光的衍射圆孔(上)
- 格式:ppt
- 大小:934.00 KB
- 文档页数:16
实验10 圆孔衍射当光在传播过程中经过障碍物,如不透明物体的边缘、小孔、细线、狭缝等时,一部分光会传播到几何阴影中去,产生衍射现象。
光的衍射现象是光的波动性的一种表现。
研究光的衍射现象不仅有助于加深对光本质的理解,而且能为进一步学好近代光学技术打下基础。
衍射使光强在空间重新分布,利用光电元件测量光强的相对变化,是测量光强的方法之一,也是光学精密测量的常用方法。
一、实验目的1.观察圆孔衍射现象,加深对衍射理论的理解。
2.会用光电元件测量圆孔衍射的相对光强分布,掌握其分布规律。
二、实验仪器H e -N e 激光器、单缝及二维调节架、光电探测器及移动装置、数字式万用表、钢卷尺等。
三、实验原理圆孔衍射的基础是惠更斯-菲涅尔原理,,经过计算可以得到:在沿光传播方向圆孔的中轴线上,总是光强极大(设平面光波沿圆孔轴线传播),偏开中轴线一定角度,诸子波相干叠加正好相消,则出现第一级暗线,由于圆孔激起子波的轴对称性,暗线将是暗环,再增大偏开轴线角度,可得到一系列暗环,暗环之间为亮环,即衍射次极大。
直径为D 的圆孔的夫琅和费衍射光强的径向分布可通过贝塞耳函数表示。
夫琅和费圆孔衍射图样的中央圆形(零级衍射)亮斑通常称为艾里斑,艾里斑的大小可用半角宽度即第一级暗环对应的衍射角为:D λθθ22.1sin ==圆孔衍射各极小值的位置(衍射角)在0.610π,1.116π,1.619π,… 处,各极大值的位置(衍射角)在0,0.0819π,0.133π,0.187π,… 处,其相对光强I/I0依次为1,0.0175,0.042,0.0016,…。
零级衍射的圆亮斑集中了衍射光能量的83.8% 。
夫琅和费衍射不仅表现在单缝衍射中,也表现在小孔的衍射中,如图10-1所示。
平行的激光束垂直地入射于圆孔光阑1上,衍射光束被透镜2会聚在它的角平面3上,若在此焦平面上放置一接收屏,将呈现出衍射条纹。
衍射条纹为同心圆,它集中了84%以上的光能量,P 点的光强分布为:()2102⎥⎦⎤⎢⎣⎡=x x J I I (10-1)()x J 1为一阶贝塞尔函数,它可以展开成x 的级数()()()1212!1!1+∞=⎪⎭⎫ ⎝⎛+-=∑k o k k x k k x J (10-2)x 可以用衍射角θ及圆孔半径a 表示θλπsin 2ax = (10-3) 式中λ是激光波长(e e N H —激光器8.623=λ纳米)。
光 的 衍 射(Diffraction of light)江美福 物理科学与技术学院一、 衍射现象、惠更斯——菲涅耳原理1. 光的衍射现象圆孔衍射圆盘衍射(泊松点)正三角形孔正四边形孔正六边形孔正八边形孔不同于双缝干涉,单缝衍射中央亮条纹特别宽, 集中了约90%的光强,近似为原来单缝的像。
缝宽时无衍射单缝衍射 单缝衍射图样衍射屏 S λ a观察屏 Sλ衍射屏 L′ L观察屏*λ ≥ 10 - 3 a*分类:(1) 菲涅耳衍射 近场衍射(2) 夫琅和费衍射 远场衍射定义: 光在传播过程中能绕过障碍物的边缘 而偏离直线传播的现象2. 惠更斯原理任何时刻,波面上的每一个点都可作为新的次波源而发出球面 次波,在以后的任一时刻,所有次波波面的包络就形成整个波动 在该时刻的新波面。
平面波t=0 cτ t=τ t=τ t=0球面波cτ ● ● ● ● ●应用及局限性:可以定性解释直线传播、反射、折射、晶体双折 射等现象不能定量计算和解释干涉、衍射现象。
3. 惠更斯——菲涅耳原理 波传到的任何一点都是子波的波源,各子 波在空间某点的相干叠加,就决定了该点 波的强度。
dSQ S(波前) 设初相为零·θn rdE(p)· pa(Q ) K (θ ) dE( p ) ∝ dS rK(θ ):方向因子 θ = 0, K = K max θ ↑ → K (θ ) ↓ θ ≥ π , K = 0 2a (Q ) 取决于波前上Q点处的强度dE( p ) a(Q ) ⋅ K (θ ) 2π r = dS ⋅ cos(ω t − ) r λa(Q ) ⋅ K (θ ) 2π r E( p ) = ∫∫s ⋅ cos(ω t − ) ⋅ dS r λ = E 0 ( p ) ⋅ cos(ω t + ϕ p ) ) (P处波的强度2 I p ∝ E 0( p )二、 单缝的夫琅和费衍射、半波带法1.单缝的夫琅和费衍射装置缝平面 透镜L 透镜L′ B θ S θ a f′ A Δ f S: 单色光源 θ : 衍射角 观察屏·p0*AB = a (缝宽)2.条纹特点明暗相间的平行直条纹 条纹的宽度和亮度不同•当时,可将缝分成三个“半波带”λθ23sin =a P 处近似为明纹中心形成暗纹。
圆孔衍射实验报告圆孔衍射实验报告引言衍射是光学中的重要现象,指的是当光通过一个孔或者绕过一个物体时,光波会发生偏折和干涉,产生新的波纹和光斑。
圆孔衍射实验是研究光的衍射现象的经典实验之一。
本报告旨在详细介绍圆孔衍射实验的原理、实验装置和实验结果,并对实验结果进行分析和讨论。
实验原理圆孔衍射实验基于惠更斯-菲涅耳原理,即光波在传播过程中会沿着各个方向传播,并在传播的过程中发生干涉。
当光通过一个圆孔时,光波会在孔的边缘发生衍射,形成一系列的光环,称为菲涅耳衍射环。
这些衍射环的大小和形状与孔的大小和光的波长有关。
实验装置圆孔衍射实验的装置主要包括光源、圆孔、屏幕和测量仪器。
光源可以选择白光或单色光源,如激光。
圆孔通常由金属或者玻璃制成,直径可以调节。
屏幕用于接收和观察衍射光斑。
测量仪器可以是尺子、卡尺或者显微镜,用于测量光斑的直径和位置。
实验步骤1. 将光源放置在适当的位置,并调整光源的亮度和位置,使光线垂直照射到圆孔上。
2. 调节圆孔的直径,观察和记录不同直径下的衍射光斑。
3. 将屏幕放置在合适的位置,接收和观察衍射光斑。
4. 使用测量仪器测量光斑的直径和位置,并记录数据。
实验结果通过圆孔衍射实验,我们观察到了一系列的衍射光斑。
随着圆孔直径的增大,衍射光斑的直径也增大,但是衍射环的亮度和清晰度会减弱。
当圆孔直径非常小的时候,衍射光斑会呈现出明亮而清晰的环状结构。
而当圆孔直径逐渐增大时,衍射光斑会变得模糊,环状结构逐渐消失。
讨论与分析圆孔衍射实验的结果符合光的波动性质。
当光通过一个孔时,光波会沿着各个方向传播,并在传播的过程中发生干涉。
衍射光斑的大小和形状取决于孔的大小和光的波长。
当孔的直径非常小的时候,光波会在孔的边缘发生强烈的衍射,形成明亮而清晰的衍射环。
而当孔的直径逐渐增大时,衍射光斑的清晰度和亮度会减弱,因为光波的干涉效应逐渐减弱。
圆孔衍射实验还可以用来测量光的波长。
根据衍射光斑的直径和圆孔的直径,可以利用菲涅耳衍射公式计算出光的波长。
圆孔衍射现象描述概述解释说明1. 引言1.1 概述本篇长文旨在描述和解释圆孔衍射现象。
圆孔衍射是光学中的一种重要现象,当光通过一个小孔时会发生衍射,形成一个特定的光斑图案。
本文将从衍射现象的起因和原理、实验设备和方法等方面进行描述和概述。
1.2 文章结构本文分为五个主要部分:引言、圆孔衍射现象描述、结果与分析、应用与意义以及结论与展望。
其中,引言部分对文章的内容进行概述,介绍了文章的目的和结构。
1.3 目的本文旨在全面而详细地描述圆孔衍射现象,并解释其原理和机制。
通过对实验结果的观察和数据分析,探讨其中存在的差异,并探讨圆孔衍射在光学器件中的应用以及其对科学发展的意义。
最后,在总结研究结论的基础上提出未来研究方向建议,为进一步深入研究圆孔衍射提供指导。
2. 圆孔衍射现象描述:2.1 衍射现象简介圆孔衍射是一种光的传播现象,当光通过一个圆形孔径时发生偏折和扩散,形成特定的衍射图样。
这一现象是由光波在遇到障碍物或孔径较小时发生的干涉效应造成的。
圆孔衍射是光学中最基本且常见的几何衍射实验之一,对我们深入理解光的性质和行为具有重要意义。
2.2 圆孔衍射的起因和原理当平行光线垂直照射到一个小孔时,光波会从该小孔中穿过并呈球面传播。
根据背后的赫曼德-费米原理,每个次级波都可以看作是来自前方各个点上的波源。
这些次级波会相互干涉,并在进入观察屏幕后形成明暗相间、呈环状分布的衍射图样。
根据菲涅尔-柯西公式,我们可以计算出在观察屏上不同位置处的光强分布情况。
这个分布与外部条件(例如光源的波长、观察距离等)以及孔径的大小有关。
在圆孔衍射中,光强最强的环为中央亮斑,其内外依次是一系列交替的明暗环。
2.3 圆孔衍射实验设备和方法进行圆孔衍射实验通常需要准备以下设备和工具:1. 光源:可以使用激光器或白光灯作为照明光源。
2. 狭缝:用于产生平行光束,确保入射到圆孔上的光线是平行的。
3. 圆孔:可以通过刻蚀或机械加工在一片无色玻璃板上制作一个小而圆形的孔口。