一带电粒子在电场中加速
- 格式:ppt
- 大小:70.00 KB
- 文档页数:14
高中物理电容公式带电粒子在电场中的运动
下面是高中物理电容器常见公式,以及带电粒子在电场中的运动问题
1、带电粒子在电场中的加速公式是):
W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 其中(Vo=0)
2、带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏
转(不考虑重力作用的情况下)
在垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
在平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
带电小球接触后,电量分配3、两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
常见电场的电场线分布要求熟记〔[第二册P98];
电容单位换算:1F=106μF=1012PF;
电子伏(eV)是能量的单位,1eV=1.60×10-19J;。
高一物理《带电粒子在电场中的运动》知识点总结一、带电粒子在电场中的加速分析带电粒子的加速问题有两种思路:1.利用牛顿第二定律结合匀变速直线运动公式分析.适用于匀强电场.2.利用静电力做功结合动能定理分析.对于匀强电场和非匀强电场都适用,公式有qEd =12m v 2-12m v 02(匀强电场)或qU =12m v 2-12m v 02(任何电场)等. 二、带电粒子在电场中的偏转如图所示,质量为m 、带电荷量为q 的粒子(忽略重力),以初速度v 0平行于两极板进入匀强电场,极板长为l ,极板间距离为d ,极板间电压为U .1.运动性质:(1)沿初速度方向:速度为v 0的匀速直线运动.(2)垂直v 0的方向:初速度为零的匀加速直线运动.2.运动规律:(1)t =l v 0,a =qU md ,偏移距离y =12at 2=qUl 22m v 02d. (2)v y =at =qUl m v 0d ,tan θ=v y v 0=qUl md v 02. 三、带电粒子的分类及受力特点(1)电子、质子、α粒子、离子等粒子,一般都不考虑重力,但不能忽略质量.(2)质量较大的微粒,如带电小球、带电油滴、带电颗粒等,除有说明或有明确的暗示外,处理问题时一般都不能忽略重力.(3)受力分析仍按力学中受力分析的方法分析,切勿漏掉静电力.四、求带电粒子的速度的两种方法(1)从动力学角度出发,用牛顿第二定律和运动学知识求解.(适用于匀强电场)由牛顿第二定律可知,带电粒子运动的加速度的大小a =F m =qE m =qU md.若一个带正电荷的粒子,在静电力作用下由静止开始从正极板向负极板做匀加速直线运动,两极板间的距离为d ,则由v 2-v 02=2ad 可求得带电粒子到达负极板时的速度v =2ad =2qU m.(2)从功能关系角度出发,用动能定理求解.(可以是匀强电场,也可以是非匀强电场)带电粒子在运动过程中,只受静电力作用,静电力做的功W =qU ,根据动能定理,当初速度为零时,W =12m v 2-0,解得v =2qU m ;当初速度不为零时,W =12m v 2-12m v 02,解得v =2qU m +v 02. 五、带电粒子在电场中的偏转的几个常用推论(1)粒子从偏转电场中射出时,其速度方向的反向延长线与初速度方向的延长线交于一点,此点为粒子沿初速度方向位移的中点.(2)位移方向与初速度方向间夹角α的正切值为速度偏转角θ正切值的12,即tan α=12tan θ. (3)不同的带电粒子(电性相同,初速度为零),经过同一电场加速后,又进入同一偏转电场,则它们的运动轨迹必定重合.注意:分析粒子的偏转问题也可以利用动能定理,即qEy =ΔE k ,其中y 为粒子在偏转电场中沿静电力方向的偏移量.。
带电粒子在电场中的加速的原因
《带电粒子在电场中的加速的原因》
带电粒子在电场中的加速是一个普遍存在于电学现象中的现象。
电场是由电荷所产生的力场,它对带电粒子施加的力可以加速粒子的运动。
本文将解释带电粒子在电场中加速的原因。
首先,带电粒子在电场中的加速的原因可以追溯到库仑定律。
库仑定律是描述两个电荷之间相互作用的定律,它指出两个电荷之间的作用力与它们之间的距离的平方成反比。
当一个带电粒子进入电场时,它将受到电场中存在的电荷施加的电力。
这个电力将根据库仑定律的规律对带电粒子施加作用力,导致粒子的加速。
其次,带电粒子在电场中的加速还可以通过电场中的电场线来解释。
电场线是用来表示电场强度和方向的线条。
在一个电场中,电场线通常从正电荷向负电荷方向延伸。
当带电粒子通过电场中的电场线时,它将受到电场线所指示的方向上的电力作用。
这个电力将导致带电粒子加速,使其沿着电场线移动。
最后,带电粒子在电场中的加速还可以通过能量的转化来解释。
带电粒子在电场中的加速过程中,电场对粒子的施加力将做功,将电势能转化为动能。
根据能量守恒定律,粒子的加速将导致其动能的增加,从而实现了带电粒子在电场中的加速。
综上所述,带电粒子在电场中加速的原因可以归结为库仑定律、电场线的方向和能量转化。
了解这些原因有助于我们更好地理解电场与电荷之间的相互作用,以及电学现象中的加速现象。
带电粒子在电场中的加速和偏转知识归纳与运用技巧知识点一:带电粒子在电场中的加速和减速运动要点诠释:(1)带电粒子在匀强电场中运动的计算方法用牛顿第二定律计算:带电粒子受到恒力的作用,可以方便的由牛顿第二定律以及匀变速直线运动的公式进行计算。
用动能定理计算:带电粒子在电场中通过电势差为U AB的两点时动能的变化是,则。
(2)带电粒子在非匀强电场中运动的计算方法用动能定理计算:在非匀强电场中,带电粒子受到变力的作用,用牛顿第二定律计算不方便,通常只用动能定理计算。
:如图真空中有一对平行金属板,间距为d,接在电压为U的电源上,质量为m、电量为q的正电荷穿过正极板上的小孔以v0进入电场,到达负极板时从负极板上正对的小孔穿出。
不计重力,求:正电荷穿出时的速度v是多大?解法一、动力学由牛顿第二定律:①由运动学知识:v2-v02=2ad ②联立①②解得:解法二、由动能定理解得讨论:(1)若带电粒子在正极板处v0≠0,由动能定理得qU=mv2-mv02解得v=(2)若将图中电池组的正负极调换,则两极板间匀强电场的场强方向变为水平向左,带电量为+q,质量为m的带电粒子,以初速度v0,穿过左极板的小孔进入电场,在电场中做匀减速直线运动。
①若v0>,则带电粒子能从对面极板的小孔穿出,穿出时的速度大小为v,有 -qU=mv2-mv02解得v=②若v0<,则带电粒子不能从对面极板的小孔穿出,带电粒子速度减为零后,反方向加速运动,从左极板的小孔穿出,穿出时速度大小v=v0。
设带电粒子在电场中运动时距左极板的最远距离为x,由动能定理有: -qEx=0-mv02又E=(式d中为两极板间距离)解得x=。
知识点二:带电粒子在电场中的偏转要点诠释:(1)带电粒子在匀强电场中的偏转高中阶段定量计算的是,带电粒子与电场线垂直地进入匀强电场或进入平行板电容器之间的匀强电场。
如图所示:(2)粒子在偏转电场中的运动性质受到恒力的作用,初速度与电场力垂直,做类平抛运动:在垂直于电场方向做匀速直线运动;在平行于电场方向做初速度为零的匀加速直线运动。
带电粒子在电场运动规律透析一、带电粒子在电场中的加速1运动状态的分析:带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一直线上,做加(减)速直线运动。
2用功能观点分析:电场力对带电粒子动能的增量。
2022121mv mv qU -= 说明:①此法不仅适用于匀强电场,也适用于非匀强电场。
②对匀强电场,也可直接应用运动学公式和牛顿第二定律典型例题例1:1:如图所示,两平行金属板竖直放置,如图所示,两平行金属板竖直放置,左极板接地,中间有小孔。
右极板电势随时间变化的规律如图所示。
电子原来静止在左极板小孔处。
(不计重力作用)下列说法中正确的是法中正确的是A.A.从从t=0时刻释放电子,电子将始终向右运动,直到打到右极板上B.B.从从t=0时刻释放电子,电子可能在两板间振动C.C.从从t=T /4时刻释放电子,电子可能在两板间振动,也可能打到右极板上D.D.从从t=3T /8时刻释放电子,电子必将打到左极板上解析:从t=0时刻释放电子,如果两板间距离足够大,电子将向右先匀加速T /2,接着匀减速T /2,速度减小到零后,又开始向右匀加速T /2,接着匀减速T /2直到打在右极板上。
……直到打在右极板上。
电子不可能向左运动;电子不可能向左运动;电子不可能向左运动;如果两板间距离不够大,电子如果两板间距离不够大,电子也始终向右运动,直到打到右极板上。
从t=T /4时刻释放电子,如果两板间距离足够大,电子将向右先匀加速T /4,接着匀减速T /4,速度减小到零后,改为向左先匀加速T /4,接着匀减速T /4。
即在两板间振动;如果两板间距离不够大,则电子在第一次向右运动过程中就有可能打在右极板上。
子在第一次向右运动过程中就有可能打在右极板上。
从从t=3T /8时刻释放电子,时刻释放电子,如如果两板间距离不够大,电子将在第一次向右运动过程中就打在右极板上;如果第一次向右运动没有打在右极板上,那就一定会在第一次向左运动过程中打在左极板上。
电场中带电粒子的加速度电场是物体周围的电力场,可以通过一种力的形式(电场力)来影响带电粒子的行为。
在电场中,带电粒子会受到电场力的作用,从而发生加速运动。
本文将探讨电场中带电粒子的加速度和相关概念。
1. 电场力和电场强度电场力是带电粒子所受到的力,与电场强度直接相关。
电场强度用于描述电场的强弱程度,它的方向指向电场中正电荷会受到的力的方向。
电场力的大小与电荷量成正比,并与电场强度成比例关系。
2. 带电粒子在电场中的受力情况当带电粒子进入电场时,它会受到电场力的作用,根据库仑定律,如果带电粒子的电荷和电场的电荷异号,则电场力与电荷的乘积为正,带电粒子会受到电场力的加速作用;如果电荷同号,则电场力与电荷的乘积为负,带电粒子会受到电场力的减速作用。
3. 带电粒子的加速度计算公式根据牛顿第二定律,加速度可以表示为力与质量的比值。
在电场中,带电粒子的受力是由电场力提供的,所以可以用带电粒子在电场中的加速度来表示电场力的大小。
带电粒子在电场中的加速度计算公式如下:加速度(a) = 电场力(F) / 带电粒子的质量(m)= 电场强度(E) x 带电粒子的电荷量(q) / 带电粒子的质量(m)这个公式说明了加速度与电场强度、电荷量和质量的关系。
当电场强度增加时,加速度也会增加;当电荷量增加时,加速度也会增加;当带电粒子的质量增加时,加速度则减小。
4. 带电粒子在电场中的运动当带电粒子受到电场力的作用,会发生加速运动。
如果带电粒子的初始速度为零,那么在电场力的作用下,它会以一定的加速度加速运动。
如果带电粒子存在初始速度,那么电场力会改变其速度的方向和大小,并引起加速度的变化。
5. 应用电场中带电粒子的加速度电场中带电粒子的加速度在实际应用中具有重要意义。
例如,离子注入器是一种常见的科学装置,用于将带电粒子加速并注入到目标材料中。
加速器原理利用了电场中带电粒子的加速度。
总结:电场中带电粒子的加速度是由电场力提供的,与电场强度、电荷量和带电粒子的质量相关。
探究电场中带电粒子的加速度电场是物理学中的重要概念,它对带电粒子产生作用力,影响其运动状态。
本文将探究电场中带电粒子的加速度,并解释其背后的物理原理。
一、电场的定义与性质电场是周围带电粒子所受力场的表现形式。
在电场中,带电粒子会受到电场力的作用,从而产生加速度。
根据库仑定律,电场力与带电粒子的电荷量和距离的平方成反比,正比于电场强度。
二、电场中带电粒子的加速度计算公式带电粒子在电场中的加速度可以通过以下公式计算:a = (F/q),其中a表示加速度,F表示电场力,q表示带电粒子的电荷量。
三、电场中带电粒子的运动规律根据牛顿第二定律,带电粒子的加速度与所受的电场力成正比,与粒子的质量成反比。
因此,电场中的带电粒子会加速或减速运动,但其质量越大,受到电场力产生的加速度越小。
四、带电粒子在均匀电场中的加速度在均匀电场中,带电粒子受到的电场力是恒定的,因此其加速度也是恒定的。
根据前面的公式,加速度与电场力成正比,而电场力与电场强度成正比,因此带电粒子在均匀电场中的加速度与电场强度成正比。
五、加速电压与加速度的关系当带电粒子通过电场时,若电场强度保持不变,但电势差(电压)增大,带电粒子的加速度也会增大。
这是因为电势差的增大会使电场力增大,从而产生更大的加速度。
六、带电粒子在非均匀电场中的加速度在非均匀电场中,带电粒子受到的电场力不再是恒定的,而是随位置变化。
因此,在非均匀电场中,带电粒子的加速度也会随位置变化。
加速度的大小取决于电场力在某一位置上的大小和方向。
七、带电粒子的运动轨迹带电粒子在电场中的运动轨迹取决于其初速度、电场强度和电场的方向。
若带电粒子初速度与电场方向相同,则带电粒子将受到电场力的加速作用,并沿电场方向加速运动。
若带电粒子初速度与电场方向相反,则带电粒子将受到电场力的减速作用,并逆着电场方向减速运动。
结论:电场对带电粒子产生作用力,从而影响其运动状态。
带电粒子在电场中的加速度与电场力成正比,与粒子的电荷量和质量有关。
•1、带电粒子在电场中的平衡问题:带电粒子在电场中处于静止或匀速直线运动状态时,则粒子在电场中处于平衡状态。
假设匀强电场的两极板间的电压为U,板间的距离为d,则:mg=qE=,有q=。
2、带电粒子在电场中的加速问题:带电粒子在电场中加速,若不计粒子的重力,则电场力对带电粒子做功等于带电粒子动能的增量。
3、带电粒子在电场中的偏转问题:带电粒子以垂直匀强电场的场强方向进入电场后,做类平抛运动。
垂直于场强方向做匀速直线运动:V x=V0,L=V0t;平行于场强方向做初速为零的匀加速直线运动:,,,偏转角:。
4、粒子在交变电场中的往复运动当电场强度发生变化时,由于带电粒子在电场中的受力将发生变化,从而使粒子的运动状态发生相应的变化,粒子表现出来的运动形式可能是单向变速直线运动,也可能是变速往复运动。
带电粒子是做单向变速直线运动,还是做变速往复运动主要由粒子的初始状态与电场的变化规律(受力特点)的形式有关。
①若粒子(不计重力)的初速度为零,静止在两极板间,再在两极板间加上甲图的电压,粒子做单向变速直线运动;若加上乙图的电压,粒子则做往复变速运动。
②若粒子以初速度为v0从B板射入两极板之间,并且电场力能在半个周期内使之速度减小到零,则甲图的电压能使粒子做单向变速直线运动;则乙图的电压也不能粒子做往复运动。
所以这类问题要结合粒子的初始状态、电压变化的特点及规律、再运用牛顿第二定律和运动学知识综合分析。
注:是否考虑带电粒子的重力要根据具体情况而定,一般说来:①基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量);②带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力。
••电场中无约束情况下的匀速圆周运动:•1.物体做匀速圆周运动的条件从力与运动的关系来看,物体要做匀速圆周运动,所受合外力必须始终垂直于物体运动的方向,而且大小要恒等于物体所需的向心力。