固体物理倒格子的原理
- 格式:doc
- 大小:75.11 KB
- 文档页数:3
简述倒格子点阵的物理意义
倒格子点阵是固体物理学中的一个重要概念,用于描述晶体中离子、原子或分子的排列方式。
它表示了晶体中离子在晶格中的周期性排列。
倒格子点阵在物理意义上具有以下重要特征:
1.倒格子与晶体结构的相互关系:倒格子是晶体格矢的补格。
晶体格矢是描述晶体结构的向量,而倒格子则是晶格矢的傅里叶变换。
倒格子点阵的形状和大小与晶体结构紧密相关。
2.表征晶体的动量空间:倒格子点阵的形成使得晶体在动量空间中的结构得以描述。
晶体具有动量离散化的性质,电子、声子等载流子在动量空间中的行为可以通过倒格子点阵的形态和性质来理解和
分析。
3.描述布里渊区和能带结构:倒格子点阵的布里渊区(Brillouin Zone)是动量空间中与晶格有关的基本单元。
布里渊区的形状和大小直接决定了电子能带结构、光学性质和输运特性等重要物理现象。
4.反映物质衍射性质:倒格子点阵的概念是描述晶体衍射的基础。
实验中利用晶体的衍射现象可以确定物质的结构和性质,倒格子点阵提供了理论上的基础框架。
倒格子点阵在固体物理学中具有重要的物理意义,它是描述晶体结构和性质的关键概念,并与动量空间、能带结构、衍射性质等密切相关。
通过倒格子点阵的分析,可以深入理解晶体的属性和行为,为研究材料科学和固体物理学提供了有力的工具和理论基础。
中文名称:倒格子英文名称:Reciprocal lattice术语来源:固体物理学倒格子,亦称倒易格子(点阵),它在固体物理学中,特别是在晶格动力学理论、晶体电子论以及晶体衍射方面有着较为广泛的应用。
1定义假定晶格点阵基矢a1、a2、a3(1、2、3表示 a 的下标,粗体字表示a1 是矢量,以下类同)定义一个空间点阵,我们称之为正点阵或正格子,若定义b1 = 2 π ( a2× a3) /νb2 = 2 π ( a3× a1) /νb3 = 2 π ( a1× a2) /ν其中 v = a1· ( a2× a3 ) 为正点阵原胞的体积,新的点阵的基矢b1、b2、b3是不共面的,因而由b1、b2、b3也可以构成一个新的点阵,我们称之为倒格子,而b1、b2、b3 称为倒格子基矢。
2性质1. 倒格子的一个矢量是和晶格原胞中一组晶面相对应的,它的方向是该晶面的法线方向,而它的大小则为该晶面族面间距倒数的2π倍。
2. 由倒格子的定义,不难得到下面的关系a i ·b j = 2 πδij3. 设倒格子与正点阵(格子)中的位置矢量分别为G = αb1+ βb2 + γb3R = ηa1 + θa2 + λa3 (α,η,β,θ,γ,λ皆为整数)不难证明G·R = 2π ( αη + βθ +γλ ) = 2π n,其中n为整数。
4. 设倒格子原胞体积为ψ,正格子原胞体积为 v ,根据倒格子基矢的定义,并利用矢量乘法运算知识,则可得到ψ v = ( 2 π )^3.5. 正格子晶面族(αβγ)与倒格子矢量G = αb1+ βb2 + γb3 正交(具体的内容及证明过程,请参考文献[1])3倒格子引入的意义这里简单的说一点,如上面的性质1,倒格子中的一个基矢对应于正格子中的一族晶面,也就是说,晶格中的一族晶面可以转化为倒格子中的一个点,这在处理晶格的问题上有很大的意义。
h t t p ://10.107.0.68/~j g c h e /倒格子1上讲回顾•用轨道物理学理解晶体中原子近程结构*原子轨道之间相互作用由原子轨道角分布决定*为适应周围化学环境,与邻近原子成键,原子轨道可以杂化(重组) 以适应环境 杂化最大方向由价电子数、配位、键上电子转移等共同决定*键合分类:离子、共价、金属、分子和氢键h t t p ://10.107.0.68/~j g c h e /倒格子2本讲内容•在k 空间看晶体结构*倒格子(r e c i p r o c a l l a t t i c e )倒格子基矢*正格子(d i r e c t l a t t i c e )和倒格子之间的关系h t t p ://10.107.0.68/~j g c h e /倒格子3第11讲、倒格子1.为什么倒空间?2.晶格的F o u r i e r 变换3.倒格子4.二维倒格子5.正、倒格子对应关系6.重要的例子7.B r i l l i o u n 区8.X 射线晶体衍射实验h t t p ://10.107.0.68/~j g c h e /倒格子41、为什么倒空间(r e c i p r o c a l s p a c e )?•一个物理问题,既可以在正(实,坐标)空间描写,也可以在倒(动量)空间描写*坐标表象r ,动量表象k•为什么选择不同的表象?*适当地选取一个表象,可使问题简化容易处理*比如电子在均匀空间运动,虽然坐标一直变化,但k 守衡,这时在坐标表象当然不如在动量表象简单•正空间的格矢(R l )描写周期性;在动量空间?•这两个空间完全是等价的*只是一个变换h t t p ://10.107.0.68/~j g c h e /倒格子8看格点的F o u r i e r 变换?•数学上如何用一个函数来描写格点?•δ函数!()∑-=ll R R r r δρ)(•对这个函数进行F o u r i e r 变换()()∑∑⎰⎰∙-∙-∙-=-==llli i l i ed ed eR R k R r k rk r R r r r k δρρ)(•格点满足平移周期性,则有K h 满足ml h π2=∙R K •那么乘上不变因子()∑∑∙--∙-==llh lli i eeR R K k R R k k ρh t t p ://10.107.0.68/~j g c h e /倒格子9•这告诉了我们什么信息,K h 对应什么?•坐标空间里,δ(r -R l )函数表示在R l 的格点,当满足上述条件时,其F o u r i e r 变换也是δ(k -K h )函数,表示的是倒空间里的一个点!•后面会知道,这些点就是倒格点,K h 即倒格矢*或者说前面K h 与R l 的关系定义了倒格矢,满足上述条件矢量就是倒格矢←→格矢*K h 的量纲为R l 的倒数•利用P o i s s o n 求和公式,即可得()()∑∑-==∙--hl lh h i e K R R K k k K k δρ•即当矢量K h 与R l 乘积是2π的整数倍时,在坐标空间R l 处的δ函数的F o u r i e r 变换为在动量空间以K h 为中心的δ函数!h t t p ://10.107.0.68/~j g c h e /倒格子103、倒格子(r e c i p r o c a l l a t t i c e )1=∙lh i e R K 为整数m m l h ,2π=∙R K •因此,B r a v a i s 格子也称为正格子(d i r e c t l a t t i c e )•等价关系:知道K h ,就知道R l ;反过来也一样•它们满足F o u r i e r 变换关系,因此,倒空间也称F o u r i e r 空间•定义:对B r a v a i s 格子中所有的格矢R l ,有一系列动量空间矢量K h ,满足的全部端点K h 的集合,构成该B r a v a i s 格子的倒格子,这些点称为倒格点,K h 称为倒格矢h t t p ://10.107.0.68/~j g c h e /倒格子11倒格子基矢•对正格子332211a a a R l l l l ++=•如果选择一组b ,使332211b b b K h h h h ++=•那么矢量K 就可由b 组成i jj i πδ2=⋅a b ml l l h h h l h π2332211=⋅+⋅+⋅=⋅a K a K a K R K •有•它满足上述关系,因此K h 具有平移对称性→可用基矢和整数表示的平移周期性→K h 定义倒空间的B r a v a i s 格子,b i 就是倒格子基矢•K h 为倒格矢——K h 所有的端点即为倒格点h t t p ://10.107.0.68/~j g c h e /倒格子21等价的周期性•如果K h 是倒格矢,那么物理量的F o u r i e r 级数在晶体任何平移变换下具有所期待的不变性∑+∙=+hi l l h h eF F )()(R r K K R r )(r rK K F e F hi h h ==∑∙是哪个晶面?互质?它属于哪族晶面?*是红色的这个晶面。
倒格子题目:试论倒格子、倒格子空间的基本概念、与正格子的关系以及在固体物理研究中的意义和作用。
1.倒格子的基本概念:假定晶格点阵基矢1a 、2a 、3a(1、2、3表示 a 的下标)定义一个空间点阵,我们称之为正点阵或正格子,若定义: v a a b )(2321 ⨯=π v a a b )(2232 ⨯=π v a a b )(2213 ⨯=π其中)(321a a a v ⨯⋅= 为正点阵原胞的体积,新的点阵的基矢1b 、2b 、3b 是不共面的,因而由 1b 、2b 、3b 也可以构成一个新的点阵,我们称之为倒格子 ,而1b 、2b 、3b 称为倒格子基矢。
2.倒格子与正格子之间的关系:①基矢间关系:3,2,1,)(0)(2=⎩⎨⎧≠==*j i j i j i b a j i π ②位矢之间关系:正格子位矢:332211a l a l a l R l ++=倒格子位矢:332211b n b n b n G n ++=二者关系:m R G l n π2=⋅ (m 为整数)表明:若两矢量点积为π2的整数倍,则其中一个矢量为正格子位矢, 另一个必为倒格子位矢。
③原胞体积的关系:倒格子原胞的体积v *与正格子原胞体积v 的关系 为:)()2()2()(32133321*a a a vb b b v ⨯⋅==⨯⋅=ππ ④倒格矢332211b h b h b h G ++=与正格子中密勒指数为)(321h h h 的晶面族正交。
即332211b h b h b h G ++=沿晶面族)(321h h h 的法线方向。
3.固体物理研究中的意义和作用:①:倒格子中的一个基矢对应于正格子中的一族晶面,也就是说,晶格中的一族晶面可以转化为倒格子中的一个点,这在处理晶格的问题上有很大的意义。
例如,晶体的衍射是由于某种波和晶格互相作用,与一族晶面发生干涉的结果,并在照片上得出一点,所以,利用倒格子来描述晶格衍射的问题是极为直观和简便的。
倒格子摘要:倒格子是现在固体物理,半导体物理,器件物理的前沿,用量子场论的非相对论形式描述多体,各种散射过程的精确描述都少不了它。
为此为了研究的方便,结晶学家喜欢用正格子,而物理学家喜欢用倒格子,因为它在数学处理上具有优越性。
和正格子相比,它在固体物理学中,特别是在晶格动力学理论、晶体电子论以及晶体衍射方面有着较为广泛的应用。
因此倒格子具有很重要的物理意义,及其所组成的倒易点阵,更是研究晶格性质的重要手段。
关键词:倒格子正格子点阵布里渊区一、倒格子的定义及其相关概念:(1)倒格子:亦称倒易格子(点阵),倒格子就是和布拉发矢量(晶格矢量)共轭的另一组矢量基,俗称动量空间,适合于用来描述声子、电子的晶格动量。
它在固体物理学中,特别是在晶格动力学理论、晶体电子论以及晶体衍射方面有着较为广泛的应用。
是现在固体物理,半导体物理,器件物理的前沿,用量子场论的非相对论形式描述多体,各种散射过程的精确描述都少不了它。
晶格振动及晶体中电子的运动都是在倒格子空间中的描述。
(2)倒格子的定义:已知有正格子基矢,定义倒格矢基矢为:;说明b1垂直于a2和a3所确定的面。
;说明b2垂直于a3和a1所确定的面。
;说明b3垂直于a1和a2所确定的面。
正格子体积:(3)相关概念:①倒格点:平移操作所产生的格点叫。
②倒格矢:为。
③倒格子:倒格点的总体叫。
④倒格基矢:一组。
二、倒格子的性质:(1) 正点阵晶胞的体积与倒易点阵晶胞的体积成倒数关系:倒格子体积: ,(2) 正格子与倒格子间的关系:倒格矢与任一个正格矢的乘积必等于, 即 = 。
(3) 正格子中一族晶面(321h h h )和倒格子基失矢正交,即晶面的弥勒指数是垂直于该晶面的最短倒格矢坐标。
(4) 倒格子的一个基矢是和晶格原胞中一组晶面相对应的,它的方向是该晶面的法线方向;倒格矢的大小正比于晶面族(h1h2h3)的面间距的倒数:dG π2//=三、倒格子原胞和布里渊区:倒格子原胞,作由原点出发的诸倒格矢的垂直平分面,这些平面完全封闭形成的最小的多面体(体积最小)------第一布里渊区。
倒格子
摘要:倒格子是现在固体物理,半导体物理,器件物理的前沿,用量子场论的非相对论形式描述多体,各种散射过程的精确描述都少不了它。
为此为了研究的方便,结晶学家喜欢用正格子,而物理学家喜欢用倒格子,因为它在数学处理上具有优越性。
和正格子相比,它在固体物理学中,特别是在晶格动力学理论、晶体电子论以及晶体衍射方面有着较为广泛的应用。
因此倒格子具有很重要的物理意义,及其所组成的倒易点阵,更是研究晶格性质的重要手段。
关键词:倒格子正格子点阵布里渊区
一、倒格子的定义及其相关概念:
(1)倒格子:亦称倒易格子(点阵),倒格子就是和布拉发矢量(晶格矢量)共轭的另一组矢量基,俗称动量空间,适合于用来描述声子、电子的晶格动量。
它在固体物理学中,特别是在晶格动力学理论、晶体电子论以及晶体衍射方面有着较为广泛的应用。
是现在固体物理,半导体物理,器件物理的前沿,用量子场论的非相对论形式描述多体,各种散射过程的精确描述都少不了它。
晶格振动及晶体中电子的运动都是在倒格子空间中的描述。
(2)倒格子的定义:
已知有正格子基矢,定义倒格矢基矢为:
;说明b1垂直于a2和a3所确定的面。
;说明b2垂直于a3和a1所确定的面。
;说明b3垂直于a1和a2所确定的面。
正格子体积:
(3)相关概念:
①倒格点:平移操作所产生的格点叫。
②倒格矢:为。
③倒格子:倒格点的总体叫。
④倒格基矢:一组。
二、倒格子的性质:
(1) 正点阵晶胞的体积与倒易点阵晶胞的体积成倒数关系:
倒格子体积: ,
(2) 正格子与倒格子间的关系:倒格矢与任一个正格矢
的乘
积必等于, 即 = 。
(3) 正格子中一族晶面(321h h h )和倒格子基失矢正交,即晶面的弥勒指数是垂直于该晶面的最短倒格矢坐标。
(4) 倒格子的一个基矢是和晶格原胞中一组晶面相对应的,它的方向是该晶面的法线方向;倒格矢的大小正比于晶面族(h1h2h3)的面间距的倒数:
d
G π2//=
三、倒格子原胞和布里渊区:
倒格子原胞,作由原点出发的诸倒格矢的垂直平分面,这些平面完全
封闭形成的最小的多面体(体积最小)------第一布里渊区。
同理。
第一布里渊区以外,封闭的三角形的体积----------------第二布里
渊区。
依次可以得到第三布里渊区。
四、正格子和倒格子的比较:
20世纪80年代STM 问世前,人们无法直接观测到正格子空间,只能通过
X 射线衍射、电子衍射、中子衍射得到倒格子空间,再反推出正格子、晶面及晶格常数等
(1)每个晶体结构有两个点阵同它联系:晶体点阵和倒格子点阵,
①正格子点阵:是真实空间的点阵,
②倒格子点阵:是在波矢空间的点阵。
结晶学家喜欢用正格子,而物理学家喜欢用倒格子,因为它在数学处
理上具有优越性。
(2)任何一个晶体结构都有两个格子:
①正格子空间(位置空间)
②倒格子空间(状态空间)。
二者互为倒格子---------傅里叶变换。
晶格振动及晶体中电子的运动都是在倒格子空间中的描述。
五、倒格子的物理意义:
(1)倒格子中的一个格点与正格子中的一族晶面相对应。
(2)倒易点阵基矢的方向是该晶面的法线方向;
(3)倒易点阵基矢的大小是该晶面族的晶面间距的倒数的2π倍。
(4)倒格子是边长为 a
2 的正方形格子。
六、倒易点阵:
(1)倒易点阵和14种晶体点阵是一一对应的,因此也只有14种类型的倒易点阵和14种不同形状的第一布里渊区。
第一布里渊区的形状只与晶体的布拉菲点阵的几何性质有关,与晶体的化学成分、晶胞中的原子数目无关。
布里渊区是一个对称性原胞,它保留了相应的布拉菲点阵的点群对称性。
因此第一布里渊区里依然可以划分为几个完全等同的区域。
对一种晶体来说,它的所有布里渊区都有同样大小的体积,利用平移对称性可以找出第一布里渊区和所有较高的布里渊区之间的全等性。
倒空间和波矢空间重合,倒易点阵能有效地分析晶体的衍射、散射等相互作用。
倒空间和倒易点阵可以方便地计算晶体学中的晶面间距、面角、晶面法线等几何量。
(2)倒易点阵是晶体学中极为重要的概念,也是衍射理论的基础。
晶体点阵------实空间。
由晶体的周期性直接抽象出的点阵(正点阵); 倒易点阵------倒易空间。
由正点阵的傅里叶变换得来的点阵(倒易点阵)。
参考文献:
黄昆、韩汝琦,《固体物理学》,高等教育出版社,1988.10
胡赓祥、蔡珣《材料科学基础》第三版,上海交通大学出版社,2000.11。