中职-第一册-2.3-一元二次不等式(教案)
- 格式:docx
- 大小:75.05 KB
- 文档页数:5
《一元二次不等式》教学设计方案(第一课时)一、教学目标1. 掌握一元二次不等式的解法。
2. 能够运用一元二次不等式解决实际问题。
3. 培养数学思维能力和解决问题的能力。
二、教学重难点1. 教学重点:掌握一元二次不等式的解法。
2. 教学难点:理解一元二次不等式的几何意义及其应用。
三、教学准备1. 准备教学用具:黑板、粉笔、几何图形等。
2. 准备教学资料:准备相关例题和练习题,以便学生巩固所学知识。
3. 制定教学计划:根据教学内容和学生实际情况,制定详细的教学计划,合理安排课时和教学内容。
4. 备课过程中,注重启发式教学,引导学生思考,培养其数学思维能力。
四、教学过程:本节教学内容主要包括讲授一元二次不等式的概念,设计解一元二次不等式的基本步骤,以及对相关知识点进行举例分析。
1. 导入新课(约5分钟)向学生展示一元二次函数图象,并通过具体问题引导学生理解不等式与函数之间的关系。
提出“一元二次不等式”这一概念,让学生对即将学习的内容有初步认识。
2. 讲授新课(约30分钟)(1)概念讲解:引导学生逐步理解一元二次不等式的概念,明确其定义、特点以及适用范围。
通过举例和对比,让学生加深对一元二次不等式的认识。
(2)解一元二次不等式:结合具体实例,向学生介绍解一元二次不等式的步骤,并针对每个步骤进行详细说明。
通过实例演示,帮助学生掌握解一元二次不等式的方法。
(3)知识点举例分析:通过具体案例,引导学生运用所学知识解决实际问题,加深对一元二次不等式应用的理解。
同时,通过分析错误解法,帮助学生纠正错误理解,提高解题能力。
3. 课堂练习(约15分钟)为学生提供适量的一元二次不等式练习题,让学生进行课堂练习。
教师针对学生的解题过程和结果进行点评,帮助学生巩固所学知识。
4. 总结归纳(约5分钟)对本节课的主要内容进行总结,强调一元二次不等式的概念、解法及应用。
引导学生回顾所学知识点,帮助学生形成完整的知识体系。
5. 布置作业(约2分钟)根据本节课的教学目标,为学生布置适量的课后作业,以巩固所学知识,并鼓励学生在日常生活中尝试运用一元二次不等式解决问题。
中等专业学校2024-2025-1教案编号:备课组别数学组课程名称基础模块(上)所在年级一年级主备教师授课教师授课系部现代服务部授课班级授课日期课题§2.3一元二次不等式(1)教学目标1.了解方程、不等式、函数的图像之间的联系;2. 掌握一元二次不等式的图像解法.重点方程、不等式、函数的图像之间的联系难点一元二次不等式的解法教法引导探究,讲练结合教学设备多媒体一体机教学环节教学活动内容及组织过程个案补充教学内容一回顾思考复习导入问题一次函数的图像、一元一次方程与一元一次不等式之间存在着哪些联系?解决观察函数26y x=-的图像:方程260x-=的解3x=恰好是函数图像与x轴交点的横坐标;在x轴上方的函数图像所对应的自变量x 的取值范围,恰好是不等式260x->的解集{|3}x x>;在x轴下方的函数图像所对应的自变量x的取值范围,恰好是不等式260x-<的解集{|3}x x<.()0或()0(a≠感受新知二次函数的图像、一元二次方程与一元二次不等式之间存在着哪些联系?中等专业学校2024-2025-1教案编号:备课组别数学组课程名称基础模块(上)所在年级主备教师授课教师授课系部授课班级授课日期课题§2.3一元二次不等式(2)教学目标1.了解方程、不等式、函数的图像之间的联系2. 掌握一元二次不等式的图像解法.重点方程、不等式、函数的图像之间的联系难点一元二次不等式的解法.教法引导探究,讲练结合教学设备多媒体一体机教学环节教学活动内容及组织过程个案补充教学内容一、动脑思考探索新知解法利用一元二次函数2y ax bx c=++()0a>的图像可以解不等式20ax bx c++>或20ax bx c++<.(1)当240b ac∆=->时,方程20ax bx c++=有两个不相等的实数解1x和2x12()x x<,一元二次函数2y ax bx c=++的图像与x轴有两个交点1(,0)x,2(,0)x (如图(1)所示).此时,不等式20ax bx c++<的解集是()12,x x,不等式20a x bx c++>的解集是12(,)(,)x x-∞+∞;(1)(2)(3)0(,)x +∞24b ac ∆=-一元二次函数y ax =)所示).此时,不等式2(,)x +∞0(,)x +∞0([)2,x +∞R 0< 12,)x∅]2,x }0x224,b ac x -. 例题讲解解下列各一元二次不等式:0. 首先判定二次项系数是否为正数,再研究对应一元二次方程解的情况,最后对照表格写出不等式的解+∞.(3,))29x<可化为,且方程2x()-.3,33)53x x-0.故方程22xx+的解集为300的解集为.是什么实数时,2x-有意义.0.解方程.由于二次项系数为[)1,+∞.[)-有意义.1,+∞时,20.、本节课主要学习了一元二次不等式解法;、一元二次不等式的特点及解的过程中注意事项;中等专业学校2024-2025-1教案编号:备课组别数学组课程名称基础模块(上)所在年级主备教师授课教师授课系部授课班级授课日期课题§2.3一元二次不等式(3)教学目标1. 掌握利用二次函数图象求解一元二次不等式的方法。
《一元二次不等式》作业设计方案(第一课时)一、作业目标本作业旨在巩固学生对一元二次不等式基本概念的理解,掌握一元二次不等式的解法,并能够运用所学知识解决实际问题。
通过作业练习,提高学生的数学思维能力和解题技巧。
二、作业内容1. 基础练习(1)一元二次不等式的定义与形式识别。
(2)一元二次不等式的解集表示方法。
(3)一元二次不等式与等式的关系及转换。
2. 技能提升(1)掌握一元二次不等式的求解步骤及常见解法。
(2)理解一元二次不等式在实际问题中的应用,如求最值问题等。
3. 综合运用(1)通过实际问题,将一元二次不等式应用于实际情境中,如工程、经济等领域。
(2)结合其他数学知识,如函数、图像等,综合解决复杂问题。
三、作业要求1. 认真审题,准确理解题目要求,按照题目给出的条件和要求进行解答。
2. 书写规范,解题步骤清晰,答案准确无误。
3. 独立思考,遇到问题时先尝试自己解决,如无法解决可查阅相关资料或向老师请教。
4. 按时完成作业,不得抄袭他人作业或提供给他人抄袭。
四、作业评价1. 评价标准:根据学生的作业完成情况、解题步骤、答案准确性等方面进行评价。
2. 评价方式:教师批改作业时,采用百分制评分法,对每个学生的作业进行评分,并给出详细的批改意见和建议。
3. 反馈方式:教师将批改后的作业发回给学生,并针对学生在作业中出现的问题进行讲解和指导,帮助学生更好地掌握一元二次不等式的知识和技能。
五、作业反馈1. 学生应根据教师的批改意见,认真检查自己的作业,找出错误并加以改正。
2. 学生应积极向老师请教自己在作业中遇到的问题,及时解决自己的疑惑。
3. 教师应对学生的作业情况进行总结,针对学生在作业中普遍出现的问题进行重点讲解和指导,帮助学生更好地掌握一元二次不等式的知识和技能。
4. 教师可根据学生的作业情况,调整后续的教学计划和教学方法,以更好地满足学生的学习需求。
通过此作业设计,旨在通过不同层次的练习,使学生能够全面、系统地掌握一元二次不等式的基本概念、解法及应用。
2.3一元二次不等式(第1课时)一、教材分析一元二次不等式的解法是高中数学教学的重点和难点之一。
从内容上看,二次不等式、二次方程与二次函数密不可分,该内容涉及的知识点较多且应用广泛。
从思想层次上看,它涉及到数形结合、分类转化、方程函数等数学思想,这些内容和思想将在中学数学中产生广泛而深远的影响。
同时,一元二次不等式的解法是以后研究函数的定义域、值域等问题的最要工具,它可渗透到中学数学的几乎所有领域中,对今后的学习起着十分重要的作用。
二、教学目标知识与技能目标:1.理解一元二次方程、一元二次不等式和二次函数之间的关系.2.熟练掌握一元二次不等式的解法;过程与方法目标:通过由图象找解集的方法提高学生逻辑思维能力,渗透数形结合思想,提高运算(变形)能力,渗透由具体到抽象思想。
情感、态度与价值观目标:通过图象法,教师有意识地向学生渗透抽象与具体、联系与转化、特殊与一般、个性与共性等辩证唯物主义的观点和方法,并注意通过设问、追问、反问、讨论等主动参与教学的活动,培养学生的自尊、自强、自信、自主等良好的心理潜能和主人翁意识。
三、教学重、难点重点:一元二次不等式解法难点:一元二次不等式、一元二次方程、二次函数之间关系;数形结合思想渗透四、教学方法与手段1、启发式的教学模式教师在学生已有的知识经验和思考基础上适当引导,使学生获得新知。
在知识的传授过程中摆脱传统的灌输性教学,对学生进行引导式的学习,使学生充分发挥学习的主观能动性和自主性,教师起一个引路人的作用。
2、多媒体教学手段运用多媒体直观,形象,方便的特点,运用PPT,几何画板等多媒体工具,使课堂气氛融洽,效率提高。
3、教学工具演示电脑主机一台,电脑投影屏幕一个。
电动投影仪一台;黑板、粉笔、板刷一个。
五、教学过程数缺形时少直观,形少数时难入微。
数形结合百般好,隔裂分家万事休。
这是我国著名数学家华罗庚先生对于数与形间密切关系的生动描述,充分地体现了数形结合思想的重要性。
《一元二次不等式》作业设计方案(第一课时)一、作业目标本作业旨在巩固学生对一元二次不等式基本概念的理解,掌握一元二次不等式的解法,以及能运用一元二次不等式解决实际问题。
通过本次作业,学生应能独立解决简单的一元二次不等式问题,并具备初步的数学逻辑思维和问题解决能力。
二、作业内容(一)基本概念练习1. 回顾一元二次不等式的定义及常见形式。
2. 掌握一元二次不等式的解集与图像关系。
(二)解法技巧训练1. 熟练运用因式分解法、公式法等解一元二次不等式。
2. 学会根据不等式的特点选择合适的解法。
(三)实际问题应用1. 结合实际生活,设置一元二次不等式应用题。
2. 培养学生运用数学知识解决实际问题的能力。
三、作业要求1. 独立完成:本作业需学生独立完成,不得抄袭他人答案。
2. 规范书写:解题过程需规范,步骤完整,答案准确。
3. 及时提交:学生需在规定时间内提交作业,并保持作业整洁。
4. 反思总结:学生需在完成作业后进行反思总结,找出自己的不足并加以改进。
四、作业评价1. 教师评价:教师将对每份作业进行批改,给出详细的评分及评语。
2. 同伴互评:鼓励学生之间互相评价作业,学习彼此的优点,改正不足。
3. 自我评价:学生需对自己的作业进行自我评价,总结学习成果和经验。
五、作业反馈1. 个性化反馈:教师根据学生作业情况,进行个性化反馈,指出学生的优点和不足。
2. 课堂讲解:选取典型作业进行课堂讲解,让学生了解自己的解题思路是否正确。
3. 小组讨论:组织学生进行小组讨论,分享解题经验和技巧,互相帮助提高。
4. 家长沟通:教师将学生的作业情况及时与家长沟通,让家长了解孩子的学习情况,共同促进孩子的学习进步。
六、附加资源为帮助学生更好地完成本次作业,教师可提供以下附加资源:1. 一元二次不等式相关视频讲解,帮助学生复习巩固知识点。
2. 一元二次不等式练习题及答案解析,供学生自主练习和参考。
3. 数学学习方法指导资料,帮助学生提高学习效率和解题能力。
课时教学设计首页(试用)第页(总页)课时教学流程☆补充设计☆课时教学流程练习1判断下列不等式是否是一兀一次不等式:(1) X2—3x+ 5< 0; (2) x2—9> 0; ⑶ 3x2—2 x> 0; (4) x2+ 5V 0;2(5) x —2 x W 3; (6) 3 x + 5 > 0;2 2⑺(x—2) W 4; (8) x v 4.2 •解一元二次不等式.例1解下列不等式:(1) x2—x—12 >0;(2) x2—x—12 v 0.解因为△= (—1)2—4 X 1 X (—12) = 49> 0,方程x2—x—12 = 0 的解是x1= —3, x2= 4, 则x2—x—12= (x+ 3)(x —4)>0.同解于一元一次不等式组:x+3> 0 亠x+3<0(I) 或(n )x—4> 0 x—4V 0不等式组(I )的解集是{x | x>4};不等式组(n )的解集是{X | x v —3}.故原不等式的解集为{ x | x v —3或x>4}. 练习2解一元二次不等式:(1)(x+ 1)(x—2)v 0;(2)(x+ 2)(x—3)> 0;(3)x2—2x—3> 0;(4)x2—2x—3v 0.学生口答,进行解题.教师分析:怎样把一元二次不等式转化成一元一次不等式组?学生根据实数乘法法则,在教师的引导下,分析出等价的一元一次不等式组.学生仿照例1(1),独立完成例1(2).学生独立练习,部分学生板演.通过练习,辨析一元二次不等式.教师讲解一元二次不等式的解法,给出解一元二次不等式的步骤.通过练习使学生进一步掌握一元二次不等式的解法.小结:2 2 2 a x + b x + c> 0 或a x + b x+ c v 0 (a* 0)中,当b —4 a c> 0时进行求解:(1) 两边同除以a,得到二次项系数为1的不等式;(2) 分解因式变为(x+ X1)(x + X2)> 0 或(x+ X1)(x+ x2)v 0 的形式.结合例题及练习,师生共同总结一元二次不等式的解法.梳理总结也可针对学生薄弱或易错处进行强调和总结.课时教学设计尾页(试用)☆补充设计☆板书设计复习例題与练习:•元一次不等式组一元二次方程二元一次不等式二元一不等式的解法作业设计教材P48,练习A组第2题.教学后记。
2.3 二次函数与一元二次方程、不等式教学设计教学目标:1.经历从实际情境中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义;2.了解一元二次不等式的概念与二次函数的零点;3.借助二次函数的图象,了解一元二次不等式与相应函数、方程的联系,体会数学的整体性;4.能够借助二次函数,求解一元二次不等式;5.通过一元二次函数、一元二次方程、不等式三者关系的探究过程,提升学生数学抽象、数学运算、直观想象的核心素养.教学重点、难点重点:一元二次函数与一元二次方程的关系,利用二次函数图像求一元二次方程的实数根和不等式的解集;难点:一元二次方程根的情况与二次函数图象与x 轴位置关系的联系,数形结合思想的运用. 教学方法:以学生为主体,采用诱思探究式教学,精讲多练.教学工具:多媒体.教学过程一.问题引入园艺师打算在绿地上用栅栏围一个矩形区域种植花卉.若栅栏的长度是24m,围成的矩形区域的面积要大于20m²,则这个矩形的边长为多少米?解:设这个矩形的一条边长为m x ,则另一条边长为12)m.x -(由题意,得12)20,x x ->(其中{012}.x x x ∈<<整理得 212200,{012}.x x x x x -+<∈<< ①求得不等式①的解集,就得到了问题的答案.设计意图:由问题引入,引发学生思考,得到一元二次不等式,引入课题并出示本节教学目标 .二.新知探究问题:什么是一元二次不等式?学生总结回答,说出定义.定义:一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.一般形式是0022<++>++c bx ax c bx ax 或其中,,a b c 均为常数,0.a ≠教师引导学生解读定义,强调关键词,目的加深学生对定义的理解.在初中,我们学习了一元一次不等式的解法,以30,30x x ->-<两个不等式为例,求出3=0x -的根,进而画出函数3y x =-的图象,通过图象写出不等式的解.类比这种解法,我们能否借助二次函数的图象求解一元二次不等式呢?设计意图:教师引导学生回顾一元一次不等式的解法,体会求解步骤,通过类比,有助于探究一元二次不等式的解法.探究一:一元二次不等式212200x x -+< 的解法(1)求一元二次方程21220=0x x -+的_____ ,12____,_____.x x == (2)画一元二次函数2=1220y x x -+的图象;(3)当210x <<时,函数图象位于x 轴___方,此时0y <,即212200x x -+<. 所以,一元二次不等式的解集为{210}x x <<.从而解决了引例的问题.设计意图:通过以上三个步骤的设置,让学生自主探究具体的一元二次不等式的解法,进而推广到一般情况.问题:2和10是方程的根,是二次函数与x 轴交点的横坐标,也叫做函数的零点.引出零点的定义.一般地,对于二次函数2y ax bx c =++,我们把使2=0ax bx c ++的实数x 叫做二次函数2y ax bx c =++的零点.注:一元二次函数的零点不是点,是实数.教师强调上述方法可以推广到求一般的一元二次不等式)0(02>>++a c bx ax 和)0(02><++a c bx ax 的解集.探究二:二次函数与一元二次方程、不等式的解对应关系下面我们以表格的形式探究三者之间的关系(学生分组谈论,合作交流)讨论结束,教师提问学生,完成表格.三.典例分析、举一反三一元二次不等式的解法 例1 求不等式2560x x -+>的解集.分析:因为方程256=0x x -+的根是函数256y x x =-+的零点,所以先求出256=0x x -+的根,再根据函数图象得到2560x x -+>的解集.解:对于方程256=0x x -+,因为0,∆>所以它有两个实数根,解得12=2 3.x x =, 画出二次函数256y x x =-+的图象,结合图象得不等式2560x x -+>的解集为{2,3}.x x x <>或设计意图:教师板书步骤,规范学生作答,强调关键语句.判别式2=4b ac ∆- 0∆> =0∆ 0∆< 2,0y ax bx c a =++> 的图象2=0,0ax bx c a ++>的根 有两相异实根 1212,x x x x <,有两相等实根 没有实数根 20,0ax bx c a ++>> 的解集12{}x x x x x <>或 {}2b x x a ≠-R 20,0ax bx c a ++<>的解集12{}x x x x << φ φ例2 求不等式01692>+-x x 的解集.解:对于方程2961=0x x -+,因为=0,∆所以它有两个相等实数根,解得121=.3x x =画出二次函数2961y x x =-+的图象,结合图象得不等式01692>+-x x 的解集为1{}.3x x ≠ 教师直接利用课件展示做题步骤,比较与例1的区别与联系.例3 求不等式03-2-2>+x x 的解集.解:不等式可化为0322<+-x x .因为=-8<0,∆所以方程无实数根.画出二次函数322+-=x x y 的图象,结合图象得不等式0322<+-x x 的解集为∅ 方法总结:如何用图解法解一元二次不等式?(1)化标:将原不等式化为系数为正的标准形式(2)求根:依据2=4b ac ∆-,判定方程根的情况;(3)画图;(4)写解集.巩固练习:求不等式 2.580.2)200.1x x --⨯≥( 的解集. 设计意图:强化学生对一元二次不等式标准形式转化能力与求解能力 .四、课堂小结1.学到了哪些知识?(1)一元二次不等式的定义与二次函数的零点定义;(2)“三个二次”的关系(3)一元二次不等式解法步骤:化标、求根、画图、写解集2.运用了哪些数学思想方法?函数与方程 数形结合 类比法 特殊到一般3.提升了哪些数学素养?数学抽象 数学运算 直观想象五、板书设计六、作业布置分层训练 2.3二次函数与一元二次不等式七.教学反思本节通过画图,看图,分析图,小组讨论完善表格,深化知识,抽象概括进行教学,让每个学生动手,动口,动脑,积极参与,提高教学效率和教学质量,使学生进一步理解数形结合和从特殊到一般的思想方法.。
2.3.4一元二次不等式的解法(第1课时)衢州市衢江区职业中专邵志刚【教材分析】1.本教材是浙教版中高职一体化人才培养模式改革试验新教材——数学第一册,适合中职升学班高一年级学生,本节课是第二章不等式中2.3.4节第一课时。
2.一元二次不等式的解法是解不等式的基础和核心,在中职数学中起着广泛的应用工具作用,一元二次不等式的解法中蕴藏着重要的类比、转化、分类讨论、数形结合等思想,已成为代数、三角、解析几何交汇综合的部分,也是近年来高考综合题的热点。
可见,本节课的学习在中职数学中具有举足轻重的地位。
【学情分析】1.从知识储备来说,学生在初中已经学习了一元一次不等式组、一元二次方程和二次函数,对不等式的性质有了初步了解,这为我们学习一元二次不等式打下了基础。
2.从心理特征来说,高中阶段的学生逻辑思维较初中学生来说更加严密,抽象思维能力也有进一步提升。
在情感态度上学生对新内容的学习有一定的兴趣和积极性,但在探究问题的能力以及合作交流等方面的发展不够均衡。
3.学生基础参差不齐,个体差异比较明显,在教学中要关注不同层次的学生的学习和发展。
【教法分析】本节课设计的指导思想是:现代认知心理学——建构主义学习理论。
建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。
本节课采用“诱思引探教学法”。
把问题作为出发点,指导学生“画、看、说、用”。
较好地探求一元二次不等式的解法。
【学法分析】教学矛盾的主要方面是学生的学。
学是中心,会学是目的。
因此在教学中要不断指导学生学会学习。
本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,让学生当“小老师”分析讲解练习题,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。