第四章 平面机构的运动分析
- 格式:ppt
- 大小:1.12 MB
- 文档页数:44
平面机构的运动分析平面机构是由若干个连杆组成的机械结构,在运动分析中,我们需要研究机构中各个连杆的运动规律,以及机构整体的运动情况。
平面机构常见的类型有四杆机构、曲柄滑块机构、双曲柄滑块机构等。
在运动分析中,我们通常要确定机构的约束条件、求解连杆的角度、速度和加速度等。
首先,我们需要确定机构的约束条件。
约束条件是指机构中各个连杆之间的几何关系,包括定位约束和连杆长度约束。
定位约束是指机构中一些点的位置关系,可以通过坐标方程等方法求解。
连杆长度约束是指连杆的长度是固定的,可以通过连杆长度的几何关系来确定。
然后,我们可以通过运动分析的方法来求解连杆的角度、速度和加速度等。
在运动分析中,可以使用几何法和代数法等不同的方法来求解。
几何法中常用的方法有图解法和模型法。
图解法是通过绘制连杆的运动图来解决问题,可以直观地表示出机构的运动情况。
模型法是将机构模型化为几何图形,然后通过几何关系求解。
这些方法通常适用于简单的机构。
代数法中常用的方法有位置矩阵法和速度矩阵法。
位置矩阵法是通过建立连杆的位移方程来求解连杆的角度。
速度矩阵法是通过建立速度传递关系求解连杆的速度和加速度。
此外,还可以通过数值模拟的方法来进行运动分析。
数值模拟是利用计算机软件对机构进行建模,并进行数值计算得到机构的运动参数。
这种方法可以应用于复杂的机构,但计算量比较大。
总之,平面机构的运动分析是解决机构运动问题的基础,通过确定约束条件和求解连杆的角度、速度和加速度等参数,可以研究机构的运动规律,为机构的设计和优化提供理论依据。
2 平面机构的运动分析1.图 示 平 面 六 杆 机 构 的 速 度 多 边 形 中 矢 量 ed →代 表 . 杆4 角 速 度ω4的 方 向 为时 针 方 向。
2.当 两 个 构 件 组 成 移 动 副 时 .其 瞬 心 位 于 处 。
当 两 构 件 组 成 纯 滚 动 的 高 副 时. 其 瞬 心 就 在 。
当 求 机 构 的 不 互 相 直 接 联 接 各 构 件 间 的 瞬 心 时. 可 应 用 来 求。
3.3 个 彼 此 作 平 面 平 行 运 动 的 构 件 间 共 有 个 速 度 瞬 心. 这 几 个瞬 心 必 定 位 于 上。
含 有6 个 构 件 的 平 面 机 构. 其 速 度 瞬 心 共 有 个. 其 中 有 个 是 绝 对 瞬 心. 有 个 是 相 对 瞬 心。
4.相 对 瞬 心 与 绝 对 瞬 心 的 相 同 点 是 .不 同 点 是 。
5.速 度 比 例 尺 的 定 义 是 . 在 比 例 尺 单 位 相 同 的 条 件 下. 它 的 绝 对 值 愈 大. 绘 制 出 的 速 度 多 边 形 图 形 愈 小。
6.图 示 为 六 杆 机 构 的 机 构 运 动 简 图 及 速 度 多 边 形. 图 中 矢 量 cb →代表 . 杆3 角 速 度ω3 的 方 向 为 时 针 方 向。
7.机 构 瞬 心 的 数 目N 与 机 构 的 构 件 数 k 的 关 系 是 。
8.在 机 构 运 动 分 析 图 解 法 中. 影 像 原 理 只 适 用 于 。
9.当 两 构 件 组 成 转 动 副 时. 其 速 度 瞬 心 在 处; 组 成 移 动 副 时. 其 速 度 瞬 心 在 处; 组 成 兼 有 相 对 滚 动 和 滑 动 的 平 面 高 副 时. 其 速 度 瞬 心 在 上。
10..速 度 瞬 心 是 两 刚 体 上 为 零 的 重 合 点。
11.铰 链 四 杆 机 构 共 有 个 速 度 瞬 心.其 中 个 是 绝 对 瞬 心. 个 是 相 对 瞬 心。
机械原理平面机构的运动分析机械原理是研究机械结构的运动、力学性能和设计规律的一门学科。
而平面机构是机械原理中的一个重要概念,指的是在同一平面内运动的机构。
平面机构广泛应用于工程领域,例如各种机床、汽车、船舶等。
对平面机构的运动分析,可以帮助我们理解机构的运动性能以及设计出更加高效的机构。
平面机构的运动分析通常包括以下几个方面:1.机构的自由度和约束度分析:机构的自由度指的是机构在运动中能够独立自由变动的数量,约束度指的是机构在运动中受限制的数量。
自由度和约束度的分析可以帮助我们确定机构的运动特性和受力情况,从而进行更加准确的运动分析。
2.运动学分析:运动学分析是研究机构在运动中各个点的速度和加速度分布的过程。
通过运动学分析,可以确定机构在运动中的速度和加速度的大小和方向,进而计算出关键部位的动力学参数,如惯性力、跟随误差等。
3.强度和刚度分析:机构在运动过程中会受到一定的力学载荷,为了确保机构的正常工作和安全性,需要对机构的强度和刚度进行分析。
强度分析可以帮助我们确定机构的承载能力和应力状态,而刚度分析可以帮助我们确定机构的变形情况和运动精度。
4.动力学分析:动力学分析是研究机构在运动中产生的动力学特性的过程。
通过动力学分析,可以确定机构在运动中的力学响应和响应频率,进而验证机构的设计是否符合运动要求和预期的性能。
对于平面机构的运动分析,需要掌握以下基本方法和步骤:1.给定机构的几何结构和运动要求,确定机构的自由度和约束度。
2.建立机构的运动学模型,包括机构的运动副和约束副。
3.分析机构的运动学闭链,通过运动副和约束副的条件,建立运动学方程组,进而求解各个点的速度和加速度。
4.根据机构的几何结构和质量分布,建立机构的动力学模型,包括质点的质量和惯量矩阵。
5.根据运动学方程组和动力学模型,得到机构的动力学方程组,进而求解力学响应和响应频率。
6.对机构的强度和刚度进行分析,确定机构的设计是否满足要求。
平面机构知识点总结一、定义平面机构是由连接在一起的刚性杆件和连接件组成的机械系统,它们在一个平面内进行相对运动。
平面机构可以通过不同的构造形式实现不同的运动功能,例如传递运动、转换运动、控制运动等。
平面机构的构造形式和动力学特性在机械设计中起着非常重要的作用,因此对其进行深入了解和研究对于工程师和设计师来说是非常重要的。
二、分类根据平面机构的结构特点和运动形式,可以将其分为不同的类型,主要包括以下几种:1.四连杆机构:由四根连杆和四个铰链连接而成的机构,可以实现平行四边形连杆的运动形式,常见的四连杆机构包括平行四边形机构和梯形机构等。
2.曲柄滑块机构:由曲柄、连杆、滑块等部件构成的机构,可以实现曲柄的旋转运动和滑块的直线往复运动,广泛应用在发动机、压力机、注塑机等领域。
3.齿轮机构:由齿轮、齿条、链条等传动件构成的机构,可以实现不同速度比和转矩比的传动,常见的齿轮机构包括行星齿轮机构、直动齿轮机构等。
4.摇杆机构:由摇杆、铰链和固定点连接而成的机构,可以实现摇杆的往复摆动运动,广泛应用在摇摇椅、铣床、钻床等机械装备中。
三、结构特点平面机构具有以下几个结构特点:1.刚性连接:平面机构的连接件和杆件都是由高强度的材料制成,能够保证机构在运动过程中的稳定性和可靠性。
2.铰链连接:平面机构中的连接件通常使用铰链连接,可以实现相对旋转和相对平移运动,能够满足不同的运动需求。
3.多样性:平面机构在结构形式上非常多样化,可以通过不同的连杆和连接方式实现多种不同的运动形式,适用于不同的工程需求。
四、运动分析平面机构的运动分析是研究机构在运动过程中的速度、加速度、位移等动力学特性的过程。
平面机构的运动分析通常包括以下几个方面:1.位移分析:通过分析机构中各个零件的相对位移关系,可以获得机构在运动过程中的位移规律和轨迹形式。
2.速度分析:通过对机构中各个零件的相对速度进行分析,可以获得机构在不同运动状态下的速度大小和方向。
平面机构的运动分析[摘要]在机械设计中,为了能够保证机械的正常运转,确定机械的轮廓、确定诸如发动机活塞的冲程等,就必须要确定其运动的轨迹,也就是说设计人员必须对机构进行运动分析,这正是本文所要探讨的内容。
[关键词]平面机构;运动分析;速度分析我们所说的机构的运动分析,主要包括对机构的位移、速度以及加速度的分析。
具体地说,就是要按照原动件的已知运动规律,全面分析该机构上其他构件上的某些点的这些构件的角位移、角速度和角加速度。
以及位移、轨迹、速度和加速度等。
很明显,分析这些内容,无论是要设计新的机械,还是要更清楚的了解现有机械的运动性能,都是十分必要的。
一、平面机构运动分析的目的和方法大量的实践证明,对机构进行位移或轨迹进行充分有效的分析,能够准确的确定某些构件在运动时所需的空间;也能够准确的判断当构件运动时,各构件之间有无互相干涉的现象;可以确定机构从动件的行程;能够顺利的考察某构件,或者构件上某一点是否能够完成预定的位置或轨迹的要求等。
只要能够准确的对机构进行速度分析,就可以掌握从动件的速度变化规律是否满足工作要求的基本情况了。
比如说,牛头刨床要求刨刀在工作行程中应该尽量的接近于等速运动,而空回行程的速度,则需要高于工作行程时的速度。
这主要是考虑到进一步提高加工质量、并延长刀具的寿命,也是出于提高工效和节省动力的考虑。
那我们如何来判定设计的牛头刨床是否满足这种设计要求呢?进行速度分析是关键。
又如在高速机械和重型机械的设计中,要考虑到其构件的惯性力极大,所以在进行强度计算或分析其工作性能时,就需要把这些惯性力的影响考虑在内。
也就是说,为了准确的确定惯性力,首先就需要进行机构的加速度分析。
一般来说,平面机构运动分析的方法主要有两种,即图解法、解析法。
图解法主要优点是形象直观。
但是,对于一般的平面机构来说,通常会比较简单,而且其精度也不高,同时在对机构的一系列位置进行分析时,往往需要进行反复的作图,那就显得比较麻烦了。