14.2.2完全平方公式添括号法则
- 格式:ppt
- 大小:394.00 KB
- 文档页数:9
14.2.2完全平方公式(第2课时)—添括号法则一、内容与内容解析(1)内容添括号法则和乘法公式的综合应用(2)内容解析在多项式的恒等变型中,有时会用到去括号法则,去掉括号合并同类项,从而达到化简的目的。
然而有时也会用到整体的思想将三项式看成二项式,使之形如平方差公式或完全平方公式,从而利用公式进行整式乘法运算。
这势必用到添括号,类比去括号法则,可以得到添括号法则。
这里有两个方面需要重视,一是要以括号前的符号来决定括到括号里的各项符号的改变或不变;二是要明确将哪些项放在括号内比较合适。
添括号法则主要是涉及各项符号的改变与不变,它与去括号法则完全一致,而去括号法则是它的基础,因此便可运用逆向思维类比去括号法则探索出添括号法则。
通过观察、比较、利用整体思想进行恒等变形,将某些特殊形式的整式乘法转化为乘法公式进行计算,利用化归思想化未知为已知。
基于以上分析,确定本节课的教学重点:添括号法则及其在整式乘法中的应用。
二、目标和目标解析1、目标(1)了解添括号法则,掌握添括号法则,应用添括号法则进行整式变形。
(2)探索获得添括号法则的过程中,引导学生学会类比的方法,培养学生逆向思维能力。
(3)应用添括号法则解决问题的过程中,渗透化归思想,提高学生的合作交流意识和创新精神。
2、目标解析达成目标(1)的标志是:学生知道添括号法则同去括号法则相同,遇“+”不变,遇“-”都变,能够重点关注括号前的符号。
学生熟悉两个数的和乘以两个数的差可以利用平方差公式计算得到两个数的平方差,两个数和(或差)的完全平方等于两个数的平方和加上(或减去)这两个数的积的2倍。
利用这样的结构特征,学生经过合作交流可以通过添括号把一些式子看成整体从而利用乘法公式进行计算。
达成目标(2)的标志是:学生在探索添括号法则的过程中,能够体验到逆向思维,类比去括号法则得到添括号法则。
达成目标(3)的标志是:学生依托公式特征和添括号法则,通过交流探讨能够将整式适当变形,变未知为已知。
14.2.2 完全平方公式(二)(教案)教学目标(一)教学知识点1.添括号法则.2.利用添括号法则灵活应用完全平方公式.(二)能力训练目标1.利用去括号法则得到添括号法则,培养学生的逆向思维能力.2.进一步熟悉乘法公式,体会公式中字母的含义.(三)情感与价值观要求鼓励学生算法多样化,培养学生多方位思考问题的习惯,提高学生的合作交流意识和创新精神.教学重点理解添括号法则,进一步熟悉乘法公式的合理利用.教学难点在多项式与多项式的乘法中适当添括号达到应用公式的目的.教学方法引导─探究相结合教师由去括号法则引入添括号法则,并引导学生适当添括号变形,从而达到熟悉乘法公式应用的目的.教具准备投影片(或多媒体课件).教学过程Ⅰ.提出问题,创设情境[师]请同学们完成下列运算并回忆去括号法则.(1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)[生]解:(1)4+(5+2)=4+5+2=14(2)4-(5+2)=4-5-2=-3或:4-(5+2)=4-7=-3(3)a+(b+c)=a+b+c(4)a-(b-c)=a-b+c去括号法则:去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不改变符合;如果括号前是负号,去掉括号后,括号里的各项都改变符合.也就是说,遇“加”不变,遇“减”都变.[师]∵4+5+2与4+(5+2)的值相等;4-5-2与4-(5+2)的值相等.所以可以写出下列两个等式:(1)4+5+2=4+(5+2)(2)4-5-2=4-(5+2)左边没括号,右边有括号,也就是添了括号,•同学们可不可以总结出添括号法则来呢?(学生分组讨论,最后总结)[生]添括号其实就是把去括号反过来,所以添括号法则是:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;•如果括号前面是负号,括到括号里的各项都改变符号.也是:遇“加”不变,遇“减”都变.[师]能举例说明吗?[生]例如a+b-c,要对+b-c项添括号,可以让a先休息,括号前添加号,括号里的每项都不改变符号,也就是+(+b-c),括号里的第一项若系数为正数可省略正号即+(b-c),于是得:a+b-c=a+(b-c);若括号前添减号,括号里的每一项都改变符号,+b改为-b,-c改为+c.也就是-(-b+c),于是得a+b-c=a-(-b+c).添加括号后,无论括号前是正还是负,都不改变代数式的值.[师]你说得很有条理,也很准确.请同学们利用添括号法则完成下列练习:(出示投影片)1.在等号右边的括号内填上适当的项:(1)a+b-c=a+()(2)a-b+c=a-()(3)a-b-c=a-()(4)a+b+c=a-()2.判断下列运算是否正确.(1)2a-b-c=2a-(b-c)(2)m-3n+2a-b=m+(3n+2a-b)(3)2x-3y+2=-(2x+3y-2)(4)a-2b-4c+5=(a-2b)-(4c+5)(学生尝试或独立完成,然后与同伴交流解题心得.教师遁视学生完成情况,及时发现问题,并帮助个别有困难的同学)总结:添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,•所以我们可以用去括号法则验证所添括号后的代数式是否正确.Ⅱ.导入新课[师]有些整式相乘需要先作适当的变形,然后再用公式,这就需要同学们理解乘法公式的结构特征和真正内涵.请同学们分组讨论,完成下列计算.(出示投影片)例:运用乘法公式计算(1)(x+2y-3)(x-2y+3)( 2)(a + 2b –1 )2.(3)(2x+y+z)(2x–y–z).(让学生充分讨论,鼓励学生用多种方法运算,从而达到灵活应用公式的目的)分析:(1)是每个因式都是三项和的整式乘法,•我们可以用添括号法则将每个因式变为两项的和,再观察到2y-3与-2y+3是相反数,所以应在2y-3和-2y+3项添括号,•以便利用乘法公式,达到简化运算的目的.(2)是一个完全平方的形式,只须将a + 2b –1中任意两项结合添加括号变为两项和,便可应用完全平方公式进行运算.(3)是用平方差公式计算.【例题解析】(1)原式=[x+(2y–3)][x-(2y-3)]= x2-(2y-3)2= x2-(4y2-12y+9)= x2-4y2+12y-9.(2)原式=[(a+2b)-1]2=(a+2b)2–2(a+2b)×1+12=a2 +4ab+4b2–2a-4b+1.(3)原式=[2x +(y +z )][2x –(y +z )]=(2x)2 –(y+z)2=4x2 –(y2 +2yz+ z2)=4x2–y2 -2yz- z2.Ⅲ.随堂练习1.(衢州·中考)如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.2m+3 B.2m+6 C.m+3 D.m+6 选A.2.(湖州·中考)化简a+2b-b,正确的结果是()A.a-b B.-2b C.a+b D.a+2 【解析】选C.a+2b-b=a+(2b-b)=a+b.3.(宿迁·中考)若2a-b=2,则6+8a-4b= .【解析】原式=6+4(2a-b)=6+8=14.4.(益阳·中考)已知,求代数式的值.5.计算:(x+3)2-x2.【解法1】逆用平方差公式原式=(x+3+x)(x+3-x)=(2x+3)×3=6x+9.【解法2】用完全平方公式原式= x2+6x+9-x2=6x+9.1.课本P111练习1、2.2.课本P112习题14.2第3、4题Ⅳ.课时小结通过本节课的学习,你有何收获和体会?通过本课时的学习,需要我们掌握:1.添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不变符号;•如果括号前面是负号,括到括号里的各项都改变符号.2. 利用添括号法则灵活应用完全平方公式.Ⅴ.课后作业课本P112习题14.2第5、6、8、9题.板书设计。
14.2.3 乘法公式(第3课时)——添括号法则方式。
在已经学习了去括号法则,多项式的乘法以及乘法公式,再来学习本节课内容就比较能掌握。
初中学生活泼好动,求知欲和表现欲强烈,不喜欢死板的东西,根据学生思维特点,我采用多媒体手段激发学生的学习兴趣,让学生主动参与教学活动,通过活动提升他们的运算水平,使他们牢固的掌握添括号法则,为后续的学习打好基础。
1.能应用添括号法则,结合乘法公式,对项数是三项的多项式乘法实行运算.2.综合使用乘法公式实行计算。
1.重点:灵活使用乘法公式实行计算。
2.难点:掌握添括号法则。
五教学过程(一).复习回顾1.概念:多项式与多项式相乘的法则(a+b) (m+n)=______平方差公式(a+b)(a-b) =______完全平方公式(a+b)²=_____(a-b)²=______口诀:首平方,尾平方,积的2倍放中央,中间符号同前方。
2.提出问题:计算:(1)(3x+2)(3x-2)=______(2) (y-2)²=______(3) (2a+b)²=______(4)( x +2y-3) (x- 2y +3)(5)(a+b+c)²(4)(5)两小题能够直接用乘法公式来计算吗?为什么?(二)创设情境,引入新课1.去括号的法则是什么?2.做一做(1) a + ( b + c )= (2)a - (b + c )=(3) a + ( b - c ) = (4) a - ( b - c)=上面是根据去括号法则,由左边式子得右边式子,现在我们把上面四个式子反过来。
(1) a + b + c=a+(b+c) (2) a – b - c=a-(b+c)(3) a + b- c=a+(b-c) (4) a – b + c=a-(b-c)(三).讲授新知添括号法则:口诀:(四).典例应用例1:在括号内填入适当的项:(1) x ²–x+2 = x ²–( );(2) 2 x ²–3 x–1= 2 x ²+ ( );(3)(a–b)–(c–d)= a –( ).1.在括号内填入适当的项:(1)a + b + c –d = a + ( )(2)a –b + c –d = a –( )(3)–(a ³-a ²)+(a-1)=–a ³–( )2.下列等号右边添的括号准确吗?若不准确,可怎样改正?2222236(236)236(236)23(23)()x x x x x x x x a b c a b c m n a b m n a b -+=++--+=--+---=-+-+-=-++(1)(2)(3)(4)例2.按要求将2x ²+3x-6(1) 写成一个单项式与一个二项式的和;(2) 写成一个单项式与一个二项式的差。