滚动轴承故障诊断的频谱分析
- 格式:docx
- 大小:257.50 KB
- 文档页数:3
滚动轴承故障诊断分析学院名称:机械与汽车工程学院专业班级:学生姓名:学生学号:指导教师姓名:摘要滚动轴承故障诊断本文对滚动轴承的故障形式、故障原因、常用诊断方法等诊断基础和滚动轴承故障的振动机理作了研究,并建立了相应的滚动轴承典型故障(外圈损伤、内圈损伤、滚动体损伤)的理论模型,给出了一些滚动轴承故障诊断常见实例。
通过对滚动轴承故障振动机理的研究可以帮助我们了解滚动轴承故障的本质和特征。
本文对特征参数的提取,理论推导,和过程都进行了详细的阐述,关键词:滚动轴承;故障诊断;特征参数;特征;ABSTRACT :The Rolling fault diagnosisIn the thesis ,the fault types,diagnostic methods an d vibration principle of rolling bearing are discussed.the thesis sets up a series of academic m odels of faulty rolling bearings and lists some sym ptom parameters which often used in fault diagnosis of rolling bearings . the study of vibration prin ciple of rolling bearings can help us to know the essence and feature of rolling bearings.In this paper, the parameters of the extraction, theoretical a nalysis, and process are described in detail. Keywords: Rolling Bearing; Fault Diagnosis; Symptom P arameter; Distinction Index; Distinction Rate0引言:随着科技的发展,现代工业正逐步向生产设备大型化、复杂化、高速化和自动化方向发展,在提高生产率、降低成本、节约能源、减少废品率、保证产品质量等方面具有很大的优势。
滚动轴承故障诊断初步1、故障原因滚动轴承的早期故障是滚子和滚道剥落、凹痕、破裂、腐蚀和杂物嵌入。
即主要故障形式:疲劳剥落、磨损、塑性变形、锈蚀、断裂、胶合、保持架损坏。
产生主要原因包括搬运粗心、安装不当、不对中、轴承倾斜、轴承选用不正确、润滑不足或密封失效、负载不合适以及制造缺陷。
2、频谱和波形特征滚动轴承它是由内圈、外圈、滚动体和保持架四部分组成。
当滚动体和滚道接触处遇到一个局部缺陷时,就有一个冲击信号产生。
缺陷在不同的元件上,接触点经过缺陷的频率是不相同的,这个频率就称为滚动轴承的特征频率。
滚动轴承的故障特征频率的数值一般在几赫兹到几百赫兹之间,在频谱图中的1000Hz以内的低频区域轴承故障特征频率如下:1、滚动轴承故障特征频率(外圈静止)式中:Z——滚动体个数fr——转频(Hz)D——轴承节径(mm)d——滚动体直径(mm)α——接触角(1)滚动轴承内圈故障特征频率(2)滚动轴承外圈故障特征频率(3)滚动轴承滚动体特征频率(4)滚动轴承保持架特征频率2、滚动轴承故障特征频率的计算经验公式:二、滚动轴承故障诊断的要素滚动轴承由内圈、外圈、滚动体和保持架四部分组成,每个轴承部件对应一个轴承故障特征频率。
滚动轴承的故障频率分布有一个明显的特点,往往在低频和高频两个频段内都有表现。
所以在频率分析时,可以选择在这两个频段进行分析。
根据滚动轴承的故障形式在频域中的表现形式,将整个频域分为三个频段,既高频段、中频段和低频段。
l 高频阶段指频率范围处于2000-5000Hz 的频段,主要是轴承固有频率,在轴承故障的早期,高频段反映比较敏感;中频阶段指频率范围处于800-1600Hz 的频段,一般是由于轴承润滑不良而引起碰磨产生的频率范围;l 低频阶段指频率范围处于0-800Hz 的频段,基本覆盖轴承故障特征频率及谐波;在高频段和低频段中所体现的频率是否为轴承故障频率,还要通过其他方法进行印证加以确认。
根据滚动轴承的故障特征频率在频域和时域中的表现,可将滚动轴承的诊断方法总结为三个频段;八个确认,简称三八诊断法。
滚动轴承的状态监测与故障判断滚动轴承作为工业设备中常见的零部件之一,承载着机器运行过程中的重要轴向负荷。
滚动轴承的状态监测与故障判断对于设备的正常运行和维护至关重要。
本文将探讨滚动轴承的状态监测技术、故障判断方法以及相关的应用实例。
一、滚动轴承的状态监测技术1. 振动监测技术振动监测是最常见的滚动轴承状态监测技术之一。
通过在轴承上安装振动传感器,可以实时监测轴承运行时所产生的振动信号。
根据振动信号的频率、幅值和波形等特征参数,可以判断轴承的运行状态,从而及时发现轴承的异常情况。
声音监测是利用特定的声学传感器对轴承运行时产生的声音信号进行监测和分析。
通过分析声音的频谱、频率和幅值等参数,可以判断轴承的工作状态和存在的故障问题。
温度监测是通过在轴承上安装温度传感器,实时监测轴承的工作温度。
当轴承发生异常时,温度会升高,通过监测温度的变化可以及时发现轴承故障的存在。
4. 油膜厚度监测技术滚动轴承常常需要润滑油润滑,在轴承内形成一定厚度的油膜以减少摩擦和磨损。
油膜厚度监测技术可通过超声波传感器或其它传感器测量油膜的厚度,判断油膜的完整性和润滑效果,进而判断轴承的工作状态。
二、滚动轴承的故障判断方法1. 振动特征分析法通过对轴承振动信号的频谱分析、包络分析和趋势分析等方法,判断轴承是否存在异常振动,以及具体的故障类型,如轴承内环、外环或滚动体的故障。
通过监测轴承的工作温度,分析温度的变化趋势和幅值变化,判断轴承是否存在异常,例如摩擦热、润滑不良或局部热点等故障。
1. 航空发动机轴承的状态监测与故障判断航空发动机轴承是航空发动机中的重要部件,其状态的监测与故障的判断对飞机的安全运行至关重要。
航空发动机轴承通常采用振动监测和声音监测技术,通过监测振动信号和声音信号的特征参数,判断轴承的工作状态和可能存在的故障问题。
滚动轴承的状态监测与故障判断是工业生产中的重要课题,通过采用多种监测技术和故障判断方法,可以有效地保障轴承的安全运行,延长其使用寿命,提高设备的可靠性和运行效率。
基于时域和频域分析的滚动轴承故障诊断一、本文概述随着工业技术的不断发展,滚动轴承作为旋转机械中的关键部件,其运行状态直接影响到设备的性能与安全性。
然而,由于工作环境的恶劣、长时间运行以及维护不当等因素,滚动轴承常常会出现各种故障,如疲劳剥落、磨损、裂纹等。
这些故障不仅会降低设备的运行效率,还可能引发严重的安全事故。
因此,对滚动轴承进行故障诊断技术的研究具有重要意义。
本文旨在探讨基于时域和频域分析的滚动轴承故障诊断方法。
文章将简要介绍滚动轴承的工作原理及其常见故障类型,为后续的分析和诊断奠定基础。
然后,重点阐述时域分析和频域分析的基本原理及其在滚动轴承故障诊断中的应用。
时域分析主要关注轴承振动信号的时序特征,通过提取信号中的幅值、相位、频率等信息,揭示轴承的运行状态。
而频域分析则通过对信号进行频谱转换,分析轴承在不同频率下的振动特性,进一步识别潜在的故障特征。
通过结合时域和频域分析,本文旨在提供一种全面、有效的滚动轴承故障诊断方法。
这种方法不仅能够准确识别轴承的故障类型,还能对故障程度进行定量评估,为设备的维护和管理提供有力支持。
本文还将对现有的故障诊断方法进行比较和评价,探讨各种方法的优缺点及适用范围,为相关领域的研究和实践提供参考和借鉴。
二、滚动轴承故障类型及原因滚动轴承作为机械设备中的重要组成部分,其运行状态直接影响到整个设备的性能和稳定性。
因此,对滚动轴承的故障诊断至关重要。
滚动轴承的故障类型多种多样,主要包括疲劳剥落、磨损、腐蚀、裂纹和塑性变形等。
这些故障的产生往往与多种因素有关,如材料质量、制造工艺、运行环境、操作维护等。
疲劳剥落是滚动轴承最常见的故障类型之一,主要是由于轴承在循环应力作用下,材料表面发生疲劳破坏,形成剥落坑。
疲劳剥落的原因主要包括轴承材料的疲劳强度不足、循环应力过大、润滑不良等。
磨损是轴承在运行过程中,由于摩擦力的作用导致材料逐渐损失的现象。
磨损的原因主要包括润滑不良、异物侵入、材料耐磨性不足等。
基于时频分析方法的滚动轴承故障诊断引言滚动轴承作为机械设备中重要的零部件,一旦出现故障会给机械设备带来严重影响,甚至造成事故。
因此,及早发现和诊断滚动轴承的故障就显得非常重要。
目前,基于时频分析方法的滚动轴承故障诊断成为工业界和研究领域的热门话题。
本文将介绍基于时频分析方法的滚动轴承故障诊断技术。
一、时频分析方法基于时频分析方法是一种在时间和频率域中同时分析信号的方法。
它能够准确地反映信号在时间和频率上的变化规律,对于复杂信号的分析有很好的效果。
时频分析方法的主要思想是将信号在不同时间上分解为一系列窄带信号,并计算这些信号在频域上的功率谱密度。
常用的时频分析方法有短时傅里叶变换(Short-Time Fourier Transform, STFT)、小波变换(Wavelet Transform, WT)等。
二、滚动轴承的故障特征滚动轴承的故障通常表现为以下几种特征:(1)局部损伤。
轴承表面出现磨痕、划痕、龟裂等现象。
(2)疲劳裂纹。
因长时间使用或负载过高造成轴承材料疲劳、塑性变形等现象,导致轴承出现裂纹。
(3)卡滞。
轴承在旋转过程中无明显的摩擦或滚动。
(4)松动。
轴承内部零件出现松动现象。
(5)内部故障。
包括球、滚道和保持架的断裂、脱落等。
以上故障通常表现为轴承内部振动信号的变化。
因此,我们可以通过对轴承振动信号的时频分析来判断轴承是否存在故障。
三、基于时频分析方法的滚动轴承故障诊断滚动轴承振动信号的瞬时频率在动态过程中会发生变化。
因此,利用短时傅里叶变换或小波变换对滚动轴承振动信号进行时频分析,可以得到滚动轴承振动信号的时频谱图。
时频谱图反映了振动信号在时间和频率上的变化规律。
对于滚动轴承,其正常工作状态下,其振动信号的时频谱图呈现出周期性的结构,与机械设备的旋转周期一致。
而当滚动轴承出现故障时,其时频谱图则会出现不规则的结构。
例如,当滚动轴承表面出现局部损伤时,时频谱图中将显示出一系列高幅值的谱线,这些谱线与轴承旋转周期不一致。
滚动轴承故障诊断频谱分析滚动轴承在机械设备中扮演着重要的角色,但随着使用时间的增加,轴承可能会出现故障。
为了及时发现和诊断轴承故障,频谱分析是一种常用的方法。
本文将详细介绍滚动轴承故障的频谱分析原理、方法和应用。
频谱分析是一种将时域信号转换为频域信号的技术,通过分析频谱图可以获得轴承故障所产生的频率信息,从而诊断轴承故障类型和程度。
轴承故障通常会产生一些特征频率,如滚珠轴承故障产生的频率一般为滚动频率、内圈频率、外圈频率等。
通过对这些特征频率的分析,可以准确判断轴承故障的类型,如滚子瓦损坏、滚道脱落等。
频谱分析的方法主要有两种:时域频谱分析和频域频谱分析。
时域频谱分析是通过将时域信号进行快速傅里叶变换,将其转换为频域信号。
频域频谱分析是通过对信号进行谱分解,然后计算信号的能量谱密度,从而得到频域信号的频谱图。
这两种方法各有优劣,可以根据实际需要选择适合的方法。
滚动轴承故障的频谱分析主要包括以下几个步骤:信号采集、数据预处理、频谱分析和故障诊断。
信号采集是指通过传感器等设备将轴承运行时的振动信号采集下来,通常采集的信号有时间域振动信号、加速度信号和速度信号等。
数据预处理是对采集的信号进行滤波、降噪和修正等处理,目的是提高分析结果的准确性。
频谱分析是核心部分,可以通过FFT(快速傅里叶变换)等算法将时域信号转换为频域信号。
然后通过对频域信号进行谱分解,得到频谱图,可以观察到各种故障产生的特征频率。
故障诊断是根据频谱图的分析结果判断轴承故障的类型和程度,以及采取相应的维修措施。
频谱分析在滚动轴承故障诊断中有着广泛的应用。
它可以帮助工程师在轴承故障发生前及时发现问题,避免故障对设备造成更大的损坏。
此外,频谱分析还可以帮助工程师判断维修的紧急程度,提高设备的维修效率和可靠性。
总之,滚动轴承故障的频谱分析是一种有效的方法,可以帮助工程师及时发现和诊断轴承故障,并采取相应的维修措施。
通过合理使用频谱分析技术,可以提高设备的运行可靠性和寿命。
滚动轴承故障诊断的频谱分析
滚动轴承在机电设备中的应用非常广泛,滚动轴承状态的好坏直接关系到旋转设备的运行状态,因此在实际生产过程中作好滚动轴承的状态监测与故障诊断是搞好设备维修与管理的重要环节。
滚动轴承在其使用过程中表现出很强的规律性,并且重复性强。
正常优质轴承在开始使用时振动和噪声均比较小,但频谱有些散乱,幅值比较小。
运动一段时间后,振动和噪声保持在一定水平,频谱比较单一,仅出现一,二倍频,极少出现三倍工频以上频谱,轴承状态非常平稳,进入稳定工作期。
持续运行后进入使用后期,轴承振动和噪声开始增大,有时出现异音,但振动增大的变化比较缓慢,此时,轴承峭度值开始突然到达一定值。
可以认为此时轴承出现了初期故障。
这时就要对轴承进行严密监测,密切注意其变化。
此后轴承峭度值又开始快速下降,并接近正常值,而振动和噪声开始显著增大,其增大幅度开始加快,其振动超过标准时(ISO2372),其轴承峭度值也开始快速增大,当轴承超过振动标准,峭度值也超过正常值时,可认为轴承已进入晚期故障,需要及时检修设备,更换滚动轴承。
1、滚动轴承故障诊断方式
振动分析是对滚动轴承进行状态监测和故障诊断的常用方法。
一般方式为:利用数据采集器在设备现场采集滚动轴承振动信号并储存,传送到计算机,利用振动分析软件进行深入分析,从而得到滚动轴承各种振动参数的准确数值,进而判断这些滚动轴承是否存在故障。
采用恩递替公司的Indus3振动测量分析系统进行大中型电机滚动轴承的状态监测和故障诊断,经过近几年实际使用,其效果令人非常满意。
要想真实准确反映滚动轴承振动状态,必须注意采集信号的准确真实,因此要在离轴承最近的地方安排测点。
2、滚动轴承正常运行特点与诊断技巧
滚动轴承的运转状态在其使用过程中有一定的规律性,并且重复性非常好。
例如,正常优质轴承在开始使用时,振动幅值和噪声均比较小,但频谱有些散乱(图1)这可能是由于制造过程中的一些缺陷,如表面毛刺等所致。
运行一段时间后,振动幅值和噪声维持一定水平,频谱非常单一,仅出现一、二倍频。
极少出现三倍工频以上频谱(图2),轴承状态非常稳定,进入稳定工作期。
继续运行一段时
间后,轴承幅值和噪声开始增大(图3),有时出现异响,但振动增大的变化较缓慢,此时,轴承峭度值由2.303突然达到33.47,可认为轴承出现初期故障。
这时,就要对该轴承进行严密监测,密切注意其变化。
此后,轴承峭度值又开始快速下降,并接近正常值,而振动和噪声开始显著增大(图4),且幅度加快,当振动超过振动标准时(如ISO2372标准),其轴承峭度值也开始快速增大。
当峭度值也超过正常值(可用峭度相对标准,此处为4)达4.97,速度达196.6mm/s时,我们认为轴承已进入晚期故障,需及时检修设备,更换滚动轴承。
3、滚动轴承异常运行特点与诊断技巧
由于假冒伪劣轴承难免会进入企业,而此类轴承造成的严重故障往往是突发的、灾难性的,如轴承保持架和轴承内外圈突然断裂等,这些故障轻者造成转子抱轴,重者导致转子或设备报废。
近几年我们在生产实际中经常遇到此类情况,因此,必须及时诊断出滚动轴承状态好坏并更换伪劣轴承,避免大事故发生。
对此,我们在实际监测与诊断中也积累了一些实用技巧。
我们发现此类轴承在运行初期,其频谱有特点,即设备工频一般不占振动主要成分,而高倍频率振动较多,且大多占主要成分(图5),但振动总值不大。
用振动标准(如ISO2372 标准)判断振动是合格的。
此时,应引起警惕,这种状态即为轴承零件存在缺陷等,
其失效往往是非常突然和快速的,上述轴承即在检测后两小时转子抱轴。
4、滚动轴承快速诊断技巧
在实际状态监测中,往往只需判断滚动轴承好坏,能用多长时间。
我们在现场诊断中,采用有量纲参数与无量纲参数相结合,可快速判断出轴承故障,即采用振动速度结合轴承峭度值进行综合诊断。
当两个条件均超过标准时,我们判断轴承存在故障。
这种判断方法经过三年的实践,证明对滚动轴承的故障诊断非常实用,准确率超过90%,诊断出的轴承基本上均处于后期故障阶段。
另外,当监测到滚动轴承低频振动非常大时(图6),排除机组不对中、不平衡、结构松动、基础共振等结构性因素后,即使无滚动轴承特征频率,也应对滚动轴承进行检修。
5、滚动轴承频谱分析
对于振动不大、轴承峭度不大、频谱复杂的振动信号,在现场难以判断有无故障,此时可对振动信号应用计算机进行精密分析。
先进行常规分析,检查振动速度和轴承峭度是否接近标准,而后用功率谱考察振动能量是否超标。
其功率谱不大,观察频谱中各种频率成分。
若谱线对应频率为工频整数倍,则应着重查找机组结构方面的故障;若为工频分数倍,出现较多小数位频率,则应着重查找轴承特征频率。
若有则轴承存在故障;若无则排除其它部件故障后需引起警惕,加强监测。
实际中常有许多振动不超标但却出现轴承故障的事例,一旦出现轴承特征频率或接近轴承特征频率频谱,则应判断轴承存在故障,而后根据幅值大小,可作趋势分析或安排检修。