七年级数学培优:专题07 整式的加减_答案
- 格式:doc
- 大小:74.50 KB
- 文档页数:3
专题07 整式的加减(知识大串讲)【知识点梳理】考点1 同类项1.定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
2.合并同类项:(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
(2)合并同类项的法则: 同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(3)合并同类项步骤: a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
c.写出合并后的结果。
(4)在掌握合并同类项时注意: a.如果两个同类项的系数互为相反数,合并同类项后,结果为0. b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
说明:合并同类项的关键是正确判断同类项。
考点2 去括号(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
考点3整式的加减几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
【典例分析】【考点1 同类项的判断】【典例1】(2022春•兰西县校级期末)下列各组两项中,是同类项的是( )A.xy与﹣xy B.ac与abcC.﹣3ab与﹣2xy D.3xy2与3x2y【答案】A【解答】解:A.根据同类项的定义,xy与﹣xy是同类项,那么A符合题意.B.根据同类项的定义,与不是同类项,那么B不符合题意.C.根据同类项的定义,﹣3ab与﹣2xy不是同类项,那么C不符合题意.D.根据同类项的定义,3xy2与3x2y不是同类项,那么D不符合题意.故选:A.【变式1】(2021秋•乌当区期末)在下列各组单项式中,不是同类项的是( )A.5x2y和﹣7x2y B.m2n和2mn2C.﹣3和99D.﹣abc和9abc【答案】B【解答】解:A.5x2y和﹣7x2y所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意;B.m2n和2mn2所含字母相同,但相同字母的指数不相同,故不是同类项,故本选项符合题意;C.﹣3和99是同类项,故本选项不合题意;D.﹣abc和9abc所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意.故选:B.【考点2 已知同类项求指数中字母的值】【典例2】(2021秋•北辰区期末)如果2x3n y m+1与﹣3x12y4是同类项,那么m,n的值分别是( )A.m=﹣2,n=3B.m=2,n=3C.m=﹣3,n=2D.m=3,n=4【答案】D【解答】解:∵2x3n y m+1与﹣3x12y4是同类项,∴3n=12,m+1=4,解得m=3,n=4,故选:D.【变式2-1】(2022春•龙凤区期末)如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2022=( )A.1B.﹣1C.52022D.﹣52022【答案】A【解答】解:∵单项式﹣xy b+1与x a﹣2y3是同类项,∴a﹣2=1,b+1=3,解得:a=3,b=2,∴(a﹣b)2022=(3﹣2)2022=12022=1.故选:A.【变式2-2】(2022春•潍坊期末)若单项式20x m﹣n y14与可以合并成一项,则m n的值是( )A.B.2C.D.﹣2【答案】A【解答】解:由题意可知:m﹣n=3,3m﹣8n=14,∴m=2,n=﹣1,∴m n=.故选:A.【考点3 合并同类项】【典例3】(2022•清苑区二模)下列算式中正确的是( )A.4x﹣3x=1B.2x+3y=3xyC.3x2+2x3=5x5D.x2﹣3x2=﹣2x2【答案】D【解答】解:A、原式=x,故A不符合题意.B、2x与3y不是同类项,不能合并,故B不符合题意.C、3x2与2x3不是同类项,不能合并,故C不符合题意.D、x2﹣3x2=﹣2x2,故D符合题意.故选:D.【变式3】(2022•钱塘区一模)化简:﹣5x+4x=( )A.﹣1B.﹣x C.9x D.﹣9x 【答案】B【解答】解:原式=(﹣5+4)x=﹣x.故选:B【考点4 去括号或添括号】【典例4-1】(2022春•宁波期末)下列添括号正确的是( )A.﹣b﹣c=﹣(b﹣c)B.﹣2x+6y=﹣2(x﹣6y)C.a﹣b=+(a﹣b)D.x﹣y﹣1=x﹣(y﹣1)【答案】C【解答】解:A.﹣b﹣c=﹣(b+c),故此选项不合题意;B.﹣2x+6y=﹣2(x﹣3y),故此选项不合题意;C.a﹣b=+(a﹣b),故此选项符合题意;D.x﹣y﹣1=x﹣(y+1),故此选项不合题意;故选:C.【典例4-2】(2021秋•望城区期末)下列各题中去括号正确的是( )A.5﹣3(x+1)=5﹣3x﹣1B.2﹣4(x+)=2﹣4x+1C.2﹣4(x+1)=2﹣x﹣4D.2(x﹣2)﹣3(y﹣1)=2x﹣4﹣3y﹣3【答案】C【解答】解:A.5﹣3(x+1)=5﹣3x﹣3,故A不符合题意.B.2﹣4(x+)=2﹣4x﹣1,故B不符合题意.C.2﹣4(x+1)=2﹣x﹣4,故C符合题意.D.2(x﹣2)﹣3(y﹣1)=2x﹣4﹣3y+3,故D不符合题意.故选:C.【变式4-1】(2022•馆陶县)等号左右两边一定相等的一组是( )A.﹣(a+b)=﹣a+b B.a3=a+a+aC.﹣2(a+b)=﹣2a﹣2b D.﹣(a﹣b)=﹣a﹣b【答案】C【解答】解:A、原式=﹣a﹣b,原去括号错误,故此选项不符合题意;B、a3=a•a•a,a+a+a=3a,原式左右两边不相等,故此选项不符合题意;C、原式=﹣2a﹣2b,原去括号正确,故此选项符合题意;D、原式=﹣a+b,原去括号错误,故此选项不符合题意.故选:C.【变式4-2】(2021秋•海门市期末)计算﹣(4a﹣5b),结果是( )A.﹣4a﹣5b B.﹣4a+5b C.4a﹣5b D.4a+5b【答案】B【解答】解:﹣(4a﹣5b)=﹣4a+5b,故选:B【考点5 整式加减的运算】【典例5】(2022•南京模拟)先去括号,再合并同类项;(1)(3x2+4﹣5x3)﹣(x3﹣3+3x2)(2)(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)(3)2x﹣[2(x+3y)﹣3(x﹣2y)](4)(a+b)2﹣(a+b)﹣(a+b)2+(﹣3)2(a+b).【解答】解:(1)原式=3x2+4﹣5x3﹣x3+3﹣3x2=﹣6x3+7;(2)原式=3x2﹣xy﹣2y2﹣2x2﹣2xy+4y2=x2﹣3xy+2y2;(3)原式=2x﹣2x﹣6y+3x﹣6y=3x﹣12y;(4)原式=﹣(a+b)﹣(a+b)2+9(a+b)=﹣(a+b)2+(a+b).【变式5-1】(河南期中)先去括号,再合并同类项(1)2(2b﹣3a)+3(2a﹣3b)(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)【解答】解:(1)2(2b﹣3a)+3(2a﹣3b)=4b﹣6a+6a﹣9b=﹣5b;(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)=4a2+6ab﹣4a2﹣7ab+1=﹣ab+1.【变式5-2】(乐清市校级月考)去括号,合并同类项:(1)﹣3(2x﹣3)+7x+8;(2)3(x2﹣y2)﹣(4x2﹣3y2).【解答】解:(1)﹣3(2x﹣3)+7x+8=﹣6x+9+7x+8,=(﹣6x+7x)+(9+8),=x+17,(2)3(x2﹣y2)﹣(4x2﹣3y2)=3x2﹣y2﹣2x2+y2,=3x2﹣2x2+(﹣y2+y2),=x2.【考点6 化简求值】【典例6】(2022春•杜尔伯特县期中)代入求值.(1)已知|a﹣2|+(b+1)2=0,求代数式5ab﹣[2a2b﹣(4b2+2a2b)]的值;(2)2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1.【解答】解:(1)原式=5ab﹣(2a2b﹣4b2﹣2a2b)=5ab﹣2a2b+4b2+2a2b=5ab+4b2,由题意可知:a﹣2=0,b+1=0,∴a=2,b=﹣1,原式=5×2×(﹣1)+4×1=﹣10+4=﹣6.(2)原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=1,y=﹣1时,原式=﹣5×1×(﹣1)+5×1×(﹣1)=5﹣5=0.【变式6-1】(2021秋•兴庆区校级期末)先化简,再求值.(1)3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2),其中(x+2)2+|y﹣1|=0;(2)(﹣a2+3ab﹣2b)﹣2(﹣a2+4ab﹣b2),其中a=3,b=﹣2.【解答】解:(1)3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)=3y2﹣x2+4x2﹣6xy﹣3x2﹣3y2=﹣6xy,∵(x+2)2+|y﹣1|=0,(x+2)2≥0,|y﹣1|≥0,∴x+2=0,y﹣1=0.∴x=﹣2,y=1.当x=﹣2,y=1时,原式=﹣6×(﹣2)×1=12.(2)(﹣a2+3ab﹣2b)﹣2(﹣a2+4ab﹣b2)=﹣a2+3ab﹣2b+a2﹣8ab+3b2=﹣5ab+3b2﹣2b,当a=3,b=﹣2时,原式=﹣5×3×(﹣2)+3×(﹣2)2﹣2×(﹣2)=30+3×4+4=30+12+4=46.【变式6-2】(2021秋•梁平区期末)先化简再求值:(1)﹣(x2﹣y2)﹣[3xy﹣(x2﹣y2)],其中x=﹣3,y=﹣4.(2),其中|2+y|+(x﹣1)2=0.【解答】解:(1)﹣(x2﹣y2)﹣[3xy﹣(x2﹣y2)]=﹣x2+y2﹣3xy+x2﹣y2=﹣3xy,当x=﹣3,y=﹣4时,原式=﹣3xy=﹣3×(﹣3)×(﹣4)=﹣36;(2)=5x2y﹣(3xy2﹣6xy2+7x2y)=5x2y﹣3xy2+6xy2﹣7x2y=﹣2x2y+3xy2,因为|2+y|+(x﹣1)2=0,所以y=﹣2,x=1,所以原式=﹣2×1×(﹣2)+3×1×4=16.【考点7 整式加减的无关型问题】【典例7】(2021秋•东港区期末)(1)先化简,再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣,y=2.(2)已知A=y2+3ay﹣1,B=by2+4y﹣1,且4A﹣3B的值与y的取值无关,求a,b的值.【解答】解:(1)原式=3x2y﹣(2x2y﹣6xy+3x2y﹣xy)=3x2y﹣2x2y+6xy﹣3x2y+xy=﹣2x2y+7xy,当,y=2时,原式=.(2)4A﹣3B==3y2+12ay﹣4﹣3by2﹣12y+3=(3﹣3b)y2+(12a﹣12)y﹣1,∵4A﹣3B的值与y的取值无关,∴3﹣3b=0,12a﹣12=0,∴a=1,b=1.【变式7-1】(2022春•泰州期末)已知:A=3x2+2xy+3y﹣1,B=x2﹣xy.(1)计算:A﹣3B;(2)若A﹣3B的值与y的取值无关,求x的值.【解答】解:(1)A﹣3B=(3x2+2xy+3y﹣1)﹣3(x2﹣xy)=3x2+2xy+3y﹣1﹣3x2+3xy=5xy+3y﹣1;(2)∵A﹣3B=5xy+3y﹣1=(5x+3)y﹣1,又∵A﹣3B的值与y的取值无关,∴5x+3=0,∴x=﹣.【变式7-2】(2021秋•井研县期末)已知A=2x2+xy+3y﹣1,B=x2﹣xy.(1)当x=﹣1,y=3时,求A﹣2B的值;(2)若3A﹣6B的值与y的值无关,求x的值.【解答】解:(1)∵A=2x2+xy+3y﹣1,B=x2﹣xy,∴A﹣2B=(2x2+xy+3y﹣1)﹣2(x2﹣xy)=2x2+xy+3y﹣1﹣2x2+2xy=3xy+3y﹣1,当x=﹣1,y=3时,原式=3×(﹣1)×3+3×3﹣1=﹣9+9﹣1=﹣1;(2)∵A=2x2+xy+3y﹣1,B=x2﹣xy,∴3A﹣6B=3(2x2+xy+3y﹣1)﹣6(x2﹣xy)=6x2+3xy+9y﹣3﹣6x2+6xy=9xy+9y﹣3=(9x+9)y﹣3,∵3A﹣6B的值与y的值无关,∴9x+9=0,∴x=﹣1.【考点8 整式加减的看错问题】【典例8】(2021秋•济宁期末)已知多项式M,N,其中M=2x2﹣x﹣1,小马在计算2M﹣N时,由于粗心把2M﹣N看成了2M+N求得结果为﹣3x2+2x﹣1,请你帮小马算出:(1)多项式N;(2)多项式2M﹣N的正确结果.求当x=﹣1时,2M﹣N的值.【解答】解:(1)根据题意得:N=﹣3x2+2x﹣1﹣2(2x2﹣x﹣1)=﹣3x2+2x﹣1﹣4x2+2x+2=﹣7x2+4x+1;(2)2M﹣N=2(2x2﹣x﹣1)﹣(﹣7x2+4x+1)=4x2﹣2x﹣2+7x2﹣4x﹣1=11x2﹣6x﹣3,当x=﹣1时,2M﹣N=11+6﹣3=14.【变式8】(2021秋•禹州市期末)某同学做一道题,已知两个多项式A、B,求A﹣2B的值.他误将“A﹣2B”看成“A+2B”,经过正确计算得到的结果是x2+14x﹣6.已知A=﹣2x2+5x﹣1.(1)请你帮助这位同学求出正确的结果;(2)若x是最大的负整数,求A﹣2B的值.【解答】解:(1)由题意得:2B=x2+14x﹣6﹣(﹣2x2+5x﹣1)=x2+14x﹣6+2x2﹣5x+1=3x2+9x﹣5,所以,A﹣2B=﹣2x2+5x﹣1﹣(3x2+9x﹣5)=﹣2x2+5x﹣1﹣3x2﹣9x+5=﹣5x2﹣4x+4;(2)由x是最大的负整数,可知x=﹣1,所以,A﹣2B=﹣5×(﹣1)2﹣4×(﹣1)+4=﹣5+4+4=3【考点8整式加减的应用】【典例9】(2021秋•海沧区期末)为了促进“资源节约和环境友好型”社会建设,引导居民合理用电.某市结合实际,决定提供两种家庭用电计费方式供居民选择.方式一:峰谷计价.收费标准为:峰时段(上午8:00~晚上21:00)用电的电价为0.65元/度,谷时段(晚上21:00~次日晨8:00)用电的电价为0.35元/度.方式二:阶梯计价.收费标准如下表:超过400度的部分居民一个月用电量不超过200度超过200度但不超过400度的部分电价(单位:元/度)0.500.600.75(1)若该市居民小王家某月用电300度,其中,峰时段用电200度,谷时段用电100度.他家选择哪种计费方式费用较低?(2)若该市居民小张家某月总用电量为a度,其中80%为峰时段的用电量.请用含a的式子分别表示两种计费方式应缴的电费.【解答】解:(1)方式一:200×0.65+100×0.35=130+35=165(元).方式二:200×0.50+(300﹣200)×0.60=100+100×0.60=100+60=160(元).160元<165元,所以他家选择方式二计费方式费用较低.(2)方式一:80%a×0.65+(1﹣80%)×a×0.35=0.8a×0.65+0.2a×0.35=0.52a+0.07a=0.59a(元).方式二:当a不超过200时,电费为:a×0.5=0.5a(元).当a超过200但不超过400时,电费为:200×0.5+(a﹣200)×0.6=100+0.6a﹣120=0.60﹣(120﹣100)=(0.6a﹣20)(元).当a超过400时,电费为:200×0.50+(400﹣200)×0.60+(a﹣400)×0.75=100+120+0.75a﹣400×0.75=220+0.75a﹣300=0.75a﹣(300﹣220)=(0.75a﹣80)(元).答:小张家按方式一计费方式应缴电费0.59元.方式二计费时,当a不超过200时,应缴电费0.5a元;当a超过200但不超过400时,应缴电费(0.6a一20)元;当a超过400时,应缴电费(0.75a一80)元.【变式9】(2021秋•沐川县期末)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为5公里,行车时间为10分钟,则需付车费多少元;(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元?(用含a、b的代数式表示,并化简)(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,并且小王的行车时间比小张的行车时间多24分钟,请计算说明两人下车时所付车费有何关系?【解答】解:(1)1.8×5+0.45×10=13.5(元),答:需付车费13.5元;(2)当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a﹣10)=(2.2a+0.45b﹣4)元;(3)设小王与小张乘坐滴滴快车分别为a分钟、(a﹣24)分钟,则小王应付车费1.8×9.5+0.45a=17.1+0.45a,小张应付车费1.8×14.5+0.45(a﹣24)+0.4×(14.5﹣10)=17.1+0.45a,因此,两人车费一样多【典例10】(2021秋•新泰市期末)如图是一块长方形花园,内部修有两个凉亭及过道,其余部分种植花圃(阴影部分).(1)用整式表示花圃的面积;(2)若a=3m,修建花圃的成本是每平方米60元,求修建花圃所需费用.【解答】解:(1)根据题意得:(7.5+12.5)×(a+2a+2a+2a+a)﹣12.5•2a×2=20•8a﹣50a=160a﹣50a=110a(m2),所以,花圃的面积为:110a;(2)当a=3m、修建花圃的成本是每平方米60元时,修建花圃所需费用为110×3×60=19800(元),所以,修建花圃所需费用为19800元.【变式10】(2022春•莱州市期末)如图是一个长方形游乐场,其宽是4a米,长是6a 米.其中半圆形休息区和长方形游泳区以外的地方都是绿地.已知半圆形休息区的直径和长方形游泳区的宽是2a米,游泳区的长是3a米.(1)该游乐场休息区的面积为 a2 m2,游泳区的面积为 6a2 m2.(用含有a 的式子表示)(2)若长方形游乐场的宽为40米,绿化草地每平方米需要费用30元,求这个游乐场中绿化草地的费用.【解答】解:(1)休息区的面积为:×π×a2=a2(m2);游泳区的面积为:3a×2a=6a2(m2).故答案为:a2,6a2;(2)∵长方形游乐场的宽为40米,∴a=10米.所以(6a×4a﹣6a2﹣a2)×30≈(24a2﹣6a2﹣1.57a2)×30=16.43a2×30=492.9a2.当a=10时,原式=49290(元).答:游乐场中绿化草地的费用为49290元.【典例11】(2021秋•连城县期中)某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元,“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带:方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款 元.(用含x的代数式表示)若该客户按方案二购买,需付款 元.(用含x的代数式表示)(2)若x=40,通过计算说明此时按哪种方案购买较为合算?(3)当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.并算出需要付款多少元?【解答】解:(1)客户要到该商场购买西装20套,领带x条(x>20).方案一费用:20×1000+(x﹣20)×200=(200x+16000)元,方案二费用:(20×1000+200x)×0.9=(180x+18000)元,故答案为:(200x+16000),(180x+18000).(2)当x=40时,方案一:200×40+16000=24000(元),方案二:180×40+18000=25200(元),所以,按方案一购买较合算.(3)能给出一种更为省钱的购买方案;先按方案一购买20套西装获赠送20条领带,再按方案二购买20条领带;需要付款:20000+200×20×90%=23600(元).【变式11】(2021秋•淅川县期中)某校羽毛球队需要购买6支羽毛球拍和x盒羽毛球(x>6),羽毛球拍市场价为150元/支,羽毛球为30元/盒.甲商场优惠方案为:所有商品九折.乙商场优惠方案为:买1支羽毛球拍送1盒羽毛球,其余原价销售.(1)分别用x的代数式表示在甲商场和乙商场购买所有物品的费用.(2)当x=20时,请通过计算说明选择哪个商场购买比较省钱.【答案】(1甲:27x+810乙:30x+720(2)乙商场购买比较省钱【解答】解:(1)在甲商场购买所有物品的费用为:0.9(6×150+30x)=27x+810,在乙商场购买所有物品的费用为:6×150+30(x﹣6)=30x+720;(2)当x=20时,27x+810=1350(元);30x+720=1320(元);1350>1320,答:选择乙商场购买比较省钱.。
一、单选题1、实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简|a-b|+|a+b|的结果为()。
A. 2aB. 2bC. -2aD. -2b参考答案: C【思路分析】首先根据图示,可得a<0<b,且|a|>|b|,据此分别求出|a-b|、|a+b|的值各是多少;然后把它们求和,求出化简|a-b|+|a+b|的结果为多少即可.【解题过程】解:根据图示,可得a<0<b,且|a|>|b|,∴|a-b|+|a+b|=(b-a)-(a+b)=-2a故选:C.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2、按如图2-1-3所示的运算程序,能使输出的结果为12的是()A. x=3,y=3B. x=-4,y=-2C. x=2,y=4D. x=4,y=2参考答案: C【思路分析】本题考查正是相关概念的应用【解题过程】解:当x=3,y=3时,输出的值为15;当x=-4,y=-2时,输出的值为20;当x=2,y=4时,输出的值为12;当x=4,y=2时,输出的值为20。
故选:C。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -3、下列说法正确的是()A. −0.5x2y3与2x3y2是同类项B. 1x与3x是同类项C. 34xyz与34xy是同类项D. 5a2b与−3ba2是同类项参考答案: D【思路分析】本题主要考查同类项的判断,掌握同类项的定义是解题的关键,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项。
初一数学整式的加减试题答案及解析1.因式分解:(1)x3-4x; (2)(3a-b)(x-y)+(a+3b)(y-x).【答案】(1) x(x+2)(x-2);(2) 2(x-y)(a-2b).【解析】(1)先提出公因式x,剩下的因式用平方差公式分解即可;(2)两次提取公因式即可得解.试题解析:(1)原式=x(x2-4)=x(x+2)(x-2);(2)原式=(3a-b)(x-y)-(a+3b)(x-y)=(x-y)(2a-4b)=2(x-y)(a-2b).【考点】1.因式分解——提公因式法;2.因式分解——公式法.2.已知代数式的值为,求代数式的值.【答案】-6【解析】解:.因为3,故上式.3.先化简,后求值:已知,求代数式的值.【答案】【解析】解:由得,,解得,.将代数式化简得.将,代入得原式.4.多项式3a2b2-5ab2+a2-6是___次项式,常数项是 .【答案】四次四项式、-6【解析】本题中未知数的最高次是4次,所以是四次,未知数有a,b两个,故是四次二项式;常数项是-6【考点】多项式点评:本题属于对多项式的基本常识的考查,需要考生在对多项式基本次数的基础上熟练把握5.下列计算正确的是()A.2x+3y=5xy B.-3x-x=-xC.-xy+6x y=5x y D.5ab-b a=ab【答案】D【解析】根据合并同类项的法则依次分析各选项即可作出判断.A、2x与3y不是同类项,无法合并,B、-3x-x=-x,C、-xy与6x y不是同类项,无法合并,故错误;D、5ab-b a=ab,本选项正确.【考点】合并同类项点评:解题的关键是熟练掌握合并同类项的法则:把同类项的系数相加,字母和字母的指数不变.6.若2x y与-3x y是同类项,则-m=【答案】3【解析】先根据同类项的定义求得m、n的值,再根据有理数的乘方法则计算即可.由题意得,解得,则-m【考点】同类项,有理数的乘方点评:解题的关键是熟记同类项的定义:所含字母相同,并且相同字母的指数也分别相同的项是同类项.7.已知:A=x+xy+y,B=-3xy-x求(1)B-A;(2)2A-3B;(3)若A-B-C=0,则C如何用含x,y的代数式表示?【答案】(1)-2x-4xy-y;(2)5x+11xy+2y;(3)2x+4xy+y【解析】先根据题意分别列出代数式,再去括号、合并同类项即可.(1)B-A=(-3xy-x)-(x+xy+y)=-3xy-x-x-xy-y=-2x-4xy-y;(2)2A-3B=2(x+xy+y)-3(-3xy-x)=2x+2xy+2y+9xy+3x=5x+11xy+2y ;(3)∵A-B-C=0∴C= A-B=(x+xy+y)-(-3xy-x)=x+xy+y+3xy+x= 2x+4xy+y.【考点】整式的加减点评:解题的关键是熟练掌握在去括号时,若括号前是“-”号,把括号和括号前的“-”号去掉后,括号里各项的符号均要改变.8.化简或求值:(1)化简:(2)已知,求的值。
华师大版七年级数学上册期末专题《整式的加减》一、选择题1.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A.(a-10%)(a+15%)万元B.a(1-90%)(1+85%)万元C.a(1-10%)(1+15%)万元D.a(1-10%+15%)万元2.某服装店新开张,第一天销售服装a件,第二天比第一天少销售14件,第三天的销售量是第二天的2倍多10件,则这三天销售了()件.A.3a﹣42B.3a+42C.4a﹣32D.3a+323.已知代数式x﹣2y的值是5,则代数式﹣3x+6y+1的值是( )A.16B.﹣14C.14D.﹣164.下面的式子中正确的是( )A.3a2﹣2a2=1B.5a+2b=7abC.3a2﹣2a2=2aD.5xy2﹣6xy2=﹣xy25.下列去括号错误的共有( )①a+(b+c)=ab+c ②a-(b+c-d)=a-b-c+d③a+2(b-c)=a+2b-c ④a2-[-(-a+b)]=a2-a-bA.1个B.2个C.3个D.4个6.关于单项式-xy3z2,下列说法正确的是( )A.系数是1,次数是5B.系数是-1,次数是6C.系数是1,次数是6D.系数是-1,次数是57.多项式1+xy﹣xy2的次数及最高次项的系数分别是()A.2,1 B.2,﹣1 C.3,﹣1 D.5,﹣18.一个代数式的2倍与﹣2a+b的和是a+2b,这个代数式是( )A.3a+bB.C.D.9.已知a,b两数在数轴上对应的点的位置如图,则化简式子|a+b|-|a-2|+|b+2|的结果是( )A.2a+2bB.2b+3C.2a-3D.-110.计算6a2 - 5a+3与5a2+2a - 1的差,结果正确的是( )A.a2 - 3a+4B.a2 - 3a+2C.a2 - 7a+2D.a2 - 7a+411.数x、y在数轴上对应点的位置如图所示,则化简|x+y|- |y- x|的结果是( )A.0B.2xC.2yD.2x- 2y12.对a,b定义运算“*”如下:已知x*3= - 1,则实数x等于( )A.1B. - 2C.1或 - 2D.不确定二、填空题13.若3x a y4和-10x2y b是同类项,则a-b=______.14.在等式的括号内填上恰当的项,x2-y2+8y-4=x2-( ).15.已知2a﹣3b2=5,则10﹣2a+3b2的值是 .16.若关于x,y的多项式4xy3-2ax2-3xy+2x2-1不含x2项,则a=________.17.已知P=2xy-5x+3,Q=x-3xy-2且3P+2Q=5恒成立,则x= .18.已知m是系数,关于x,y的两个多项式mx2-2x+y与-3x2+2x+3y的差中不含二次项,则代数式m2+3m-1的值为________.三、计算题19.计算:﹣x+0.6x﹣2.6x20.化简:5(3a2b﹣ab2)﹣(ab2﹣3a2b)21.化简:12-(6x-8x2+2)-2(5x2+4x-1),22.化简:四、解答题23.某同学做一道数学题,误将求“A-B”看成求“A+B”, 结果求出的答案是3x2-2x+5.已知A=4x2-3x-6,请正确求出A-B.24.某电子产品在春节后调整了价格,单价调为199元显得更有吸引力.林林想攒够了钱去买一个,已知林林每星期有a元零用钱.(1)林林计划每星期节省零用钱的30%,则n个星期能节省多少元钱?(2)当a=70时,10个星期能节省多少元钱?此时他是否有能力买下这个电子产品?25.任意写出一个数位不含0的三位数,任取三个数字中的两个,组合成所有可能的两位数(6个).求出所有这些两位数的和,然后将它除以原三位数上的数字之和.例如对于三位数223,取其两个数字组成所有可能的两位数有:22,23,23,22,32,32.它们的和是154.三位数223各个数位上的数字之和为7,154÷7=22.再换几个数试一试,你发现了什么?运用代数式的知识说明你的发现是正确的.参考答案1.C2.C.3. 答案为:B.4.答案为:D.5.答案为:C6.答案为:B7.答案为:C.8.答案为:D.9.答案为:A.10.答案为:D.11.答案为:C.12.答案为:A13.答案为:-214.答案为:y2-8y+4.15.答案为:5.16.答案为:117.答案为:0.18.答案为:-1.19.原式=﹣3x;20.原式=15a2b﹣5ab2﹣ab2+3a2b=18a2b﹣6ab2.21.原式=3222.原式=23.解:A-B=2A-(A+B)=5x2-4x-1724.解:(1)30%a×n=0.3na(元).答:n个星期能节省0.3na元.(2)当a=70,n=10时,0.3na=0.3×10×70=210(元)>199元,所以此时他有能力买下这个电子产品.25.解:猜想:所有可能的两位数的和除以这几个数字的和恒等于22.证明如下:设几个非零的数字是a,b,c.则所有的两位数是10a+b,10a+c,10b+a,10b+c,10c+a,10c+b.则(10a+b+10a+c+10b+a+10b+c+10c+a+10c+b)÷(a+b+c)=(22a+22b+22c)÷(a+b+c)=22(a+b+c)÷(a+b+c)=22.。
初一(上)数学整式的加减(培优篇)关卡一:单项式、多项式1.(1)单项式是关于的五次单项式,则 ;z yx n 123-z y x ,,,=n (2)关于的多项式是二次三项式,则 , ;x b x x x a b-+--3)4(=a =b (3)如果是关于的五次四项式,那么 。
52)2(4232+---+-x x q x xp x =+q p 2.如果关于的多项式与是次数相同的多项式,求的值x 21424-+x ax x x b53+4322123-+-b b b 3.已知是关于的三次三项式,求的值.5)1(3||2+--y m yx m y x ,1322+-m m 4.若多项式是关于的五次二项式,求的值()22532mx y n y +--x y ,222m mn n -+5.如果为四次三项式,则________。
()1233m xy m xy x ---+m =关卡二:同类项1.my x 22与是同类项,则=_____,=_____.y x n3-m n 2.单项式与是同类项,则的值为( ) 1-+-a b a b x y x 23b a -A .2 B . C .0 D .12-3.如果与的和是单项式,那么与取值为( )2522+-n m b a23-n ab m n A . B . C . D .3,2==n m 2,3==n m 2,3=-=n m 2,3-==n m 4.已知与是同类项,则的值是( )y xn 72001+y x m 322002+-2)2(n m -A .16 B .4×2001 C .-4×2002 D .5关卡三:去括号、添括号法则去括号法则: (1)括号前面是”+”号,去掉”+”号和括号,括号里的各项不变号;(2)括号前面是”-”号,去掉”-”号和括号,括号里的各项都变号.添括号法则: (1)添括号时,括号前添“+”号,括到括号里的各项都不变符号; (2)添括号时,括号前添“-”号,括到括号里的各项都改变符号。
第四章整式的加减:多项式与整式的加减培优训练人教版2024—2025学年七年级上册例1:已知n 是自然数,多项式 x x y n 2331--+ 是三次三项式,那么n 等于 . 变式1:代数式b x x a 2431-++是四次二项式,求a,b 的值.变式2:已知关于x ,y 的代数式(a ﹣3)x 2y |a |+(b +2)为五次单项式,求a 2﹣3ab +b 2的值.变式3:多项式是关于x ,y 的三次二项式,则m 的值是 .变式4:若4xy |k |﹣5(k ﹣3)y 2+1是四次三项式,则k 的值为( )A .±2B .2C .﹣3D .±3 变式5:我们对一个单项式A 进行这样的变化:①A 的系数不发生变化;②将A 包含的所有字母按照英语字母表的顺序进行排列;③从左至右,将A 中每个字母的次数变为其右侧相邻字母的次数,最右侧字母的次数不发生变化.经历上述变化后,单项式A 变为单项式A ′.我们称A ′为A 的“右变次单项式”,例如,的“右变次单项式”为,﹣2a 3b 2c 的“右变次单项式”为﹣2a 2bc ,a 2b 4c 3d 5的“右变次单项式”为a 4b 3c 5d 5.(1)的“右变次单项式”为 ,﹣a 4b 3c 2的“右变次单项式”为 ;(2)若5次单项式A 的“右变次单项式”为3ab ,则A = ;(3)若单项式A 的“右变次单项式”为A ′,单项式B 的“右变次单项式”为B ′,且A +B =7a 6b 4c 2,则A ′+B ′= ;(4)若仅含有字母a ,b ,c 的27次单项式A 的系数为5,“右变次单项式”为A 1,A 1的“右变次单项式”为A 2,若A 1的次数为28,A 2的次数为27,则A = .例2:若多项式()x y x x x mx 537852222+--++-的值与x 无关,求])45(2[22m m m m +---的值.变式6:若多项式x 3+(3m ﹣1)x 2﹣5x +7与多项式x 4+2x 3+8x 2+x ﹣1的差不含二次项,则m 的值为( )A .4B .﹣4C .3D .﹣3变式7:若关于x 的多项式3x 2﹣x +1+kx 中不含一次项,则k 的值为( )A .1B .﹣1C .0D .±1变式8:已知M =2a 2﹣ab +b ﹣1,M ﹣3N =a 2+3ab +2b +1.若计算M ﹣[2N ﹣(M ﹣N )]的结果与字母b 无关,则a 的值是 . 变式9:已知关于x 的多项式2mx 3﹣2x 2+3x ﹣(2x 3+nx )不含三次项和一次项,求(m ﹣n )3的值.变式10:已知A =2a 2﹣a ﹣ab ,B =a 2﹣b +ab .(1)化简A ﹣2B ;(2)若A ﹣2B 的值与a 的取值无关,求A ﹣2B 的值.变式11:关于a 的多项式4a 3﹣2ma 2+3a ﹣1与5a 3﹣4a 2+(n ﹣1)a ﹣1的和不含a 2和a 项.(1)求m ,n 的值;(2)求(4m 2n ﹣3mn 2)﹣2(m 2n +mn 2)的值.变式12:已知代数式A=2x2+3xy+2y﹣1,B=x2﹣xy+x﹣1.(1)当x=2,y=﹣2时,求A﹣2B的值;(2)若A﹣2B的值与x的取值无关,求y的值.变式13:已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(1)化简:2A﹣3B;(2)若,xy=1,求2A﹣3B的值;(3)若2A﹣3B的值与y的取值无关,求此时2A﹣3B的值.变式14:有四个数,第一个数是a2+b,第二个数比第一个数的2倍少a2,第三个数是第一个数与第二个数的差的3倍,第四个数比第一个数少﹣2b,若第二个数用x表示,第三个数用y表示,第四个数用z表示.(1)用a,b分别表示x,y,z三个数;(2)若第一个数的值是3时,求这四个数的和;(3)已知m,n为常数,且mx+2ny﹣3z﹣4的结果与a,b无关,求m,n的值.例3:若单项式与﹣2x n y3的和仍为单项式,则其和为.变式15:如果单项式﹣y与2x4y n+3的和是单项式,那么(m+n)2024的值为()A.22024B.0C.1D.﹣1变式16:如果代数式4x2a﹣1y与的差是单项式,那么3a+b=.变式17:若3a n+1b2与a3b m+3的差仍是单项式,则m﹣n=.例4:已知M=﹣2a2+4a+1,N=﹣3a2+4a﹣1,则M与N的大小关系是()A.M>N B.M<NC.M=N D.以上都有可能变式18:已知M=4x2﹣3x﹣2,N=6x2﹣3x+6,则M与N的大小关系是()A.M<N B.M>NC.M=N D.以上都有可能例5:理解与思考:整体代换是数学的一种思想方法.例如:若x2+x=0,则x2+x+1186=;我们将x2+x作为一个整体代入,则原式=0+1186=1186.仿照上面的解题方法,完成下面的问题:(1)若x2+x﹣1=0,则x2+x+2021=;(2)如果a+b=3,求2(a+b)﹣4a﹣4b+21的值;(3)若a2+2ab=20,b2+2ab=8,求a2+2b2+6ab的值.变式19:理解与思考:整体代换是数学的一种思想方法.例如:若x2+x=0,则x2+x+1186=;我们将x2+x作为一个整体代入,则原式=0+1186=1186.仿照上面的解题方法,完成下面的问题:(1)如果a+b=3,求2(a+b)﹣4a﹣4b+21的值;(2)若a2+2ab=20,b2+2ab=8,求a2+2b2+6ab的值.(3)当x=2024时,代数式ax5+bx3+cx﹣5的值为m,求当x=﹣2024时,代数式ax5+bx3+cx﹣5的值.变式20:如图.在正方形ABCD的边长为3,以A为圆心,2为半径作圆弧.以D为圆心,3为半径作圆弧.若图中阴影部分的面积分为S1、S2.则S1﹣S2=.。
人教7年级 数学 第二章 整式 (培优).一、单选题1.若 3x m y 3 与﹣2x 2y n 是同类项,则( )A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2【答案】B2.单项式﹣5x 2yz 2的系数和次数分别是( )A .5,4B .﹣5,5C .5,5D .﹣5,﹣5【答案】B3.如果3ab 2m-1与9ab m +1是同类项,那么m 等于( )A .2B .1C .﹣1D .0【答案】A4.当x=1时,ax +b +1的值为−2,则(a +b−1)(1−a−b )的值为A .− 16B .− 8C .8D .16【答案】A5.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x+C .()232x x ++D .()36x x ++【答案】B6.若多项式32281x x x -+-与多项式323253x mx x +-+的差不含二次项,则m 等于( )A .2B .-2C .4D .-4【答案】D7.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( )A .甲B .乙C .丙D .一样【答案】C8.用棋子摆出下列一组图形:按照这种规律摆下去,第n 个图形用的棋子个数为( )A .3nB .6nC .3n +6D .3n +3【答案】D9.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:()()2222223355a ab b a ab b a +---++=26b -,空格的地方被墨水弄脏了,请问空格中的一项是( )A .+2abB .+3abC .+4abD .-ab【答案】A10.已知5,2a b ==,且||a b b a -=-,则a+b 的值为( )A .3或7B .-3或-7C .-3D .-7【答案】B二、填空题11.已知多项式x |m |+(m ﹣2)x ﹣10是二次三项式,m 为常数,则m 的值为_____.【答案】-212.若多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m =________.【答案】-613.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为__________.【答案】114.某音像社出租光盘的收费方法是:每张光盘在租后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在出租后的第n 天(n 是大于2的自然数)应收租金____元;那么第10天应收租金__________元.【答案】(0.60.5)n + 5.615.若单项式-12a 2x b m 与a n b y-1可合并为12a 2b 4,则xy-mn=___________.【答案】-3三、解答题16.已知A =2x 2﹣1,B =3﹣2x 2,求A ﹣2B 的值.【答案】6x 2-717.已知有理数a ,b 在数轴上的位置如图所示,化简:232a b a b b a +----.【答案】73a b-+18.已知xy x y+=2,求代数式3533x xy y x xy y -+-+-的值。
第二章整式加减第一节整式的有关的概念1、知识框架.。
特征:分母只含有字母因数,带正号的单项式(例如b a )的系数为1,带负号的单项式(例如:b a -3)的系数为-1.。
③单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数如:单项式2351yz x -的系数是51-,次数是6.。
(2)多项式①多项式的概念:几个单项式的和叫做多项式.。
(A )在多项式中,每个单项式叫做多项式的项某项的次数是几,该项就叫几次项;不含字母的项叫做常数项,也叫零次项.。
(B )一个多项式有几项就叫做几项式.。
多项式中所含单项式的个数就是多项式的项数.。
(C )多项式中的符号,看作各项的性质符号.。
(正负号)②多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数.。
③多项式的排列(A )把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列.。
(B )把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列.。
由于多项式是几个单项式的和,所以可以用加法的运算定律,来交换各项的位置,而保持原多项式的值不变.。
(3)整式单项式和多项式统称为整式.。
整式的特征是分母不含字母.。
分母含有字母的叫分式(4)同类项的概念所含字母相同,并且相同字母的指数也相同的项叫做同类项.。
几个常数项也是.。
(5)合并同类项①合并同类项的概念把多项式中的同类项合并成一项,叫做合并同类项.。
通常我们把一个多项式的各项按照某个字母指数从大到小(降幂)或者从小到大(升幂)的顺序排列.。
②合并同类项的法则:合并同类项,所得的系数是合并前各同类项的系数的和,且字母连同它的指数不变.。
(即“一相加,两不变”:“系数相加”,实质为有理数的加法,要注意加时一定要带上符号;“两不变”即字母和字母的指数不变)(6)去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同.。
1.下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.2.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.3.化简2a -[3b -5a -(2a -7b )]的值为( )A .9a -10bB .5a +4bC .-a -4bD .-7a +10b A 解析:A【解析】2a -[3b -5a -(2a -7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b ,故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.4.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( )A .2n n xB .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- B 解析:B【分析】 要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n .【详解】因为第一个单项式是1112(1)2x x -=-⨯;第二个单项式是222222(1)2x x =-⨯;第三个单项式是333332(1)2x x -=-⨯,…,所以第n 个单项式是(1)2n n n x -.故选:B .【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.5.下列各代数式中,不是单项式的是( )A .2m -B .23xy -C .0D .2tD 解析:D【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.【详解】 A 选项,2m -是单项式,不合题意;B 选项,23xy -是单项式,不合题意;C 选项,0是单项式,不合题意;D 选项,2t不是单项式,符合题意. 故选D .【点睛】 本题考查单项式的定义,较为简单,要准确掌握定义.6.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.7.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( ) A .2018B .2018-C .1009-D .1009C 解析:C【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n ,然后把n 的值代入进行计算即可得解. 【详解】解: 123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=-678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-,故选择C【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.8.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .5B 解析:B【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4,解得,n=3,故选:B.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.9.已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( )A .﹣1B .﹣2C .﹣3D .﹣4A解析:A【分析】根据同类项是字母相同且相同字母的指数也相同,可得m ,n 的值,根据代数式求值,可得答案.【详解】由题意,得3m =6,n =2.解得m =2,n =2.9m 2﹣5mn ﹣17=9×4﹣5×2×2﹣17=﹣1,故选:A .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.10.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( )A .2B .﹣2C .3D .﹣3D 解析:D【分析】先将多项式合并同类型,由不含x 的二次项可列【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,∴6+2m=0,解得m =﹣3,故选:D .【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.11.下列去括号正确的是( )A .221135135122x y x x y y ⎛⎫--+=-++ ⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y xx y x +--=+-+ D .()()223423422x y xx y x --+=--+ C 解析:C【分析】依据去括号法则计算即可判断正误.【详解】 A. 221135135122x y x x y x ⎛⎫--+=-+- ⎪⎝⎭,故此选项错误; B. ()8347831221a ab b a ab b --+=-+-,故此选项错误;C. ()()222353261063x y xx y x +--=+-+,此选项正确; D. ()()223423422x y xx y x --+=---,故此选项错误;故选:C.【点睛】此题考查整式的化简,注意去括号法则.12.下列说法正确的是( )A .0不是单项式B .25R π的系数是5C .322a 是5次单项式D .多项式2ax +的次数是2D 解析:D【分析】根据整式的相关概念可得答案.【详解】A 、0是单项式,故A 错误;B 、25R π的系数是5π,故B 错误;C 、322a 是2次单项式,故C 错误;D 、多项式2ax +的次数是2,故D 正确.故选:D .【点睛】本题考查单项式的系数,单项式中的数字因数叫做这个单项式的系数,单项式中,所有字母的指数和叫做这个单项式的次数,也考查了多项式的次数.13.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A 解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 14.一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,46C 解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C .【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.15.如果m ,n 都是正整数,那么多项式x m +y n +3m+n 的次数是( )A .2m +2nB .mC .m +nD .m ,n 中的较大数D解析:D【解析】【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 的次数是m ,n 中的较大数是该多项式的次数.【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 中次数最高的多项式的次数,即m ,n 中的较大数是该多项式的次数.故选D.【点睛】此题考查多项式,解题关键在于掌握其定义.1.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______.【分析】根据不含xy 项即xy 项的系数为0求出k 的值【详解】解:原式∵不舍项∴故答案为【点睛】本题考查了多项式要求多项式中不含有那一项应让这一项的系数为0 解析:19【分析】根据不含xy 项即xy 项的系数为0求出k 的值.【详解】 解:原式2213383x k xy y ⎛⎫=+--+ ⎪⎝⎭,∵不舍xy 项,∴1303k -=,19k =, 故答案为19. 【点睛】 本题考查了多项式,要求多项式中不含有那一项,应让这一项的系数为0.2.数字解密:第一个数是3=2+1,第二个数5=3+2,第三个数是9=5+4,第四个数17=9+8,……,观察并猜想第六个数是_______.65【分析】设该数列中第n 个数为an (n 为正整数)根据给定数列中的前几个数之间的关系可找出变换规律an=2an ﹣1﹣1依此规律即可得出结论【详解】解:设该数列中第n 个数为an (n 为正整数)观察发现规解析:65【分析】设该数列中第n 个数为a n (n 为正整数),根据给定数列中的前几个数之间的关系可找出变换规律“a n =2a n ﹣1﹣1”,依此规律即可得出结论.【详解】解:设该数列中第n 个数为a n (n 为正整数),观察,发现规律:a 1=3=2+1,a 2=5=2a 1﹣1,a 3=9=2a 2﹣1,a 4=17=2a 3﹣1,…,a n =2a n ﹣1﹣1.∴a 6=2a 5﹣1=2×(2a 4﹣1)﹣1=2×(2×17﹣1)﹣1=65.故答案为65.3.观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________.【分析】分别从单项式的系数与次数两方面总结即可得出规律进而可得答案【详解】解:由已知单项式的排列规律可得第n 个单项式为:故答案为:【点睛】本题考查了单项式的规律探求通过所给的单项式找到规律并能准确的解析:(2)n n x -【分析】分别从单项式的系数与次数两方面总结即可得出规律,进而可得答案.【详解】解:由已知单项式的排列规律可得第n 个单项式为:(2)n n x -.故答案为:(2)n n x -.【点睛】本题考查了单项式的规律探求,通过所给的单项式找到规律,并能准确的用代数式表示是解题的关键.4.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.65【分析】根据题目中数字的特点可知每组的个数依次增大每组中的数字都是连续的偶数然后即可求出2020是多少组第多少个数从而可以得到mn 的值然后即可得到m+n 的值【详解】解:∵将正偶数按照如下规律进行解析:65【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m 、n 的值,然后即可得到m +n 的值.【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m 组有m 个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+ (44)44(441)2⨯+=990,1+2+3+…+45=45(451)2⨯+=1035, ∴2020是第45组第1010-990=20个数,∴m =45,n =20,∴m +n =65.故答案为:65.【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键.5.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, … 则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101 【解析】试题1111++++13355799101⨯⨯⨯⨯ =111111111111)()()()23235257299101-+-+-++-( =111111111++)23355799101---++-( =111)2101-(=11002101⨯ =50101. 6.在多项式422315x x x x 中,同类项有_________________;-2x5x 【分析】根据同类项:所含字母相同并且相同字母的指数也相同进行判断即可【详解】解:-2x 与5x 是同类项;故答案为:-2x5x 【分析】本题考查了同类项的知识解题的关键是掌握同类项的定义解析:-2x ,5x【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【详解】解: -2x 与5x 是同类项;故答案为:-2x ,5x .【分析】本题考查了同类项的知识,解题的关键是掌握同类项的定义.7.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.08a【解析】试题分析:根据题意得:a•(1+20)×90=108a;故答案为108a考点:列代数式解析:08a【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a;故答案为1.08a.考点:列代数式.8.观察下列图形它们是按一定规律排列的,依照此规律,第20个图形共有________________ 个★.【分析】由排列组成的图形都是三角形找出规律即可求出答案【详解】解:根据规律可知:第一个图形中有1×3=3个★第二个图形中有2×3=6个★第三个图形中有3×3=9个★…第n个图形有3n个★∴第20个图解析:60【分析】由排列组成的图形都是三角形,找出规律,即可求出答案.【详解】解:根据规律可知:第一个图形中有1×3=3个★,第二个图形中有2×3=6个★,第三个图形中有3×3=9个★,…第n个图形有3n个★,∴第20个图形共有20×3=60个★.故答案为:60.【点睛】解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.本题的关键规律为第n个图形有3n个★.9.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m为________,第n个正方形的中间数字为______.(用含n的代数式表示)…………【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n 由以上规律即可求解【详解解析:83n -【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,∴第n 个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.10.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________.【分析】根据题意可知单项式与是同类项从而可求出m 的值【详解】解:∵若单项式与的差仍是单项式∴这两个单项式是同类项∴m-2=1解得:m=3故答案为:3【点睛】本题考查合并同类项和单项式解题关键是能根据解析:3【分析】根据题意可知单项式322m x y-与3-x y 是同类项,从而可求出m 的值. 【详解】解:∵若单项式322m x y -与3-x y 的差仍是单项式, ∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】本题考查合并同类项和单项式,解题关键是能根据题意得出m=3.11.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍.设第一堆原有a 个棋子,第二堆原有______个棋子.【分析】根据题意可得第二堆现在的棋子数是2(a-2)因此原来的棋子数为2(a-2)-2【详解】解:由题意可得:现在第二堆有2(a-2)个棋子因此原来第二堆有2(a-2)-2=2a-6个棋子故答案为:解析:()26a -【分析】根据题意可得第二堆现在的棋子数是2(a -2),因此原来的棋子数为2(a -2)-2.【详解】解:由题意可得:现在第二堆有2(a -2)个棋子,因此原来第二堆有2(a -2)-2=2a -6个棋子.故答案为:(2a -6).【点睛】本题考查了整式加减的应用,根据题意列出代数式是解决此题的关键.1.小丽暑假期间参加社会实践活动,从某批发市场以批发价每个m 元的价格购进100个手机充电宝,然后每个加价n 元到市场出售.(1)求售出100个手机充电宝的总售价为多少元(结果用含m ,n 的式子表示)? (2)由于开学临近,小丽在成功售出60个充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完.①她的总销售额是多少元?②相比不采取降价销售,她将比实际销售多盈利多少元(结果用含m 、n 的式子表示)? ③若m=2n ,小丽实际销售完这批充电宝的利润率为 (利润率=利润÷进价×100%) 解析:(1)售出100个手机充电宝的总售价为:100(m+n )元;(2)①实际总销售额为:92(m+n )元;②实际盈利为92n ﹣8m 元;③38%.【分析】(1)先求出每个充电宝的售价,再乘以100,即可得出答案;(2)①先算出60个按售价出售的充电宝的销售额,再计算剩下40个按售价8折出售的充电宝的销售额,相加即可得出答案;②计算100个按售价出售的充电宝的销售额,跟①求出来的销售额比较,即可得出答案;③将m=2n 代入实际利润92n-8m 中,再根据利润率=利润÷进价×100%,即可得出答案.【详解】解:(1)∵每个充电宝的售价为:m+n 元,∴售出100个手机充电宝的总售价为:100(m+n )元.(2)①实际总销售额为:60(m+n )+40×0.8(m+n )=92(m+n )元,②实际盈利为92(m+n )﹣100m=92n ﹣8m 元,∵100n ﹣(92n ﹣8m )=8(m+n ),∴相比不采取降价销售,他将比实际销售多盈利8(m+n )元.③当m=2n 时,张明实际销售完这批充电宝的利润为92n ﹣8m=38m 元,利润率为38100m m×100%=38%. 故答案为38%.【点睛】 本题考查的是列代数式,解题的关键是要看懂题目意思,理清字母之间的数量关系. 2.小马虎在计算一个多项式减去225a a +-的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是231a a +-.()1求这个多项式;()2算出此题的正确的结果.解析:(1)2324a a ++;(2)2 9a a ++.【分析】(1)根据题意可以求得相应的多项式;(2)根据(1)中的结果可以求得正确的结果.【详解】解:(1)由题意可得:这个多项式是:a 2+3a ﹣1+2a 2﹣a +5=3a 2+2a +4,即这个多项式是3a 2+2a +4;(2)由(1)可得:3a 2+2a +4﹣(2a 2+a ﹣5)=3a 2+2a +4﹣2a 2﹣a +5=a 2+a +9即此题的正确的结果是a 2+a +9.【点睛】本题考查了整式的加减,解答本题的关键是明确整式的加减的计算方法,求出相应的多项式.3.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a 2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)解析:乙旅行社收费比甲旅行社贵0.2a 元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a )×90%-(a+a+12a ) =2.7a-2.5a=0.2a (元),则乙旅行社收费比甲旅行社贵0.2a 元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.4.已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy=3xy+3y .∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.。
七年级数学专题训练07 整式的加减阅读与思考整式的加减涉及许多概念,准确地把握这些概念并注意它们的区别与联系是解决有关问题的基础,概括起来就是要掌握好以下两点:1.透彻理解“三式”和“四数”的概念“三式”指的是单项式、多项式、整式;“四数”指的是单项式的系数、次数和多项式的系数、次数.2.熟练掌握“两种排列”和“三个法则”“两种排列”指的是把一个多项式按某一字母的升幂或降幂排列,“三个法则”指的是去括号法则、添括号法则及合并同类项法则.物以类聚,人以群分.我们把整式中那些所含字母相同、并且相同字母的次数也相同的单项式作为一类——称为同类项,一个多项式中的同类项可以合聚在一起——称为合并同类项.这样,使得整式大为简化,整式的加减实质就是合并同类项.例题与求解[例1]如果代数式ax5+bx3+cx-5,当x=-2时的值是7,那么当x=7时,该式的值是______.(江苏省竞赛试题) 解题思路:解题的困难在于变元个数多,将x两个值代入,从寻找两个多项式的联系入手.[例2]已知-1<b<0,0<a<1,那么在代数式a-b,a+b,a+b2,a2+b中,对于任意a,b对应的代数式的值最大的是( )A.a+b B.a-b C.a+b2D.a2+b(“希望杯”初赛试题)解题思路:采用赋值法,令a=12,b=-12,计算四个式子的值,从中找出值最大的式子.[例3]已知x=2,y=-4时,代数式ax2+12by+5=1997,求当x=-4,y=-12时,代数式3ax-24by3+4986的值.(北京市“迎春杯”竞赛试题) 解题思路:一般的想法是先求出a,b的值,这是不可能的.解本例的关键是:将给定的x,y值分别代入对应的代数式,寻找已知与待求式子之间的联系,整体代入求值.[例4]已知关于x的二次多项式a(x3-x2+3x)+b(2x2+x)+x3-5.当x=2时的值为-17,求当x=-2时,该多项式的值.(北京市“迎春杯”竞赛试题) 解题思路:解题的突破口是根据多项式降幂排列、多项式次数等概念挖掘隐含的关于a,b的等式.[例5]一条公交线路上起点到终点有8个站.一辆公交车从起点站出发,前6站上车100人,前7站下车80人.问从前6站上车而在终点下车的乘客有多少人?(“希望杯”初赛试题) 解题思路:前7站上车总人数等于第2站到第8站下车总人数.本例目的是求第8站下车人数比第7站上车人数多出的数量.[例6]能否找到7个整数,使得这7个整数沿圆周排列成一圈后,任3个相邻数的和等于29?如果,请举出一例;如果不能,请简述理由.(“华罗庚金杯”少年邀请赛试题) 解题思路:假设存在7个整数a1,a2,a3,a4,a5,a6,a7排成一圈后,满足题意,由此展开推理,若推出矛盾,则假设不成立.能力训练A级1.若-4x m-2y3与23x3y7-2n是同类项,m2+2n=______.(“希望杯”初赛试题) 2.当x=1,y=-1时,ax+by-3=0,那么当x=-1,y=1时,ax+by-3=______.(北京市“迎春杯”竞赛试题) 3.若a+b<0,则化简|a+b-1|-|3-a-b|的结果是______.4.已知x2+x-1=0,那么整式x3+2x2+2002的值为______.5.设2332,4536,x y zx y z++=⎧⎨++=⎩则3x-2y+z=______.(2013年全国初中数学联赛试题)6.已知A=a2+b2-c2,B=-4a2+2b2+3c2,若A+B+C=0,则C=( ).A.5a2+3b2+2c2B.5a2-3b2+4c2A.3a2-3b2-2c2A.3a2+b2+4c27.同时都有字母a,b,c,且系数为1的7次单项式共有( ).A.4个B.12个C.15个D.25个(北京市竞赛题) 8.有理数a,b,c则代数式|a|-|a+b|+|c-a|+|b-c|化简后的结果是为( ).A.-a B.2a-2b C.2c-a D.a9.已知a+b=0,a≠b,则化简ba (a+1)+ab(b+1)得( ).A.2a B.2b C.+2 D.-210.已知单项式0.25x b y c与单项式-0.125x m-1y2n-1的和为0.625ax n y m,求abc的值.11.若a,b均为整数,且a+9b能被5整除,求证:8a+7b也能被5整除.(天津市竞赛试题)B级1.设a<-b<c<0,那么|a+b|+|b+c|-|c-a|+|a||+b|+|c|=______.(“祖冲之杯”邀请赛试题) 2.当x的取值范围为______时,式子-4x+|4-7x|-|1-3x|+4的值恒为一个常数,这个值是______.(北京市“迎春杯”竞赛试题)第8题图3.当x =2时,代数式ax 3-bx +1的值等于-17,那么当x =-1时,代数式12ax -3bx 3-5的值等于______.4.已知(x +5)2+|y 2+y -6|=0,则y 2-15xy +x 2+x 3=______. (“希望杯”邀请赛试题)5.已知a -b =2,b -c =-3,c -d =5,则(a -c )(b -d )÷(a -d )=______.6.如果对于某一特定范围内x 的任意允许值,P =|1-2x |+|1-3x |+…+|1-9x |+|1-10x |的值恒为一个常数,则此值为( ).A .2B .3C .4D .5(安徽省竞赛试题)7.如果(2x -1)6=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,那么a 0+a 1+a 2+a 3+a 4+a 5+a 6等于______;a 0+a 2+a 4+a 6等于______.A .1,365B .0,729C .1,729D .1,0(“希望杯”邀请赛试题)8.设b ,c 是整数,当x 依次取1,3,6,11时,某学生算得多项式x 2+bx +c 的值分别为3,5,21,93.经验证,只有一个结果是错误的,这个错误的结果是( ).A .当x =1时,x 2+bx +c =3B .当x =3时,x 2+bx +c =5C .当x =6时,x 2+bx +c =21D .当x =11时,x 2+bx +c =93(武汉市选拔赛试题)9.已知y =ax 7+bx 5+cx 3+dx +e ,其中a ,b ,c ,d ,e 为常数,当x =2时,y =23;当x =-2时,y =-35,那么e 的值是( ).A .-6B .6C .-12D .12(吉林省竞赛试题)10.已知a ,b ,c 三个数中有两个奇数,一个偶数,n 是整数,如果s =(a +n +1)·(b +2n +2)(c +3n +3),那么( ).A .s 是偶数B .s 是奇数C .s 的奇偶性与n 的奇偶性相同D .s 的奇偶性不能确定(江苏省竞赛试题)11.(1)如图1,用字母a 表示阴暗部分的面积;(2)如图2,用字母a ,b 表示阴暗部分的面积;(3)如图3,把一个长方体礼品盒用丝带打上包装(图中虚线为丝带),打蝴蝶结的部分需12.将一个三位数abc 中间数码去掉,成为一个两位数ac ,且满足abc =9ac +4c ,如155=9×15+4×5.试求出所有这样的三位数.a a a xy z 图3 ba b图2 a专题07答案整式的加减例1 -17例2 B例3 1998提示:由已知得4a-b=996,待求式=-3×(4a-b)+4986.例4 原多项式整理得:(a+1)x3+(2b-a)x3+(3a+b)x-5..又由题意知,该多项式为二次多项式,故a+1=0,得a=-1.把a=-1,a=2代入得:4(2b+1)+2×(b -3)-5=-17.解得b=-1,故原多项式为-x2-4 x-5.当x=-2时,-x2-4 x-5=-4+8-5=-1.例5 设前7站上车的乘客数量依次为a1,a2,a3,a4,a5,a6,a7人,从第2站到第8站下车的乘客数量依次为b2,b3,b4,b5,b6,b7,b8人,则a1+a2+a3+a4+a5+a6+a7=b2+b3+b4+b5+b6+b7+b8.又∵a1+a2+a3+a4+a5+a6=100,∴b2+b3+b4+b5+b6+b7=80,即100+a7=80+b8,前6站上车而在终点下车的人数为b8-a7=100-80=20(人).例6 如图,由题意得a1+a2+a3=29,a2+a3+a4=29,…a6+a7+a 1=29,a7+a1+a 2=29,将上述7式相加得,3(a1+a2+a3+a4+a5+a6+a7)=29×7.∴a1+a2+a3+a4+a5+a6+a7=672 3 .这与a1+a2+a3+a4+a5+a6+a7为整数矛盾.故不存在满足题设要求的7个整数.A级1. 292. -63. -24.20035. 10 提示:3 x-2 y+z=2×(2 x+y+3 z)-(x+4 y+5 z)=2×23-36=46-36=10.6.C7.C提示:设满足条件的单项式为a m b n c p的形式,其中m,n,p为自然数,且m+n+p=7.8.C9. D10. 1.2 提示:由题意得b=m-1=n,c=2 n-1=0,0.625 a=0.25+(-0.125).11. 提示:8 a+7 b=8(a+9 b)-65 b.B级1. -a+b+c2. ≥471 提示:x的系数之和为零,须使4-7 x≤0且1-3 x≤0.3. 224. -94 提示:由(x+5)2+| y 2+y-6|=0得x=-5,y 2+y=6. y 2-15x y+x 2+x 3=y 2+y+(-5)2+(-5)3=6+25-125=-94.5. -1 26. B 提示:利用绝对值的几何意义解此题. x的取值范围在18与17之间7. A提示:令x=1,可得a0+a1+a2+a3+a4+a5+a6=[2×1-1] 6=1①令x=-1,可得a0-a1+a2-a3+a4-a5+a6=[2×(-1)-1] 6=3 6=729②①+②,得2(a0+a2+a4+a6)=730,即a0+a2+a4+a6=365.8. C 9. A10. A提示:原式=a+b+c+6n+6是偶数.11. 提示:(1)4.5πa2S阴影=12(a+a+a)2=4.5πa2(2)12ab-12b2+14πb2 S阴影=12(a+a)b-(b2-14πb2)=12a b-12b 2+14πb2(3)3 x+3 y+2 z总长1=2 x+4 y+2 z+(x-y)=3 x+3 y+2 z.12. 因为abc=100 a+10 b+c,ac=10a+c.由题意得100a+10b+c=9(10a+c)+4c.化简得5(a+b)=6c(0≤a,b,c≤9,且a≠0)又∵5是质数,故5,6,ca b=⎧⎨+=⎩,从而1,2,3,4,5,6,5,4,3,2,1,0,ab=⎧⎨=⎩则符合条件的abc=155,245,335,425,515,605.。
专题07 整式的加减
例1 -17
例2 B
例3 1998提示:由已知得4a-b=996,待求式=-3×(4a-b)+4986.
例4 原多项式整理得:(a+1)x3+(2b-a)x3+(3a+b)x-5..又由题意知,该多项式为二次多项式,故a+1=0,得a=-1.把a=-1,a=2代入得:4(2 b+1)+2×(b-3)-5=-17.
解得b=-1,故原多项式为-x2-4 x-5.
当x=-2时,-x2-4 x-5=-4+8-5=-1.
例5 设前7站上车的乘客数量依次为a1,a2,a3,a4,a5,a6,a7人,从第2站到第8站下车的乘客数量依次为b2,b3,b4,b5,b6,b7,b8人,则a1+a2+a3+a4+a5+a6+a7=b2+b3+b4+b5+b6+b7+b8.又∵a1+a2+a3+a4+a5+a6=100,∴b2+b3+b4+b5+b6+b7=80,即100+a 7=80+b 8,前6站上车而在终点下车的人数为b8-a7=100-80=20(人).
例6 如图,由题意得a1+a2+a3=29,
a2+a3+a4=29,
…
a6+a7+a 1=29,
a7+a1+a 2=29,
将上述7式相加得,3(a1+a2+a3+a4+a5+a6+a7)=29×7.
∴a1+a2+a3+a4+a5+a6+a7=672
3
.
这与a1+a2+a3+a4+a5+a6+a7为整数矛盾.
故不存在满足题设要求的7个整数.
A级
1. 29
2. -6
3. -2
4.2003
5. 10 提示:3 x-2 y+z=2×(2 x+y+3 z)-(x+4 y+5 z)=2×23-36=46-36=10.
6. C
7. C提示:设满足条件的单项式为a m b n c p的形式,其中m,n,p为自然数,且m+n+p
=7.
8. C 9. D
10. 1.2 提示:由题意得b=m-1=n,c=2 n-1=0,0.625 a=0.25+(-0.125).
11. 提示:8 a+7 b=8(a+9 b)-65 b.
B级
1. -a+b+c
2. ≥4
7
1 提示:x的系数之和为零,须使4-7 x≤0且1-3 x≤0.
3. 22
4. -94 提示:由(x+5)2+| y 2+y-6|=0得x=-5,y 2+y=6. y 2-1
5
x y+x 2+x 3
=y 2+y+(-5)2+(-5)3=6+25-125=-94.
5. -1 2
6. B 提示:利用绝对值的几何意义解此题. x的取值范围在1
8
与
1
7
之间
7. A提示:令x=1,可得a0+a1+a2+a3+a4+a5+a6=[2×1-1] 6=1①
令x=-1,可得a0-a1+a2-a3+a4-a5+a6=[2×(-1)-1] 6=3 6=729②
①+②,得2(a0+a2+a4+a6)=730,即a0+a2+a4+a6=365.
8. C 9. A
10. A提示:原式=a+b+c+6n+6是偶数.
11. 提示:(1)4.5πa2 S阴影=1
2
(a+a+a)2=4.5πa2
(2)1
2
ab-
1
2
b2+
1
4
πb2 S阴影=
1
2
(a+a)b-(b2-
1
4
πb2)
=1
2
a b-
1
2
b 2+
1
4
πb2
(3)3 x+3 y+2 z总长1=2 x+4 y+2 z+(x-y)=3 x+3 y+2 z.
12. 因为abc=100 a+10 b+c,ac=10a+c.由题意得100a+10b+c=9(10a+c)+4c.
化简得5(a+b)=6c(0≤a,b,c≤9,且a≠0)
又∵5是质数,故
5,
6,
c
a b
=
⎧
⎨
+=
⎩
,从而
1,2,3,4,5,6,
5,4,3,2,1,0,
a
b
=
⎧
⎨
=
⎩
则符合条件的abc=155,245,335,425,515,605.。