4-5:不等式选讲]已知a ,b ,c ,d 为实数,且a 2+b 2=4,c 2+d 2=16,证明:ac +bd ≤8. 证明:由柯西不等式可得:(ac +bd )2≤(a 2+b 2)(c 2+d 2). 因为a 2+b 2=4,c 2+d 2=16, 所以(ac +bd )2≤64, 因此ac +bd ≤8.2.已知正六棱锥S -ABCDEF 的底面边长为2,高为1.现从该棱锥的7个顶点中随机选取3个点构成三角形,设随机变量X 表示所得三角形的面积.(1)求概率P (X =3)的值;(2)求X 的概率分布,并求其数学期望E (X ). 解:(1)从7个顶点中随机选取3个点构成三角形, 共有C 37=35种取法.其中X =3的三角形如△ABF , 这类三角形共有6个. 因此P (X =3)=635. (2)由题意,X 的可能取值为3,2,6,23,3 3. 其中X =3的三角形如△ABF ,这类三角形共有6个;其中X =2的三角形有两类,如△SAD (3个),△SAB (6个),共有9个; 其中X =6的三角形如△SBD ,这类三角形共有6个; 其中X =23的三角形如△CDF ,这类三角形共有12个; 其中X =33的三角形如△BDF ,这类三角形共有2个. 因此P (X =3)=635,P (X =2)=935, P (X =6)=635,P (X =23)=1235,P (X =33)=235. 所以随机变量X 的概率分布为:所求数学期望 E (X )=3×635+2×935+6×635+23×1235+33×235=363+66+1835. 3.已知数列{a n }满足:a 1=1,对任意的n ∈N *,都有a n +1=⎝⎛⎭⎫1+1n 2+n a n +12n .(1)求证:当n ≥2时,a n ≥2;(2)利用“∀x >0,ln(1+x )<x ”,证明:a n <2e 34(其中e 是自然对数的底数).证明:(1)①由题意,a 2=⎝⎛⎭⎫1+12×1+12=2,故当n =2时,a 2=2,不等式成立. ②假设当n =k (k ≥2,k ∈N *)时不等式成立,即a k ≥2,则当n =k +1时,a k +1=⎝⎛⎭⎫1+1k (k +1)a k +12k >2.所以,当n =k +1时,不等式也成立. 根据①②可知,对所有n ≥2,a n ≥2成立.(2)当n ≥2时,由递推公式及(1)的结论有a n +1=⎝⎛⎭⎫1+1n 2+n a n +12n ≤⎝⎛⎭⎫1+1n 2+n +12n +1a n (n ≥2).两边取对数,并利用已知不等式ln(1+x )<x ,得 ln a n +1≤ln ⎝⎛⎭⎫1+1n 2+n +12n 1+ln a n <ln a n +1n 2+n +12n +1,故ln a n +1-ln a n <1n 2+n +12n +1(n ≥2), 求和可得ln a n -ln a 2<12×3+1 3×4+…+1(n -1)n +123+124+…+12n =⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1-1n +123·1-12n -21-12=12-1n +122-12n <34.由(1)知,a 2=2,故有ln a n 2<34,即a n <2e 34(n ≥2),而a 1=1<2e 34,所以对任意正整数n ,有a n <2e 34.。
14个填空题综合仿真练(四)1、已知集合A ={1,2,3},B ={2,4,5},则集合A ∪B 中的元素的个数为________、 解析:集合A ={1,2,3},B ={2,4,5},则A ∪B ={1,2,3,4,5},所以A ∪B 中元素的个数为5.答案:5 2、复数z =21-i(其中i 是虚数单位),则复数z 的共轭复数为________、 解析:z =21-i =2(1+i )(1-i )(1+i )=1+i ,则复数z 的共轭复数为1-i.答案:1-i3、如图是一个算法的流程图,则输出的k 的值为________、解析:阅读流程图,当k =2,3,4,5时,k 2-7k +10≤0,一直进行循环,当k =6时,k 2-7k +10>0,此时终止循环,输出k =6.答案:64、在数字1,2,3,4中随机选两个,则选中的数字中至少有一个是偶数的概率为________、 解析:在数字1,2,3,4中随机选两个,基本事件总数n =6,选中的数字中至少有一个是偶数的对立事件是选中的两个数字都是奇数,所以选中的数字中至少有一个是偶数的概率为P =1-16=56.答案:565、双曲线x 25-y 24=1的右焦点与左准线之间的距离是____________.解析:由已知得,双曲线的右焦点为(3,0),左准线方程为x =-53,所以右焦点与左准线之间的距离是3-⎝⎛⎭⎫-53=143.答案:1436、下表是关于青年观众的性别与是否喜欢戏剧的调查数据,人数如表所示:喜欢戏剧的男性青年观众”的人中抽取了8人,则n 的值为________、解析:由题意,得840=n 40+10+40+60,所以n =30.答案:307、若实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≥0,y -x -1≤0,x ≤1,则z =2x +3y 的最大值为________、解析:由约束条件⎩⎪⎨⎪⎧x +y -1≥0,y -x -1≤0,x ≤1,作出可行域如图,化目标函数z =2x +3y 为y =-23x +13z ,由图可知,当直线y =-23x +13z 过点A 时,直线在y 轴上的截距最大,联立⎩⎪⎨⎪⎧x =1,y -x -1=0,解得A (1,2),故z max =8.答案:88、底面边长为2,侧棱长为3的正四棱锥的体积为________、 解析:取点O 为底面ABCD 的中心,则SO ⊥平面ABCD ,取BC 的中点E ,连结OE ,SE ,则OE =BE =1,在Rt △SBE 中,SE=SB 2-BE 2=2,在Rt △SOE 中,SO =SE 2-OE 2=1,从而该正四棱锥的体积V =13S 四边形ABCD ·SO =13×2×2×1=43.答案:439、在平面直角坐标系xOy 中,已知圆C :x 2+(y -3)2=2,点A 是x 轴上的一个动点,AP ,AQ 分别切圆C 于P ,Q 两点,则线段PQ 长的取值范围为________、解析:法一:由题意知,当A 在原点时,PQ 最小,此时,sin ∠PAC=23,cos ∠PAC =73,cos ∠PAQ =59, 故cos ∠PCQ =-59,∴PQ =PC 2+QC 2-2×PC ×QC ×cos ∠PCQ =2+2-2×2×2×⎝⎛⎭⎫-59=2143, 当A 点离原点无限远时,PQ 接近于22, ∴PQ 的取值范围为⎣⎡⎭⎫2143,22.法二:设CA =x ,x ∈[3,+∞),则PA =x 2-2,sin ∠ACP =PACA =x 2-2x =1-2x2, 所以PQ =2CP ·sin ∠ACP =22·1-2x 2.因为x ∈[3,+∞),所以y =1-2x 2在[3,+∞)上为增函数,所以2143≤PQ <2 2. 答案:⎣⎡⎭⎫2143,2210、若函数f (x )=⎩⎪⎨⎪⎧x +2x,x ≤0,ax -ln x ,x >0,在其定义域上恰有两个零点,则正实数a 的值为________、解析:易知函数f (x )在(-∞,0]上有一个零点,所以由题意得方程ax -ln x =0在(0,+∞)上恰有一解,即a =ln x x 在(0,+∞)上恰有一解. 令g (x )=ln xx ,由g ′(x )=1-ln x x 2=0,得x =e ,当x ∈(0,e)时,g (x )单调递增,当x ∈(e ,+∞)时,g (x )单调递减,所以g (x )在x =e 处取得极大值也为最大值,作出y =g (x )与y =a 的图象(图略),知当正实数a =g (x )max 时两函数有一个交点,所以a =g (e)=1e.答案:1e11、设直线l 是曲线y =4x 3+3ln x 的切线,则直线l 的斜率的最小值为________、 解析:y ′=12x 2+3x (x >0),令g (x )=12x 2+3x ,则g ′(x )=24x -3x2,令g ′(x )=0,得x =12,故当x ∈⎝⎛⎭⎫0,12时,g ′(x )<0,当x ∈⎝⎛⎭⎫12,+∞时,g ′(x )>0,所以当x =12时,g (x )取得最小值g ⎝⎛⎭⎫12=9,故y ′=12x 2+3x 的最小值为9,即直线l 的斜率的最小值为9.答案:912、扇形AOB 中,弦AB =1,C 为劣弧AB 上的动点,AB 与OC 交于点P ,则OP ―→·BP ―→的最小值是________、解析:设弦AB 的中点为M ,则OP ―→·BP ―→=(OM ―→+MP ―→)·BP ―→=MP ―→·BP ―→, 若MP ―→,BP ―→同向,则OP ―→·BP ―→>0; 若MP ―→,BP ―→反向,则OP ―→·BP ―→<0,故OP ―→·BP ―→的最小值在MP ―→,BP ―→反向时取得,此时|MP ―→|+|BP ―→|=12,OP ―→·BP ―→=-|MP ―→|·|BP ―→|≥-⎝ ⎛⎭⎪⎫|MP ―→|+|BP ―→|22=-116, 当且仅当|MP ―→|=|BP ―→|=14时取等号,即OP ―→·BP ―→的最小值是-116.答案:-11613、在平面直角坐标系xOy 中,已知A (cos α,sin α),B (cos β,sin β)是直线y =3x +2上的两点,则tan(α+β)的值为________、解析:由题意,α,β是方程3cos x -sin x +2=0的两根、 设f (x )=3cos x -sin x +2, 则f ′(x )=-3sin x -cos x . 令f ′(x )=0,得tan x 0=-33, 所以α+β=2x 0,所以tan(α+β)=- 3. 答案:- 314、已知函数f (x )=|x -a |-3x +a -2有且仅有三个零点,且它们成等差数列,则实数a的取值集合为________、解析:f (x )=⎩⎨⎧x -3x -2,x ≥a ,-x -3x +2a -2,x <a ,当x ≥a 时,由x -3x-2=0,得x 1=-1,x 2=3,结合图形知,①当a <-1时,x 3,-1,3成等差数列,则x 3=-5,代入-x -3x +2a -2=0得,a =-95; ②当-1≤a ≤3时,方程-x -3x +2a -2=0, 即x 2+2(1-a )x +3=0,设方程的两根为x 3,x 4,且x 3<x 4,则x 3x 4=3,且x 3+3=2x 4,解得x 4=3±334,又x 3+x 4=2(a -1),所以a =5+3338.③当a >3时,显然不符合、 所以a 的取值集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-95,5+3338. 答案:⎩⎨⎧⎭⎬⎫-95,5+3338。
3个附加题综合仿真练(四)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 是圆O 的直径,C 为圆O 外一点,且AB =AC ,BC 交圆O 于点D ,过D 作圆O 的切线交AC 于点E .求证:DE ⊥AC . 解:如图,连结OD .因为AB =AC ,所以∠B =∠C . 由圆O 知OB =OD , 所以∠B =∠BDO .从而∠BDO =∠C ,所以OD ∥AC . 又DE 为圆O 的切线,所以DE ⊥OD , 所以DE ⊥AC .B .[选修4-2:矩阵与变换] 已知矩阵A =⎣⎢⎡⎦⎥⎤2 x y2,X =⎣⎢⎡⎦⎥⎤-1 1,且AX =⎣⎢⎡⎦⎥⎤12 ,其中x ,y ∈R.(1)求x ,y 的值;(2)若B =⎣⎢⎡⎦⎥⎤1 -10 2,求(AB )-1.解:(1)AX =⎣⎢⎡⎦⎥⎤2 x y 2 ⎣⎢⎡⎦⎥⎤-1 1 = ⎣⎢⎡⎦⎥⎤x -22-y . 因为AX =⎣⎢⎡⎦⎥⎤12,所以⎩⎪⎨⎪⎧x -2=1,2-y =2,解得x =3,y =0. (2)由(1)知A =⎣⎢⎡⎦⎥⎤230 2 ,又B =⎣⎢⎡⎦⎥⎤1 -102 , 所以AB =⎣⎢⎡⎦⎥⎤2302⎣⎢⎡⎦⎥⎤1 -10 2=⎣⎢⎡⎦⎥⎤2 404 .设(AB )-1= ⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤2 40 4⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤100 1,即⎣⎢⎡⎦⎥⎤2a +4c 2b +4d 4c 4d =⎣⎢⎡⎦⎥⎤1 001.所以⎩⎪⎨⎪⎧2a +4c =1,4c =0,2b +4d =0,4d =1,解得a =12,b =-12,c =0,d =14,即 (AB )-1= ⎣⎢⎡⎦⎥⎤12 -12 0 14 .C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t (t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0,已知直线l 与曲线C 相交于A ,B 两点,求线段AB 的长.解:因为曲线C 的极坐标方程为ρsin 2θ-4cos θ=0,所以ρ2sin 2θ=4ρcos θ,即曲线C 的直角坐标方程为y 2=4x .将直线l的参数方程⎩⎨⎧x =1-22t ,y =2+22t 代入抛物线方程y 2=4x ,得⎝⎛⎭⎫2+22t 2=4⎝⎛⎭⎫1-22t , 即t 2+82t =0,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2. D .[选修4-5:不等式选讲] 设函数f (x )=|2x +1|-|x -2|. (1)求不等式f (x )>2的解集;(2)若∀x ∈R ,f (x )≥t 2-112t 恒成立,求实数t 的取值范围.解:(1)不等式f (x )>2可化为⎩⎪⎨⎪⎧x >2,2x +1-x +2>2或⎩⎪⎨⎪⎧-12≤x ≤2,2x +1+x -2>2或⎩⎪⎨⎪⎧x <-12,-2x -1+x -2>2,解得x <-5或x >1,所以所求不等式的解集为{x |x <-5或x >1}.(2)由f (x )=|2x +1|-|x -2|=⎩⎪⎨⎪⎧x +3,x >2,3x -1,-12≤x ≤2,-x -3,x <-12,可得f (x )≥-52,若∀x ∈R ,f (x )≥t 2-112t 恒成立,则t 2-112t ≤-52,即2t 2-11t +5≤0,解得12≤t ≤5.故实数t 的取值范围为⎣⎡⎦⎤12,5.2.如图,在直三棱柱ABC -A 1B 1C 1中,已知AB ⊥AC ,AB =2,AC =4,AA 1=3.D 是线段BC 的中点.(1)求直线DB 1与平面A 1C 1D 所成角的正弦值; (2)求二面角B 1-A 1D -C 1的余弦值.解:因为在直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,所以分别以AB ,AC ,AA 1所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (0,4,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3), 因为D 是BC 的中点,所以D (1,2,0), (1)因为A 1C 1――→=(0,4,0),A 1D ―→=(1,2,-3), 设平面A 1C 1D 的法向量n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·A 1C 1――→=0,n 1·A 1D ―→=0,即⎩⎪⎨⎪⎧4y 1=0,x 1+2y 1-3z 1=0,取⎩⎪⎨⎪⎧x 1=3,y 1=0,z 1=1,所以平面A 1C 1D 的法向量n 1=(3,0,1),而DB 1―→=(1,-2,3),设直线DB 1与平面A 1C 1D 所成角为θ,所以sin θ=|cos 〈n 1,DB 1―→〉|=|n 1·DB 1―→||n 1|·|DB 1―→|=|3+3|10×14=33535, 所以直线DB 1与平面A 1C 1D 所成角的正弦值为33535.(2) A 1B 1――→=(2,0,0),DB 1―→=(1,-2,3), 设平面B 1A 1D 的法向量n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n 2·A 1B 1――→=0,n 2·DB 1―→=0,即⎩⎪⎨⎪⎧2x 2=0,x 2-2y 2+3z 2=0,取⎩⎪⎨⎪⎧x 2=0,y 2=3,z 2=2,所以平面B 1A 1D 的法向量n 2=(0,3,2),所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=210×13=13065,故结合图象知二面角B 1-A 1D -C 1的余弦值13065. 3.已知集合X ={1,2,3},Y n ={1,2,3,…,n }(n ∈N *),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,b ∈Y n },令f (n )表示集合S n 所含元素的个数.(1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明. 解:(1)Y 6={1,2,3,4,5,6},S 6中的元素(a ,b )满足:若a =1,则b =1,2,3,4,5,6;若a =2,则b =1,2,4,6;若a =3,则b =1,3,6. 所以f (6)=13. (2)当n ≥6时,f (n )=⎩⎪⎪⎪⎨⎪⎪⎪⎧n +2+⎝⎛⎭⎫n 2+n 3,n =6t ,n +2+⎝⎛⎭⎫n -12+n -13,n =6t +1,n +2+⎝⎛⎭⎫n 2+n -23,n =6t +2,n +2+⎝⎛⎭⎫n -12+n 3,n =6t +3,n +2+⎝⎛⎭⎫n 2+n -13,n =6t +4,n +2+⎝⎛⎭⎫n -12+n -23,n =6t +5(t ∈N *).下面用数学归纳法证明:①当n =6时,f (6)=6+2+62+63=13,结论成立.②假设n =k (k ≥6)时结论成立,那么n =k +1时,S k +1在S k 的基础上新增加的元素在(1,k +1),(2,k +1),(3,k +1)中产生,分以下情形讨论:a .若k +1=6t ,则k =6(t -1)+5,此时有 f (k +1)=f (k )+3=k +2+k -12+k -23+3=(k +1)+2+k +12+k +13,结论成立; b .若k +1=6t +1,则k =6t ,此时有 f (k +1)=f (k )+1=k +2+k 2+k3+1=(k +1)+2+(k +1)-12+(k +1)-13,结论成立; c .若k +1=6t +2,则k =6t +1,此时有 f (k +1)=f (k )+2=k +2+k -12+k -13+2=(k +1)+2+k +12+(k +1)-23,结论成立; d .若k +1=6t +3,则k =6t +2,此时有 f (k +1)=f (k )+2=k +2+k 2+k -23+2=(k +1)+2+(k +1)-12+k +13,结论成立; e .若k +1=6t +4,则k =6t +3,此时有 f (k +1)=f (k )+2=k +2+k -12+k3+2=(k +1)+2+k +12+(k +1)-13,结论成立; f .若k +1=6t +5,则k =6t +4,此时有 f (k +1)=f (k )+1=k +2+k 2+k -13+1=(k +1)+2+(k +1)-12+(k +1)-23,结论成立. 综上所述,结论对满足n ≥6的自然数n 均成立.。
3个附加题综合仿真练(六)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 为半圆O 的直径,直线PC 切半圆O 于点C ,AP ⊥PC ,P为垂足.求证:(1)∠PAC =∠CAB ; (2)AC 2=AP ·AB .证明:(1)因为PC 切半圆O 于点C ,所以∠PCA =∠CBA . 因为AB 为半圆O 的直径,所以∠ACB =90°. 因为AP ⊥PC ,所以∠APC =90°. 因此∠PAC =∠CAB .(2)由(1)知,△APC ∽△ACB ,故AP AC =AC AB , 即AC 2=AP ·AB .B .[选修4-2:矩阵与变换] 已知矩阵A =⎣⎢⎡⎦⎥⎤0 11 0,B =⎣⎢⎡⎦⎥⎤1 00 2.(1)求AB ;(2)若曲线C 1:x 28+y 22=1在矩阵AB 对应的变换作用下得到另一曲线C 2,求C 2的方程.解:(1)因为A =⎣⎢⎡⎦⎥⎤0 11 0,B =⎣⎢⎡⎦⎥⎤100 2,所以AB =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤1 00 2=⎣⎢⎡⎦⎥⎤0 210. (2)设Q (x 0,y 0)为曲线C 1上的任意一点, 它在矩阵AB 对应的变换作用下变为P (x ,y ), 则⎣⎢⎡⎦⎥⎤0 210⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,即⎩⎪⎨⎪⎧2y 0=x ,x 0=y ,所以⎩⎪⎨⎪⎧x 0=y ,y 0=x2. 因为点Q (x 0,y 0)在曲线C 1上,则x 208+y 202=1,从而y 28+x 28=1,即x 2+y 2=8.因此曲线C 1在矩阵AB 对应的变换作用下得到曲线C 2:x 2+y 2=8. C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =sin α-2(α为参数).以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=β,若圆C 与直线l 相切,求直线l 的极坐标方程.解:圆的直角坐标方程为x 2+(y -2)2=1, 设直线l 对应的直角坐标方程为y =kx , 因为圆C 与直线l 相切, 所以d =|2|1+k 2=1,得到k =±3, 故直线l 的极坐标方程θ=π3或θ=2π3.D .[选修4-5:不等式选讲]已知a ,b ,c ,d 为实数,且a 2+b 2=4,c 2+d 2=16,证明:ac +bd ≤8. 证明:由柯西不等式可得:(ac +bd )2≤(a 2+b 2)(c 2+d 2). 因为a 2+b 2=4,c 2+d 2=16, 所以(ac +bd )2≤64, 因此ac +bd ≤8.2.已知正六棱锥S -ABCDEF 的底面边长为2,高为1.现从该棱锥的7个顶点中随机选取3个点构成三角形,设随机变量X 表示所得三角形的面积.(1)求概率P (X =3)的值;(2)求X 的概率分布,并求其数学期望E (X ). 解:(1)从7个顶点中随机选取3个点构成三角形, 共有C 37=35种取法.其中X =3的三角形如△ABF , 这类三角形共有6个. 因此P (X =3)=635. (2)由题意,X 的可能取值为3,2,6,23,3 3. 其中X =3的三角形如△ABF ,这类三角形共有6个;其中X =2的三角形有两类,如△SAD (3个),△SAB (6个),共有9个; 其中X =6的三角形如△SBD ,这类三角形共有6个; 其中X =23的三角形如△CDF ,这类三角形共有12个; 其中X =33的三角形如△BDF ,这类三角形共有2个. 因此P (X =3)=635,P (X =2)=935, P (X =6)=635,P (X =23)=1235,P (X =33)=235. 所以随机变量X 的概率分布为:所求数学期望 E (X )=3×635+2×935+6×635+23×1235+33×235=363+66+1835. 3.已知数列{a n }满足:a 1=1,对任意的n ∈N *,都有a n +1=⎝⎛⎭⎫1+1n 2+n a n +12n .(1)求证:当n ≥2时,a n ≥2;(2)利用“∀x >0,ln(1+x )<x ”,证明:a n <2e 34(其中e 是自然对数的底数).证明:(1)①由题意,a 2=⎝⎛⎭⎫1+12×1+12=2,故当n =2时,a 2=2,不等式成立. ②假设当n =k (k ≥2,k ∈N *)时不等式成立,即a k ≥2,则当n =k +1时,a k +1=⎝⎛⎭⎫1+1k (k +1)a k +12k >2.所以,当n =k +1时,不等式也成立. 根据①②可知,对所有n ≥2,a n ≥2成立.(2)当n ≥2时,由递推公式及(1)的结论有a n +1=⎝⎛⎭⎫1+1n 2+n a n +12n ≤⎝⎛⎭⎫1+1n 2+n +12n +1a n (n ≥2).两边取对数,并利用已知不等式ln(1+x )<x ,得 ln a n +1≤ln ⎝⎛⎭⎫1+1n 2+n +12n +1+ln a n <ln a n +1n 2+n +12n +1, 故ln a n +1-ln a n <1n 2+n +12n +1(n ≥2), 求和可得ln a n -ln a 2<12×3+1 3×4+…+1(n -1)n +123+124+…+12n =⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1-1n +123·1-12n -21-12=12-1n +122-12n <34. 由(1)知,a 2=2,故有ln a n 2<34,即a n <2e 34(n ≥2),而a 1=1<2e 34,所以对任意正整数n ,有a n <2e 34.。
3个附加题综合仿真练(三)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 为圆O 的切线,A 为切点,C 为线段AB 的中点,过C作圆O 的割线CED (E 在C ,D 之间).求证:∠CBE =∠BDE . 证明:因为CA 为圆O 的切线, 所以CA 2=CE ·CD ,又CA =CB , 所以CB 2=CE ·CD , 即CB CE =CD CB , 又∠BCD =∠BCD , 所以△BCE ∽△DCB , 所以∠CBE =∠BDE .B .[选修4-2:矩阵与变换]设a ,b ∈R.若直线l :ax +y -7=0在矩阵A =⎣⎢⎡⎦⎥⎤3 0-1 b 对应的变换作用下,得到的直线为l ′:9x +y -91=0.求实数a ,b 的值.解:法一:在直线l :ax +y -7=0上取点M (0,7),N (1,7-a ),由⎣⎢⎡⎦⎥⎤3 0-1 b ⎣⎢⎡⎦⎥⎤07=⎣⎢⎡⎦⎥⎤ 07b ,⎣⎢⎡⎦⎥⎤3 0-1 b ⎣⎢⎡⎦⎥⎤17-a =⎣⎢⎡⎦⎥⎤ 3 b (7-a )-1,可知点M (0,7),N (1,7-a )在矩阵A 对应的变换作用下分别得到点M ′(0,7b ),N ′(3,b (7-a )-1),由题意可知:M ′,N ′在直线9x +y -91=0上,∴⎩⎪⎨⎪⎧ 7b -91=0,27+b (7-a )-1-91=0,解得⎩⎪⎨⎪⎧a =2,b =13,∴实数a ,b 的值分别为2,13.法二:设直线l 上任意一点P (x ,y ),点P 在矩阵A 对应的变换作用下得到Q (x ′,y ′),则⎣⎢⎡⎦⎥⎤3 0-1b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, ∴⎩⎪⎨⎪⎧x ′=3x ,y ′=-x +by ,由Q (x ′,y ′)在直线l ′:9x +y -91=0上, ∴27x +(-x +by )-91=0, 即26x +by -91=0, ∵点P 在ax +y -7=0上, ∴26a =b 1=-91-7,解得a =2,b =13.∴实数a ,b 的值分别为2,13. C .[选修4-4:坐标系与参数方程]在极坐标系中,直线l 和圆C 的极坐标方程分别为ρcos ⎝⎛⎭⎫θ+π6=a (a ∈R)和ρ=4sin θ.若直线l 与圆C 有且只有一个公共点,求a 的值.解:由ρcos ⎝⎛⎭⎫θ+π6=a ,得32ρcos θ-12ρsin θ=a , 故化为直角坐标方程为3x -y -2a =0,由圆C 的极坐标方程ρ=4sin θ,得ρ2=4ρsin θ, 化为直角坐标方程为x 2+(y -2)2=4,若直线l 与圆C 只有一个公共点,则圆心C 到直线l 的距离等于半径,故d =|-2-2a |2=2,解得a =1或a =-3. D .[选修4-5:不等式选讲]已知a ,b ∈R ,a >b >e(其中e 是自然对数的底数),求证:b a >a b . 证明:∵b a >0,a b >0,∴要证b a >a b , 只要证a ln b >b ln a, 只要证ln b b >ln a a,构造函数f (x )=ln xx,x ∈(e ,+∞).则f ′(x )=1-ln xx 2,x ∈(e ,+∞),f ′(x )<0在区间(e ,+∞)上恒成立,所以函数f (x )在x ∈(e ,+∞)上是单调递减的, 所以当a >b >e 时,有f (b )>f (a ), 即ln b b >ln aa ,故b a >a b 得证.2.从0,1,2,3,4这五个数中任选三个不同的数组成一个三位数,记X 为所组成三位数的各位数字之和.(1)求X 是奇数的概率;(2)求X 的概率分布及数学期望.解:(1)记“X是奇数”为事件A,能组成的三位数的个数是4×4×3=48.X是奇数的个数是C12C23A33-C12C12A22=28,所以P(A)=2848=712.故X是奇数的概率为712.(2)X的可能取值为3,4,5,6,7,8,9.当X=3时,组成的三位数是由0,1,2三个数字组成,所以P(X=3)=448=112;当X=4时,组成的三位数是由0,1,3三个数字组成,所以P(X=4)=448=112;当X=5时,组成的三位数是由0,1,4或0,2,3组成,所以P(X=5)=848=16;当X=6时,组成的三位数是由0,2,4或1,2,3组成,所以P(X=6)=1048=524;当X=7时,组成的三位数是由0,3,4或1,2,4组成,所以P(X=7)=1048=524;当X=8时,组成的三位数是由1,3,4三个数字组成,所以P (X =8)=648=18; 当X =9时,组成的三位数是由2,3,4三个数字组成,所以P (X =9)=648=18. 所以X 的概率分布为:故E (X )=3×112+4×112+5×16+6×524+7×524+8×18+9×18=254. 3.设P (n ,m )=∑k =0n (-1)k C k nm m +k ,Q (n ,m )=C n n +m ,其中m ,n ∈N *. (1)当m =1时,求P (n,1)·Q (n,1)的值;(2)对∀m ∈N *,证明:P (n ,m )·Q (n ,m )恒为定值.解:(1)当m =1时,P (n,1)=∑k =0n(-1)kC k n11+k =1n +1∑k =0n(-1)k C k +1n +1=1n +1, 又Q (n,1)=C 1n +1=n +1,显然P (n,1)·Q (n,1)=1. (2)证明:P (n ,m )=∑k =n (-1)k C k nmm +k =1+∑k =1n -1(-1)k (C k n -1+C k -1n -1)m m +k +(-1)n m m +n =1+∑k =1n -1(-1)k C k n -1mm +k +∑k =1n (-1)k C k -1n -1m m +k=P (n -1,m )+∑k =1n(-1)k C k -1n -1mm +k=P (n -1,m )-m n ∑k =n (-1)k C k nmm +k =P (n -1,m )-mnP (n ,m )即P (n ,m )=nm +nP (n -1,m ), 由累乘,易求得P (n ,m )=n !m !(n +m )!P (0,m )=1C n n +m,又Q (n ,m )=C n n +m , 所以P (n ,m )·Q (n ,m )=1.。
6个解答题专项强化练(四) 数 列1.已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2. 所以b n =2n .由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16.②由①②,解得a 1=1,d =3,由此可得a n =3n -2.所以数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n . (2)设数列{a 2n b 2n -1}的前n 项和为T n , 由a 2n =6n -2,b 2n -1=2×4n -1,得a 2n b 2n -1=(3n -1)×4n ,故T n =2×4+5×42+8×43+…+(3n -1)×4n ,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1=12×(1-4n )1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.故T n =3n -23×4n +1+83.所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83. 2.已知数列{a n }满足:a 1=12,a n +1-a n =p ·3n -1-nq ,n ∈N *,p ,q ∈R.(1)若q =0,且数列{a n }为等比数列,求p 的值;(2)若p =1,且a 4为数列{a n }的最小项,求q 的取值范围. 解:(1)∵q =0,a n +1-a n =p ·3n -1,∴a 2=a 1+p =12+p ,a 3=a 2+3p =12+4p ,由数列{a n }为等比数列,得⎝⎛⎭⎫12+p 2=12⎝⎛⎭⎫12+4p ,解得p =0或p =1.当p =0时,a n +1=a n ,∴a n =12,符合题意;当p =1时,a n +1-a n =3n -1,∴a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=12+(1+3+…+3n -2)=12+1-3n -11-3=12·3n -1, ∴a n +1a n =3.符合题意.∴p 的值为0或1.(2)法一:若p =1,则a n +1-a n =3n -1-nq ,∴a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=12+(1+3+…+3n -2)-[1+2+…+(n-1)]q =12[3n -1-n (n -1)q ].∵数列{a n }的最小项为a 4,∴对任意的n ∈N *,有12[3n -1-n (n -1)q ]≥a 4=12(27-12q )恒成立,即3n -1-27≥(n 2-n -12)q 对任意的n ∈N *恒成立.当n =1时,有-26≥-12q ,∴q ≥136; 当n =2时,有-24≥-10q ,∴q ≥125; 当n =3时,有-18≥-6q ,∴q ≥3; 当n =4时,有0≥0,∴q ∈R ;当n ≥5时,n 2-n -12>0,所以有q ≤3n -1-27n 2-n -12恒成立,令c n =3n -1-27n 2-n -12(n ≥5,n ∈N *),则c n +1-c n =2(n 2-2n -12)3n -1+54n(n 2-16)(n 2-9)>0,即数列{c n }为递增数列,∴q ≤c 5=274. 综上所述,q 的取值范围为⎣⎡⎦⎤3,274. 法二:∵p =1,∴a n +1-a n =3n -1-nq ,又a 4为数列{a n }的最小项,∴⎩⎪⎨⎪⎧ a 4-a 3≤0,a 5-a 4≥0,即⎩⎪⎨⎪⎧9-3q ≤0,27-4q ≥0,∴3≤q ≤274. 此时a 2-a 1=1-q <0,a 3-a 2=3-2q <0, ∴a 1>a 2>a 3≥a 4.当n ≥4时,令b n =a n +1-a n ,b n +1-b n =2·3n -1-q ≥2·34-1-274>0,∴b n +1>b n ,∴0≤b 4<b 5<b 6<…, 即a 4≤a 5<a 6<a 7<….综上所述,当3≤q ≤274时,a 4为数列{a n }的最小项,即q 的取值范围为⎣⎡⎦⎤3,274. 3.数列{a n }的前n 项和为S n ,a 1=2,S n =a n ⎝⎛⎭⎫n 3+r (r ∈R ,n ∈N *). (1)求r 的值及数列{a n }的通项公式; (2)设b n =na n(n ∈N *),记{b n }的前n 项和为T n .①当n ∈N *时,λ<T 2n -T n 恒成立,求实数λ的取值范围;②求证:存在关于n 的整式g (n ),使得∑i =1n -1(T n +1)=T n ·g (n )-1对一切n ≥2,n ∈N *都成立.解:(1)当n =1时,S 1=a 1⎝⎛⎭⎫13+r ,∴r =23, ∴S n =a n ⎝⎛⎭⎫n 3+23.当n ≥2时,S n -1=a n -1⎝⎛⎭⎫n 3+13. 两式相减,得a n =n +23a n -n +13a n -1, ∴a n a n -1=n +1n -1(n ≥2). ∴a 2a 1·a 3a 2·…·a n a n -1=31×42×53×…×nn -2×n +1n -1, 即a n a 1=n (n +1)2. ∴a n =n (n +1)(n ≥2), 又a 1=2适合上式. ∴a n =n (n +1). (2)①∵a n =n (n +1),∴b n =1n +1,T n =12+13+…+1n +1.∴T 2n =12+13+…+12n +1,∴T 2n -T n =1n +2+1n +3+…+12n +1.令B n =T 2n -T n =1n +2+1n +3+…+12n +1. 则B n +1=1n +3+1n +4+…+12n +3. ∴B n +1-B n =12n +2+12n +3-1n +2=3n +4(2n +2)(2n +3)(n +2)>0.∴B n +1>B n ,∴B n 单调递增, 故(B n )min =B 1=13,∴λ<13.∴实数λ的取值范围为⎝⎛⎭⎫-∞,13. ②证明:∵T n =12+13+…+1n +1,∴当n ≥2时,T n -1=12+13+…+1n ,∴T n -T n -1=1n +1, 即(n +1)T n -nT n -1=T n -1+1.∴当n ≥2时,∑i =1n -1(T n +1)=(3T 2-2T 1)+(4T 3-3T 2)+(5T 4-4T 3)+…+[(n +1)T n -nT n-1]=(n +1)T n -2T 1=(n +1)T n -1.∴存在关于n 的整式g (n )=n +1,使得∑i =1n -1(T n +1)=T n ·g (n )-1对一切n ≥2,n ∈N *都成立.4.已知数列{a n }满足a 1=12,对任意的正整数m ,p ,都有a m +p =a m ·a p .(1)证明:数列{a n }是等比数列; (2)若数列{b n }满足a n =b 12+1-b 222+1+b 323+1-b 424+1+…+(-1)n +1b n 2n +1,求数列{b n }的通项公式;(3)在(2)的条件下,设c n =2n +λb n ,则是否存在实数λ,使得数列{c n }是单调递增数列?若存在,求出实数λ的取值范围;若不存在,请说明理由.解:(1)证明:∵对任意的正整数m ,p ,都有a m +p =a m ·a p ,∴令m =n ,p =1,得a n +1=a 1·a n ,从而a n +1a n=a 1=12,∴数列{a n }是首项和公比都为12的等比数列.(2)由(1)可知,a n =12n .由a n =b 12+1-b 222+1+b 323+1-b 424+1+…+(-1)n +1b n 2n +1得, a n -1=b 12+1-b 222+1+b 323+1-b 424+1+…+(-1)n ·b n -12n -1+1(n ≥2), 故a n -a n -1=(-1)n+1b n2n+1(n ≥2), 故b n =(-1)n ⎝⎛⎭⎫12n +1(n ≥2). 当n =1时,a 1=b 12+1,解得b 1=32,不符合上式.∴b n=⎩⎨⎧32,n =1,(-1)n⎝⎛⎭⎫12n+1,n ≥2,n ∈N *.(3)∵c n =2n +λb n ,∴当n ≥2时,c n =2n +(-1)n ⎝⎛⎭⎫12n +1λ, 当n ≥3时,c n -1=2n -1+(-1)n -1⎝⎛⎭⎫12n -1+1λ,根据题意,当n ≥3时,c n -c n -1=2n -1+(-1)nλ·⎝⎛⎭⎫2+32n >0,即(-1)n λ>-2n -132n+2.①当n 为大于等于4的偶数时,有λ>-2n -132n+2恒成立,又2n -132n +2随着n 的增大而增大,此时⎝ ⎛⎭⎪⎪⎫2n -132n +2min =12835,即λ>-12835, 故λ的取值范围为⎝⎛⎭⎫-12835,+∞. ②当n 为大于等于3的奇数时,有λ<2n -132n+2恒成立,此时⎝ ⎛⎭⎪⎪⎫2n -132n +2min =3219,即λ<3219. 故λ的取值范围为⎝⎛⎭⎫-∞,3219; ③当n =2时,由c 2-c 1=⎝⎛⎭⎫22+54λ-⎝⎛⎭⎫2+32λ>0,得λ<8. 综上可得,实数λ的取值范围为⎝⎛⎭⎫-12835,3219. 5.已知各项不为零的数列{a n }的前n 项和为S n ,且a 1=1,S n =pa n a n +1(n ∈N *),p ∈R.(1)若a 1,a 2,a 3成等比数列,求实数p 的值; (2)若a 1,a 2,a 3成等差数列, ①求数列{a n }的通项公式;②在a n 与a n +1间插入n 个正数,共同组成公比为q n 的等比数列,若不等式(q n )(n+1)(n +a )≤e(e 为自然对数的底数)对任意的n ∈N *恒成立,求实数a 的最大值. 解:(1)当n =1时,a 1=pa 1a 2,a 2=1p ; 当n =2时,a 1+a 2=pa 2a 3,a 3=a 1+a 2pa 2=1+1p .由a 22=a 1a 3,得1p 2=1+1p ,即p 2+p -1=0,解得p =-1±52. (2)①因为a 1,a 2,a 3成等差数列,所以2a 2=a 1+a 3,得p =12,故a 2=2,a 3=3,所以S n =12a n a n +1.当n ≥2时,a n =S n -S n -1=12a n a n +1-12a n -1a n ,因为a n ≠0,所以a n +1-a n -1=2.故数列{a n }的所有奇数项组成以1为首项,2为公差的等差数列, 其通项公式a n =1+⎝⎛⎭⎫n +12-1×2=n ,同理,数列{a n }的所有偶数项组成以2为首项,2为公差的等差数列, 其通项公式是a n =2+⎝⎛⎭⎫n 2-1×2=n , 所以数列{a n }的通项公式是a n =n .②由①知,a n =n ,在n 与n +1间插入n 个正数,组成公比为q n 的等比数列,故有n+1=nq n +1n ,即q n =⎝⎛⎭⎫n +1n 1n +1, 所以(q n )(n+1)(n +a )≤e ,即⎝⎛⎭⎫n +1n n +a ≤e ,两边取对数得(n +a )ln ⎝⎛⎭⎫n +1n ≤1,分离参数得a ≤1ln ⎝⎛⎭⎫n +1n -n 恒成立 . 令n +1n =x ,x ∈(1,2],则a ≤1ln x -1x -1,x ∈(1,2], 令f (x )=1ln x -1x -1,x ∈(1,2], 则f ′(x )=(ln x )2-(x -1)2x(ln x )2(x -1)2,下证ln x ≤x -1x,x ∈(1,2], 令g (x )=x -1x -2ln x ,x ∈[1,+∞), 则g ′(x )=(x -1)2x 2>0,所以g (x )>g (1)=0,即2ln x <x -1x ,用x 替代x 可得ln x <x -1x ,x ∈(1,2],所以f ′(x )=(ln x )2-(x -1)2x(ln x )2(x -1)2<0,所以f (x )在(1,2]上递减, 所以a ≤f (2)=1ln 2-1. 所以实数a 的最大值为1ln 2-1.6.设三个各项均为正整数的无穷数列{a n },{b n },{c n }.记数列{b n },{c n }的前n 项和分别为S n ,T n ,若对任意的n ∈N *,都有a n =b n +c n ,且S n >T n ,则称数列{a n }为可拆分数列.(1)若a n =4n ,且数列{b n },{c n }均是公比不为1的等比数列,求证:数列{a n }为可拆分数列;(2)若a n =5n ,且数列{b n },{c n }均是公差不为0的等差数列,求所有满足条件的数列{b n },{c n }的通项公式;(3)若数列{a n },{b n },{c n }均是公比不为1的等比数列,且a 1≥3,求证:数列{a n }为可拆分数列.解:(1)证明:由a n =4n =4·4n -1=3·4n -1+4n -1,令b n =3·4n -1,c n =4n -1.则{b n }是以3为首项,4为公比的等比数列,{c n }是以1为首项,4为公比的等比数列,故S n =4n-1,T n =4n -13.所以对任意的n ∈N *,都有a n =b n +c n ,且S n >T n . 所以数列{a n }为可拆分数列.(2)设数列{b n },{c n }的公差分别为d 1,d 2. 由a n =5n ,得b 1+(n -1)d 1+c 1+(n -1)d 2=(d 1+d 2)n +b 1+c 1-d 1-d 2=5n 对任意的n ∈N *都成立.所以⎩⎪⎨⎪⎧ d 1+d 2=5,b 1+c 1-d 1-d 2=0,即⎩⎪⎨⎪⎧d 1+d 2=5,b 1+c 1=5, ① 由S n >T n ,得nb 1+n (n -1)2d 1>nc 1+n (n -1)2d 2,则⎝⎛⎭⎫d 12-d 22n 2+⎝⎛⎭⎫b 1-c 1-d 12+d 22n >0. 由n ≥1,得⎝⎛⎭⎫d 12-d 22n +⎝⎛⎭⎫b 1-c 1-d 12+d 22>0对任意的n ∈N *成立. 则d 12-d 22≥0且⎝⎛⎭⎫d 12-d 22+⎝⎛⎭⎫b 1-c 1-d 12+d 22>0即d 1≥d 2且b 1>c 1. ② 由数列{b n },{c n }各项均为正整数,则b 1,c 1,d 1,d 2均为正整数,当d 1=d 2时,由d 1+d 2=5,得d 1=d 2=52∉N *,不符合题意,所以d 1>d 2. ③联立①②③,可得⎩⎪⎨⎪⎧ d 1=4,d 2=1,b 1=4,c 1=1或⎩⎪⎨⎪⎧d 1=4,d 2=1,b 1=3,c 1=2或⎩⎪⎨⎪⎧ d 1=3,d 2=2,b 1=4,c 1=1或⎩⎪⎨⎪⎧d 1=3,d 2=2,b 1=3,c 1=2.所以⎩⎪⎨⎪⎧ b n =4n ,c n =n 或⎩⎪⎨⎪⎧ b n =4n -1,c n =n +1或⎩⎪⎨⎪⎧b n =3n +1,c n =2n -1或⎩⎪⎨⎪⎧b n =3n ,c n =2n .(3)证明:设a n =a 1q n -1,a 1∈N *,q >0,q ≠1,则q ≥2.当q 为无理数时,a 2=a 1q 为无理数,与a n ∈N *矛盾. 故q 为有理数,设q =ba (a ,b 为正整数,且a ,b 互质).此时a n =a 1·b n -1an -1.则对任意的n ∈N *,a n-1均为a 1的约数,则a n -1=1,即a =1,故q =ba =b ∈N *,所以q ∈N *,q ≥2. 所以a n =a 1q n -1=(a 1-1)q n -1+q n -1,令b n =(a 1-1)·q n -1,c n =q n -1.则{b n},{c n}各项均为正整数.因为a1≥3,所以a1-1≥2>1,则S n>T n,所以数列{a n}为可拆分数列.。
3个附加题综合仿真练(四)
1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]
如图,AB 是圆O 的直径,C 为圆O 外一点,且AB =AC ,BC 交圆O
于点D ,过D 作圆O 的切线交AC 于点E .
求证:DE ⊥AC . 解:如图,连结OD .
因为AB =AC ,所以∠B =∠C . 由圆O 知OB =OD , 所以∠B =∠BDO .
从而∠BDO =∠C ,所以OD ∥AC . 又DE 为圆O 的切线,所以DE ⊥OD , 所以DE ⊥AC .
B .[选修4-2:矩阵与变换]
已知矩阵A =⎣⎢
⎡⎦⎥⎤
2
x y
2,X =⎣⎢⎡⎦⎥⎤-1 1,且AX =⎣⎢⎡⎦
⎥⎤
12 ,其中x ,y ∈R. (1)求x ,y 的值;
(2)若B =⎣⎢⎡⎦
⎥⎤1 -10 2,求(AB )-1
.
解:(1)AX =⎣⎢⎡⎦⎥⎤2 x y 2 ⎣⎢⎡⎦⎥⎤-1 1 = ⎣⎢⎡⎦
⎥⎤
x -22-y .
因为AX =⎣⎢⎡⎦⎥⎤
12,所以⎩
⎪⎨
⎪⎧
x -2=1,2-y =2,解得x =3,y =0.
(2)由(1)知A =⎣⎢⎡⎦⎥⎤
2 30
2 ,又B =⎣⎢⎡⎦
⎥⎤
1 -10
2 , 所以AB =⎣⎢
⎡⎦⎥⎤2
30 2⎣⎢⎡⎦⎥⎤1 -10 2=⎣⎢⎡⎦
⎥⎤2 40
4 .
设(AB )-1
= ⎣⎢
⎡⎦⎥⎤
a
b c
d ,则⎣⎢⎡⎦⎥⎤2 40 4⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦
⎥⎤1
00 1,
即⎣⎢⎡⎦⎥⎤2a +4c 2b +4d 4c 4d =⎣⎢⎡⎦
⎥⎤1 00
1.
所以⎩⎪⎨⎪⎧
2a +4c =1,4c =0,2b +4d =0,
4d =1,
解得a =12,b =-12,c =0,d =1
4
,
即 (AB )
-1
= ⎣⎢⎢⎡⎦
⎥⎥⎤12 -1
2 0 14 .
C .[选修4-4:坐标系与参数方程]
在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨
⎪⎧
x =1-2
2
t ,y =2+2
2
t (t 为参数),以
坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρsin 2
θ-4cos θ=0,已知直线l 与曲线C 相交于A ,B 两点,求线段AB 的长.
解:因为曲线C 的极坐标方程为ρsin 2
θ-4cos θ=0,所以ρ2
sin 2
θ=4ρcos θ,即曲线C 的直角坐标方程为y 2
=4x .
将直线l
的参数方程⎩⎪⎨
⎪⎧
x =1-2
2
t ,y =2+2
2
t 代入抛物线方程y 2
=4x ,得⎝ ⎛
⎭
⎪⎫2+
22t 2=4⎝ ⎛⎭
⎪⎫1-
22t , 即t 2
+82t =0,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2. D .[选修4-5:不等式选讲] 设函数f (x )=|2x +1|-|x -2|. (1)求不等式f (x )>2的解集;
(2)若∀x ∈R ,f (x )≥t 2
-112
t 恒成立,求实数t 的取值范围.
解:(1)不等式f (x )>2可化为⎩
⎪⎨
⎪⎧
x >2,
2x +1-x +2>2或⎩⎪⎨⎪⎧
-12≤x ≤2,
2x +1+x -2>2
或
⎩⎪⎨⎪⎧
x <-12,-2x -1+x -2>2,
解得x <-5或x >1,
所以所求不等式的解集为{x |x <-5或x >1}.
(2)由f (x )=|2x +1|-|x -2|=⎩⎪⎨
⎪⎧
x +3,x >2,
3x -1,-12≤x ≤2,
-x -3,x <-1
2
,
可得f (x )≥-5
2
,
若∀x ∈R ,f (x )≥t 2-112t 恒成立,则t 2-112t ≤-52,即2t 2
-11t +5≤0,解得12
≤t ≤5.
故实数t 的取值范围为⎣⎢⎡⎦
⎥⎤12,5. 2.如图,在直三棱柱ABC A 1B 1C 1中,已知AB ⊥AC ,AB =2,AC =4,
AA 1=3.D 是线段BC 的中点.
(1)求直线DB 1与平面A 1C 1D 所成角的正弦值; (2)求二面角B 1A 1D C 1的余弦值.
解:因为在直三棱柱ABC A 1B 1C 1中,AB ⊥AC ,所以分别以AB ,AC ,
AA 1所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,
则A (0,0,0),B (2,0,0),C (0,4,0),A 1(0,0,3),B 1(2,0,3),
C 1(0,4,3),
因为D 是BC 的中点,所以D (1,2,0), (1)因为A 1C 1――→=(0,4,0),A 1D ―→
=(1,2,-3), 设平面A 1C 1D 的法向量n 1=(x 1,y 1,z 1), 则⎩⎪⎨
⎪⎧
n 1·A 1C 1――→=0,
n 1·A 1D ―→=0,
即⎩
⎪⎨
⎪⎧
4y 1=0,
x 1+2y 1-3z 1=0,
取⎩⎪⎨⎪
⎧
x 1=3,y 1=0,z 1=1,
所以平面A 1C 1D 的法向量n 1=(3,0,1),而DB 1―→
=(1,-2,3),
设直线DB 1与平面A 1C 1D 所成角为θ,
所以sin θ=|cos 〈n 1,DB 1―→
〉|=|n 1·DB 1―→||n 1|·|DB 1―→|=|3+3|10×14=33535,
所以直线DB 1与平面A 1C 1D 所成角的正弦值为335
35.
(2) A 1B 1――→=(2,0,0),DB 1―→
=(1,-2,3), 设平面B 1A 1D 的法向量n 2=(x 2,y 2,z 2), 则⎩⎪⎨
⎪⎧
n 2·A 1B 1――→=0,
n 2·DB 1―→=0,
即⎩
⎪⎨
⎪⎧
2x 2=0,
x 2-2y 2+3z 2=0,
取⎩⎪⎨⎪
⎧
x 2=0,y 2=3,z 2=2,
所以平面B 1A 1D 的法向量n 2=(0,3,2),
所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=210×13
=13065,
故结合图象知二面角B 1A 1D C 1的余弦值
130
65
. 3.已知集合X ={1,2,3},Y n ={1,2,3,…,n }(n ∈N *
),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,b ∈Y n },令f (n )表示集合S n 所含元素的个数.
(1)写出f (6)的值;
(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明. 解:(1)Y 6={1,2,3,4,5,6},S 6中的元素(a ,b )满足:
若a =1,则b =1,2,3,4,5,6;若a =2,则b =1,2,4,6;若a =3,则b =1,3,6. 所以f (6)=13. (2)当n ≥6时,。