P(AB)P(A)P(B)P(A)B.
推广 P (A B C )P(A )P(B )P(C) P(A)B P(A)C P(B)C P(AB ).C
n
P (A 1 A 2 A n ) P(A i ) P(A i A j )
i1
1i jn
P(A i A j Ak )
1i jkn
17
例3. 某接待站在某一周曾接待过12次来访, 且都是在周二 和周四来访. 问是否可以推断接待时间是有规定的?
注
实际推断原理:“小概率事件在一次试 验中实际上是不可能发生的”.
18
二、几何定义:
定义若对于一随机试验,每个样本点出现是等可能的 ,
样本空间所含的样本点个数为无穷多个,且具有非 零的 ,有限的几何度量,即 0m(),则称这一随机 试验是一几何概型的 .
16
例1. 袋中装有4只白球和2只红球. 从袋中摸球两次,每次任取一球.有两种式: (a)放回抽样; (b)不放回抽样.
求: (1)两球颜色相同的概率; (2)两球中至少有一只白球的概率.
例2. 设一袋中有编号为1,2,…,9的球共9只, 现从中任取3 只, 试求: (1)取到1号球的概率,(事件A) (2)最小号码为5的概率.(事件B)
(一)条件概率: 设试验E的样本空间为S, A, B是事件, 要考虑
在A已经发生的条件下B发生的概率, 这就是条件概 率问题.
例1.老王的妻子一胎生了3个孩子,已知老大是女孩,求另 两个也都是女孩的概率(假设男孩、女孩出生率相同).
1. 定义: 设A, B是两个事件, 且P(A)>0, 称
P(B| A) P(AB) P(A)
(1) 对任一事件A,有P(A)≥0; (非负性) (2) P(S)=1;(规范性) (3) 设A1,A2,…是两两互不相容的事件,则有