2014中考数学专题复习课件锐角三角函数_图文(精)
- 格式:doc
- 大小:726.50 KB
- 文档页数:25
图形与几何2::解直角三角形二.知识框图三.知识要点1.直角三角形边角关系.(1)三边关系:勾股定理:222a b c += ;勾股定理的逆定理:若三角形的两条边的平方和等于第三边的平方,则这个三角形为直角三角形. 若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形。
(若c 2>a 2+b 2则△ABC 是以∠C 为钝角的三角形,若c 2<a 2+b 2则△ABC 是以∠C 为锐角三角形)(2)三角关系:∠A+∠B+∠C=180°,∠A+∠B =∠C=90°. (3)边角关系(锐角三角函数的概念)sin A A ∠=的对边斜边,叫做A ∠的正弦;cos A A ∠=的邻边斜边,叫做A ∠的余弦;tan A A A ∠=∠的对边的邻边,叫做A ∠的正切.2.特殊角的三角函数值3.三角函数常用公式互为余角的三角函数关系.sin(90°-A)=cosA, cos(90°-A)=sin A tanA×tan(90°-A)=1 同角的三角函数关系.①平方关系:sin2A+cos2A=l ②弦切互化:sin tancosAAA4. 测量中常用的概念:仰角、俯角、坡度、坡比、倾斜角、方位角等北东MNBA四.典型例题(考点)例1.计算ooo5sin302cos60tan 45-- o o oo2cos 45tan 30sin 45tan 60-+⋅例2.如图所示,已知:在△ABC 中,∠A=60°,∠B=45°,AB=4+,•求△ABC 的面积(结果可保留根号).例3.已知:如图所示,在△ABC 中,AD 是边BC 上的高,E•为边AC•的中点,BC=14,AD=12,sinB=45,求:(1)线段DC 的长;(2)tan ∠EDC 的值.例4.如图,MN 表示某隧道挖掘工程的一段设计路线,MN 的方向为南偏东30°.在M 的南偏东60°方向上有一个点A ,以点A 为圆心、600米为半径的圆形区域为土质疏松地带(危险区).取MN 上一点B ,测得BA 的方向为南偏东75°.已知MB =400米,请你通过计算回答,如果不改变方向,挖掘路线是否会通过这1.411.73)A图形与几何(2) (解直角三角形)一、填空题1.在ABC Rt △中,490tan 3C A ∠==,,则sin B 的值是( ) A.35B.45C.34 D.432.Rt ABC △中,90C ∠=,a b c ,,分别A B C ∠∠∠,,的对边,下列关系中错误的是( )A.cos b c B =B.tan b a B = C.sin b c B = D.tan a b A =3.如图,CD 是ABC Rt △斜边上的高,43AC BC ==,, 则cos BCD ∠的值是( )A.35 B.34 C.43 D.454.如图,已知一坡面的坡度i =α为( ) A.15B.60°C.30D.455.如图,△ABC 的顶点都是正方形网格中的格点,则sin ∠ABC 等于( ) A. 5 B.552 C. 55D.326.住宅小区有一块草坪如图所示,已知3AB =米,4BC =米,12CD =米,13DA =米,且AB BC ⊥,这块草坪的面积是( ) A.24米2B.36米2C.48米2 D.72米27.已知:如图8,梯形ABCD 中,451208AD BC B C AB ===∥,∠,∠,,则CD 的长为( )B.D.8.如图,PT 切⊙O 于T ,BP 为经过圆心O 的割线,如果 PT =4,PA =2那么cos∠BPT 等于( )A .45B .12C .38D .349.数学活动课上,小敏、小颖分别画了△ABC 和△DEF ,•数据如图,如果把小敏画的三角形面积记作S △ABC ,小颖画的三角形面积记作S △DEF ,那么你认为( )A .S △ABC >S △DEFB .S △ABC <S △DEF C .S △ABC =S △DEFD .不能确定小敏画的三角形 小颖画的三角形10.已知α为锐角,且αtan 为方程0322=--x x 的一个实数根,则αsin 的值为( )A.22 B. 1010 C. 10103 D. 3 二、填空题1.直角三角形的两边长分别为6、8,则第三边的长为 .2.锐角A 满足()2sin 15A -=A =∠___________.3.如图,小亮在操场上距离旗杆AB 的C 处,用测角仪测得旗杆顶端A 的仰角为30.已知9BC =米,测角仪的高CD 为1.2米,那么旗杆AB 的高为 米(结果保留根号).4.在△ABC 中,∠B =45°,∠C =60°则BC= ,S △ABC = 三、解答题:1.计算:tan 45cos60sin 30+t an 30°+cos 230°-sin 245°tan 45°2.在Rt △ABC 中,∠C=90°,a,b,c 分别是∠A,∠B, ∠C 的对边. (1)已知a=3,c=23,求∠A; (2)已知a=6,b=2,求c 及∠A; (3)已知c=104,∠A=45°,求a 及b3.已知,如图所示,折叠长方形的一边AD ,使点D 落在BC 边的点F•处,•如果AB=8cm ,BC=10cm ,(1)求EC 的长;(2)在线段BC 上还能找到点P 使∠APE=90°吗,求出此时的BP 长.4.如图,在梯形ABCD 中,AD BC ∥,90ABC ∠= ,45C ∠=,BE CD ⊥于点E ,1AD =,CD =BE 的长度.5.如图,一块四边形土地,其中120ABD AB AC BD CD AB ∠==,⊥,⊥,,CD =,求这块土地的面积6.阅读下列题目的解题过程:已知a 、b 、c 为∆ABC 的三边,且满足a c b c a b 222244-=-,试判断∆ABC 的形状。