初三数学解直角三角形地应用题
- 格式:doc
- 大小:448.00 KB
- 文档页数:11
2023年中考九年级数学高频考点二轮专题训练--解直角三角形的应用一、综合题1.如图,∠BAO=90°,AB=8,动点P在射线AO上,以PA为半径的半圆P交射线AO于另一点C,CD∠BP交半圆P于另一点D,BE∠AO交射线PD于点E,EF∠AO于点F,连结BD,设AP=m.(1)求证:∠BDP=90°.(2)若m=4,求BE的长.(3)在点P的整个运动过程中.①当AF=3CF时,求出所有符合条件的m的值.②当tan∠DBE= 512时,直接写出∠CDP与∠BDP面积比.2.已知,如图1图2,在等腰三角形ABC中,AB=AC.平面内任意一点D,连接AD,点E是AD 的中点.∠ABC的角平分线AP交BC于点P,点F是射线AP上的一个动点,且AF﹥AP.若G,H是射线BC上的两个动点(点G在点H的左侧),GH=AF,点M始终是GH的中点,连接G,F,H,D,四边形GFHD是平行四边形.(1)【感知探究一】如图1,当点D在线段AP上时,ME与GM的位置关系为,ME与GM的数量关系为(2)【感知探究二】如图2,当点D不在射线AP上时,连接ME,试问ME与GM的数量关系和位置关系怎样?请说明理由;(3)【应用升华】如图3,在∠ABP中,BC∠AP于点M,DC∠BC于点C,MC=AP,PM=DC,连接AD,点E是AD中点,连接ME,若ME=4,AB=2√6.∠ABC=60°,求DC的长.3.平面内,如图,在∠ABCD中,AB=10,AD=15,tanA= 43,点P为AD边上任意点,连接PB,将PB绕点P逆时针旋转90°得到线段PQ.(1)当∠DPQ=10°时,求∠APB的大小;(2)当tan∠ABP:tanA=3:2时,求点Q与点B间的距离(结果保留根号);(3)若点Q恰好落在∠ABCD的边所在的直线上,直接写出PB旋转到PQ所扫过的面积.(结果保留π)4.在一次科技活动中,小明进行了模拟雷达扫描实验.如图,表盘是∠ABC,其中AB=AC,∠BAC=120°,在点A处有一束红外光线AP,从AB开始,绕点A逆时针匀速旋转,每秒钟旋转15°,到达AC后立即以相同旋转速度返回AB,到达后立即重复上述旋转过程.小明通过实验发现,光线从AB处旋转开始计时,旋转1秒,此时光线AP交BC边于点M,BM的长为(20 √3﹣20)cm.(1)求AB的长;(2)从AB处旋转开始计时,若旋转6秒,此时光线AP与BC边的交点在什么位置?若旋转2014秒,交点又在什么位置?请说明理由.5.如图,在四边形ABCD中,∠ABC=90°,DE∠AC于点E,且AE=CE,DE=5,EB=12.(1)求AD的长;(2)若∠CAB=30°,求四边形ABCD的周长.6.如图,ΔABC是⊙O的内接三角形,点D在BC⌢上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.(1)求证:AC=CE;(2)求证:BC2−AC2=AB⋅AC;(3)已知⊙O的半径为3.①若ABAC=53,求BC的长;②当ABAC为何值时,AB⋅AC的值最大?7.如图,在矩形ABCD中,E为AD上的点,连接EC,AB=m,BC=n,m>n 2.(1)若m=3,n=4,连接AC,CE平分∠ACD,求DE的长;(2)若E为AD中点,过点E作EF∠EC交AB于F点,连接FC,①补全图形并证明:EF平分∠AFC;②当∠AEF与∠BFC相似时,求mn的值.8.在“停课不停学”期间,小明用电脑在线上课,图1是他的电脑液晶显示器的侧面图,显示屏AB 可以绕O点旋转一定角度.研究表明:当眼睛E与显示屏顶端A在同一水平线上,且望向显示器屏幕形成一个18°俯角,即望向屏幕中心P(AP=BP)的视线EP与水平线EA的夹角∠AEP=18°时,对保护眼睛比较好,而且显示屏顶端A与底座C的连线AC与水平线CD垂直时(如图2)时,观看屏幕最舒适,此时测得∠BCD=30°,∠APE=90°,液晶显示屏的宽AB为30cm.(1)求眼睛E与显示屏顶端A的水平距离AE.(结果精确到1cm)(2)求显示屏顶端A与底座C的距离AC.(结果精确到1cm)(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32,√2≈1.41,√3≈1.73)9.如图1,直线l:y=−34x+b与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<165),以点A为圆心,AC长为半径作∠A交x轴于另一点D,交线段AB于点E,连结OE并延长交∠A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:∠OCE∠∠OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE·EF的最大值.10.如图是广场健身的三联漫步机,当然踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,漫步机踏板静止时,其侧面示意图可以抽象为如图,其中,AB=AC=120cm,BC=80cm,AE=90cm.(1)求点A到地面BC的高度;(2)如图,当踏板从点E旋转到E′处时,测得∠E′AE=37°,求此时点E′离地面BC的高度(结果精确到1cm).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√2≈1.41)11.如图1,在Rt∠ABC中,∠C=90°,边AC=6,BC=8,点M、N分别在线段AC、BC上,将∠ABC沿直线MN翻折,点C的对应点是点C′(1)当M、N分别是边AC、BC的中点时,求出CC′的长度;(2)若CN=2,点C′到线段AB的最短距离是;(3)如图2,当点C’在落在边AB上时,①点C′运动的路程长度是;②当AM=3611时,求出CN的长度.12.实践操作:第一步:如图1,将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A′处,得到折痕DE,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD沿过点E 的直线折叠,点C恰好落在AD上的点C′处,点B落在点B′处,得到折痕EF,B′C′交AB 于点M,C′F交DE于点N,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA′D的形状是;(2)如图2,线段MC′与ME是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若AC′=2cm,DC′=4cm,求DN:EN的值.13.已知:矩形ABCD内接于∠O,连接BD,点E在∠O上,连接BE交AD于点F,∠BDC+45°=∠BFD,连接ED.(1)如图1,求证:∠EBD=∠EDB;(2)如图2,点G是AB上一点,过点G作AB的垂线分别交BE和BD于点H和点K,若HK=BG+AF,求证:AB=KG;(3)如图3,在(2)的条件下,∠O上有一点N,连接CN分别交BD和AD于√10点M和点P,连接OP,∠APO=∠CPO,若MD=8,MC=3,求线段GB的长.14.我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.(1)如图1所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C 点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,a的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义图2所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB的高度15.在等腰直角∠ABC中,∠BAC=90°,点D、E分别在AB、AC上,且AD=AE,连接DC,点M、N分别为DE、BC的中点.(1)如图①,若点P为DC的中点,连接MN、PM、PN.①求证:PM=PN;②求证:∠ADE∠∠PNM;(2)如图②,若点D在BA的延长线上,点P为EC的中点,求MNMP的值.16.如图,梯形ABCD中,AD∠BC,AE∠BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与∠O相切;(2)若BF=24,OE=5,求tan∠ABC的值.答案解析部分1.【答案】(1)解:如图1,∵PA=PC=PD,∴∠PDC=∠PCD,∵CD//BP,∴∠BPA=∠PCD、∠BPD=∠PDC,∴∠BPA=∠BPD,∵BP=BP,∴△BAP∠ △BDP,∴∠BDP=∠BAP=90∘(2)解:∵∠BAO=90∘,BE//AO,∴∠ABE=∠BAO=90∘,∵EF⊥AO,∴∠EFA=90∘,∴四边形ABEF是矩形,设BE=AF=x,则PF=x−4,∵∠BDP=90∘,∴∠BDE=90∘=∠PFE,∵BE//AO,∴∠BED=∠EPF,∵△BAP∠ △BDP,∴BD=BA=EF=8,∴△BDE∠ △EFP,∴PE=BE=x,在Rt△PFE中,PF2+FE2=PE2,即(x−4)2+82=x2,解得: x =10 , ∴BE 的长为10(3)解: ① 如图1,当点C 在AF 的左侧时, ∵AF =3CF ,则 AC =2CF , ∴CF =AP =PC =m ,∴PF =2m , PE =BE =AF =3m ,在 Rt △PEF 中,由 PF 2+EF 2=PE 2 可得 (2m)2+82=(3m)2 ,解得: m =8√55( 负值舍去 ) ;如图2,当点C 在AF 的右侧时,∵AF =3CF , ∴AC =4CF ,∴CF =12AP =12PC =12m ,∴PF =m −12m =12m , PE =BE =AF =m +12m =32m ,在 Rt △PEF 中,由 PF 2+EF 2=PE 2 可得 (12m)2+82=(32m)2,解得: m =4√2( 负值舍去 ) ; 综上,m 的值为 8√55或 4√2 ;② 如图3,过点D 作 DG ⊥AC 于点G ,延长GD 交BE 于点H ,∵△BAP ∠ △BDP ,∴S△BDP=S△BAP=12AP⋅AB,又∵S△CDP=12PC⋅DG,且AP=PC,∴S△CDPS△BDP=12PC⋅DG12AP⋅AB=DGAB,当点D在矩形ABEF的内部时,由tan∠DBE=DHBH=512可设DH=5x、BH=12x,则BD=BA=GH=13x,∴DG=GH−DH=8x,则S△CDPS△BDP=DGAB=8x13x=813;如图4,当点D在矩形ABEF的外部时,由tan∠DBE=DHBH=512可设DH=5x、BH=12x,则BD=BA=GH=13x,∴DG=GH+DH=18x,则S△CDPS△BDP=DGAB=18x13x=1813,综上,△CDP与△BDP面积比为813或1813.2.【答案】(1)ME∠GM;ME=GM(2)解:EM与GM相等且互相垂直,理由如下,如图2,连接DF,在平行四边形GFHD中,∵GM=MH , ∴M 是DF 的中点, 在∠DAF 中, ∵AE=ED∴EM=12AF ,EM ∥AF ,∵AF=GH , ∴EM=12GH=GM ,∵AB=AC ,AP 平分∠BAC , ∴AF∠BC , ∴EM∠GM ,∴ME∠GM ;ME=GM ;(3)解:连接PD 交MC 于点O ,连接EO ,MD ,∵BC ∠AP ,AB=2√6, ∠ABC=60°, ∴2√6=sin60°=√32, ∴AM=3√2,∵PM ∠ BC ,DC ∠BC , ∴PM// DC .∵ PM=DC ,∴四边形MPCD 是平行四边形, ∴PO=DO ,MO=12MC ,∵AE=ED ,∴ EO ∥AP ,EO =12AP ,∴EO∠MO .∵AP=MC ,EO =12MC=MO ,∴∠EOM 为等腰直角三角形, ∴∠EMO=45°,.在等腰Rt∠MOE 中,ME=4,∴EOME =sin45°,∴ EO=4×sin 45°=2√2, ∴AP=2EO=4√2,∴DC=PM=AP-AM=4√2−3√2=√2.3.【答案】(1)解:如图1中,①当点Q 在平行四边形ABCD 内时,∠AP′B=180°﹣∠Q′P′B ﹣∠Q′P′D=180°﹣90°﹣10°=80°, ②当点Q 在平行四边形ABCD 外时,∠APB=180°﹣(∠QPB ﹣∠QPD )=180°﹣(90°﹣10°)=100°,综上所述,当∠DPQ=10°时,∠APB 的值为80°或100° (2)解:如图2中,连接BQ ,作PE∠AB 于E .∵tan∠ABP:tanA=3:2,tanA= 4 3,∴tan∠ABP=2,在Rt∠APE中,tanA= PEAE=43,设PE=4k,则AE=3k,在Rt∠PBE中,tan∠ABP= PEEB=2,∴EB=2k,∴AB=5k=10,∴k=2,∴PE=8,EB=4,∴PB= √82+42=4 √5,∵∠BPQ是等腰直角三角形,∴BQ= √2PB=4 √10(3)解:①如图3中,当点Q落在直线BC上时,作BE∠AD于E,PF∠BC于F.则四边形BEPF 是矩形.在Rt∠AEB中,∵tanA= BEAE=43,∵AB=10,∴BE=8,AE=6,∴PF=BE=8,∵∠BPQ 是等腰直角三角形,PF∠BQ , ∴PF=BF=FQ=8, ∴PB=PQ=8 √2 ,∴PB 旋转到PQ 所扫过的面积= 90⋅π⋅(8√2)2360=32π.②如图4中,当点Q 落在CD 上时,作BE∠AD 于E ,QF∠AD 交AD 的延长线于F .设PE=x .易证∠PBE∠∠QPF , ∴PE=QF=x ,EB=PF=8, ∴DF=AE+PE+PF ﹣AD=x ﹣1, ∵CD∠AB , ∴∠FDQ=∠A ,∴tan∠FDQ=tanA= 43 = FQ DF,∴xx−1 = 43,∴x=4,∴PE=4, √42+82 =4 √5 ,在Rt∠PEB 中,PB=, √42+82 =4 √5 , ∴PB 旋转到PQ 所扫过的面积= 90⋅π⋅(4√5)2360 =20π③如图5中,当点Q落在AD上时,易知PB=PQ=8,∴PB旋转到PQ所扫过的面积= 90⋅π⋅82360=16π,综上所述,PB旋转到PQ所扫过的面积为32π或20π或16π4.【答案】(1)解:如图1,过A点作AD∠BC,垂足为D.∵∠BAC=120°,AB=AC,∴∠ABC=∠C=30°.令AB=2tcm.在Rt∠ABD中,AD= 12AB=t,BD=√32AB= √3t.在Rt∠AMD中,∵∠AMD=∠ABC+∠BAM=45°,∴MD=AD=t.∵BM=BD﹣MD.即√3t﹣t=20 √3﹣20.解得t=20.∴AB=2×20=40cm.答:AB的长为40cm.(2)解:如图2,当光线旋转6秒,设AP交BC于点N,此时∠BAN=15°×6=90°.在Rt∠ABN中,BN=ABcos30∘= √32= 80√33.∴光线AP旋转6秒,与BC的交点N距点B 80√33cm处.如图3,设光线AP旋转2014秒后光线与BC的交点为Q.由题意可知,光线从边AB开始到第一次回到AB处需8×2=16秒,而2014=125×16+14,即AP旋转2014秒与旋转14秒时和BC的交点是同一个点Q.旋转14s的过程是B→C:8s,C→Q:6s,因此CQ=BN= 80√33,∵AB=AC,∠BAC=120°,∴BC=2ABcos30°=2×40× √32=40 √3,∴BQ=BC﹣CQ=40 √3﹣80√33= 40√33,∴光线AP旋转2014秒后,与BC的交点Q在距点B 40√33cm处.5.【答案】(1)解:∵∠ABC=90°,AE=CE,EB=12,∴EB=AE=CE=12.∵DE∠AC,DE=5,∴在Rt∠ADE中,由勾股定理得AD= √AE2+DE2= √122+52=13(2)解:∵在Rt∠ABC中,∠CAB=30°,AC=AE+CE=24,∴BC=12,AB=AC•cos30°=12 √3,∵DE∠AC,AE=CE,∴AD=DC=13,∴四边形ABCD的周长为AB+BC+CD+AD=38+12 √36.【答案】(1)证明:∵四边形BDCE为菱形,∴CD=CE ,∠CBD=∠CBE , ∴CD=AC , ∴AC=CE .(2)证明:如图1,过点C 作CF∠AB 交于点F ,∵AC=CE ,∴AF=EF .在Rt∠BCF 和Rt∠ACF 中, BC 2=BF 2+CF 2,AC 2=AF 2+CF 2, ∴BC 2−AC 2=BF 2−AF 2=(BF +AF)(BF −AF)=AB ·BE , ∵四边形BDCE 是菱形,∴BE=CE=AC , ∴BC 2−AC 2=AB ⋅AC .(3)解:①∵AB AC =53 ,可设AB=5k ,BE=AC=3k ,则AE=AB-BE=2k ,AF=k .在Rt∠ACF 中,cos∠A= AF AC =k 3k =13.如图2,连接CO 并延长交∠O 与点G ,连接BG ,则∠G=∠A ,则cos∠G= 13,∵CG 是直径,∴∠BCG 是直角三角形, ∵CG=6,cos∠G= 13 ,∴BG=2,∴BC= √CG 2−BG 2=√36−4=4√2 .②如图2,设ABAC=m,其中m>1,AC=a,则AB=ma,AE=ma-a,AF= AE2=12(ma−a),在Rt∠AFC中,cos∠A= AFAC=12(ma−a)a=12(m−1),在Rt∠BCG中,CG=6,cos∠G=cos∠A= 12(m−1),∴BG=CG·cos∠G=6· 12(m−1)=3m-3,BC2= CG2−BG2=36−(3m−3)2,由(2)得BC2=AB·AC+AC2=ma2+a2,∴36−(3m−3)2=ma2+a2,∴9(m+1)(3−m)=a2(m+1),又∵m+1≠0,∴a2=9(3−m).∴AB·AC=ma2=9m(3−m)=−9m2+27m.当m= −272×(−9)=32时,−9m2+27m的值最大.∵0<BG<6,∴0<3(m-1)<6,∴1<m<3.∴当m= 32时,AB·AC的值最大,即ABAC=32时,AB·AC的值最大.7.【答案】(1)解:如图,过点E作EF⊥AC于点F,∵四边形ABCD是矩形,∴∠B=∠D=90°∵CE平分∠ACD∴DE=FE,CF=CD∵AB=m=3,BC=n=4∴AC=5∵CF=CD=AB=3∴AF=AC−CF=2∵AE=AD−DE=4−DE ∴Rt△AEF中,根据勾股定理得,(4−DE)2=22+DE2∴16−8DE+DE2=4+DE2∴DE=32;(2)解:①如图,延长FE和CD交于点G,∵E是AD的中点∴AE=DE∵∠A=∠GDE=90°,∠AEF=∠DEG∴△AEF≅△DEG(ASA)∴∠G=∠AFE,EF=EG∴E为FG的中点,∵CE⊥FG∴CE是FG的垂直平分线∴CF=CG∴∠G=∠CFE∴∠AFE=∠CFE∴EF平分∠AFC;②若∠AFE=∠BCF,则∠EFC=∠BCF∴FG//BC,这与题目相矛盾,即∠AFE≠∠BCF∴当∠AEF ∼∠BCF相似时,∴∠AFE=∠BFC,由①可知,∠AFE=∠CFE,∴∠AFE=∠CFE=∠BFC∴∠AFE=∠CFE=∠BFC=180°3=60°∴∠BCF=∠AEF=∠ECF=90°−60°=30°∴∠DEC=60°∴tan∠DEC=DC ED∴√3=DC ED∴DC2ED=√32∴DCAD=√32∴m n=√32.8.【答案】(1)解:由已知得AP=BP=12AB=15cm,在Rt△APE中,∵sin∠AEP=APAE,∴AE=APsin∠AEP=15sin18°≈150.31≈48cm,答:眼睛E与显示屏顶端A的水平距离AE约为48cm;(2)解:如图,过点B作BF⊥AC于点F,∵∠EAB+∠BAF=90°,∠EAB+∠AEP=90°,∴∠BAF=∠AEP=18°,在Rt△ABF中,AF=AB⋅cos∠BAF=30×cos18°≈30×0.95≈28.5,BF=AB⋅sin∠BAF=30×sin18°≈30×0.31≈9.3,∵BF//CD,∴∠CBF=∠BCD=30°,∴CF=BF⋅tan∠CBF=9.3×tan30°=9.3×√33≈5.36,∴AC=AF+CF=28.5+5.36≈34cm.答:显示屏顶端A与底座C的距离AC约为34cm.9.【答案】(1)解:把A(4,0)代入y=−34x+b,得−34×4+b=0,解得b=3,∴直线l的函数表达式为y=−34x+3,∴B(0,3),∵AO∠BO,OA=4,BO=3,∴tan∠BAO= 3 4.(2)①证明:如图,连结AF,∵CE=EF,∴∠CAE=∠EAF,又∵AC=AE=AF,∴∠ACE=∠AEF,∴∠OCE=∠OEA,又∵∠COE=∠EOA,∴∠OCE∠∠OEA.②解:如图,过点E作EH∠x轴于点H,∵tan∠BAO= 3 4,∴设EH=3x,AH=4x,∴AE=AC=5x,OH=4-4x,∴OC=4-5x,∵∠OCE∠∠OEA,∴OEOA=OCOE,即OE2=OA·OC,∴(4-4x)2+(3x)2=4(4-5x),解得x1= 1225,x2=0(不合题意,舍去)∴E(5225,3625).(3)解:如图,过点A作AM∠OF于点M,过点O作ON∠AB于点N,∵tan∠BAO= 3 4,∴cos∠BAO= 4 5,∴AN=OA·cos∠BAO= 16 5,设AC=AE=r,∴EN= 165-r,∵ON∠AB,AM∠OF,∴∠ONE=∠AME=90°,EM= 12EF,又∵∠OEN=∠AEM,∴∠OEN∠∠AEM,∴OEAE=ENEM,即OE· 12EF=AE·EN,∴OE·EF=2AE·EN=2r·(165-r),∴OE·EF=-2r2+ 325r-2(r- 85)2+ 12825(0<r<165),∴当r= 85时,OE·EF有最大值,最大值为12825.10.【答案】(1)解:过A作AF⊥BC于F,∵AB=AC=120cm,BC=80 cm,∴BF =CF =40 cm∴AF =√1202−402=80√2 (cm )∴ A 到地面 BC 的高度是 80√2 cm.(2)解:过 E ′ 作 E ′H ⊥BC 于 H , E ′G ⊥AE 于 G∴四边形E’HFG 为矩形,在 RtΔAE ′G 中, AG =AE ′cos370=90×0.8=72 (cm ), ∴E ′H =AF −AG =80√2−72=40.8≈41 (cm ).∴E ′ 离地面高度约为41cm.11.【答案】(1)解:如图,设MN 交CC′于O ,∵AM =CM ,CN =BN ,∴MN∠AB ,∵MC=MC′,NC=NC′,∴MN 垂直平分线段CC′,∴CC′∠AB ,且点C′落在AB 上,在Rt∠ABC 中,AB =√AC 2+BC 2=10,∵12AB ×CC ′=12AC ×BC ,∴CC ′=6×810=245;(2)85(3)解:① 4②如下图,过点M 作ME∠AB 于E ,过点N 作NF∠AB 于F ,设CN=x ,则BN=8-x ,NF =35(8−x),BF =45(8−x), ∵∠A=∠A ,∠AEM=∠ACB=90°,∴∠MEA∠∠BCA ,∴AM AB =AE AC =EM BC, ∴361110=AE 6=EM 8, ∴ME =14455,AE =10855, ∵MC =MC ′=6−3611=3011, ∴EC ′=√MC ′2−ME 2=√(3011)2−(14455)2=4255, ∴C ′F =10−10855−4255−45(8−x)=8011−45(8−x), 由∠MEC′∠∠C′FN ,可得EM C ′F =EC ′FN , ∴144558011−45(8−x)=425535(8−x), 解得:x =6011, 经检验,x =6011是分式方程的解, ∴CN =6011. 12.【答案】(1)正方形(2)解: MC ′=ME理由如下:如图,连接 EC ′ ,由(1)知:AD=AE∵四边形ABCD是矩形,∴AD=BC,∠EAC′=∠B=90°由折叠知:B′C′=BC,∠B′=∠B∴AE=B′C′,∠EAC′=∠B′=90°又EC′=C′E,∴Rt△EC′A≌Rt△C′EB′∴∠C′EA=∠EC′B′∴MC′=ME(3)解:∵Rt△EC′A≌Rt△C′EB′,∴AC′=B′E 由折叠知:B′E=BE,∴AC′=BE∵AC′=2(cm),DC′=4(cm)∴AB=CD=2+4+2=8(cm)设DF=xcm,则FC′=FC=(8−x)cm在Rt△DC′F中,由勾股定理得:42+x2=(8−x)2解得:x=3,即DF=3(cm)如图,延长BA,FC′交于点G,则∠AC′G=∠DC′F∴tan∠AC′G=tan∠DC′F=AGAC′=DFDC′=34∴AG=32(cm)∴EG=32+6=152(cm)∵DF//EG,∴△DNF∽△ENG∴DN:EN=DF:EG=3:152=2513.【答案】(1)解:如图1,∵矩形ABCD∴AB∠CD,∠A=90°∴∠BDC=∠DBA,BD是∠O的直径∴∠BED=90°∵∠BFD=∠ABF+∠A,∠BFD=∠BDC+45°∴∠ABF+∠A=∠BDC+45°即∠ABF+90°=∠DBA+45°∴∠DBA-∠ABF=45°∴∠EBD=45°∴∠EBD=∠EDB(2)证明:如下图,在图2中,过点K作KS∠BE,垂足为R,交AB于点S.∵KG∠AB∴∠BGH=∠KRH=∠SRB=∠KGS=90°∴∠SBR=∠HKR∵∠RBK=∠RKB=45°∴BR=KR∵∠SRB=∠HRK=90°∴∠SRB∠∠HRK∴SB=HK∵SB=BG+SG,HK=BG+AF∴BG+SG=BG+AF∴SG=AF∵∠ABF=∠GKS,∠BAF=∠KGS=90°∴∠ABF∠∠GKS∴AB=KG(3)解:如下图,在图3中,过点O分别作AD和CN的垂线,垂足分别为Q和T,连接OC.∵∠APO=∠CPO∴OQ=OT∵OD=OC,∠OQD=∠OTC=90°∴∠OQD∠∠OTC∴DQ=CT∴AD=CN=BC连接ON∵OC=OC,ON=OB∴∠NOC∠∠BOC∴∠BCO=∠NCO设∠OBC=∠OCB=∠NCO=α∴∠MOC=2α过点M作MW∠OC,垂足为W在OC上取一点L,使WL=OW,连接ML∴MO=ML∴∠MOL=∠MLO=2α∴∠LCM=∠LMC=α∴ML=CL设OM=ML=LC=a则OD=a+8=OC,∴OL=8,OW=WL=4∵OM2-OW2=MW2=MC2-CW2∴a2+4a−45=0a1=-(9舍去),a2=5∴OM=5∴MW=3,WC=9,∴OB=OC=OD=13,BD=26∵∠GKB=∠CBD=∠ADB=∠BCO=∠MCW,tan∠MCW= 1 3∴tan∠GKB=tan∠CBD=tan∠ADB=tan∠BCO=tan∠MCW= 1 3∴CD=GK=AB =135√10在Rt∠GKB中,tan∠GKB= GB GK=13∴GB =1315√1014.【答案】(1)解:如图由题意得BD=a,CD=b,∠ACE=α∠B=∠D=∠CEB=90°∴四边形CDBE为矩形,则BE=CD=b,BD=CE=a,在Rt∆ACE 中,tanα=AE CE, 得AE=CE=CE×tanα=a tanα而AB=AE+BE ,故AB= a tanα+b答:灯杆AB 的高度为atanα+b 米(2)解:由题意可得,AB∠GC∠ED ,GC=ED=2,CH=1,DF=3,CD=1.8 由于AB∠ED ,∴∆ABF~∆EDF , 此时ED DF =AB BF即23=AB BC+1.8+3①, ∵AB∠GC∴∆ABH~∆GCH ,此时AB BH =GC CH, 21=AB BC+1② 联立①②得{AB BC+4.8=23AB BC+1=2, 解得:{AB =3.8BC =0.9答:灯杆AB 的高度为3.8米15.【答案】(1)①证明:∵点P ,N 分别是CD ,BC 的中点,∴PN//BD , PN =12BD , ∵点P ,M 分别是CD ,DE 的中点,∴PM//CE , PM =12CE , ∵AB =AC , AD =AE ,∴BD =CE ,∴PM =PN ;②证明:∵PN//BD ,∴∠DPN =∠ADC ,∵PM//CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴∠MPN=∠BAC=90°,又由①知PM=PN,∴△PMN为等腰直角三角形,又∵△ADE为等腰直角三角形,∴△ADE∠ △PNM(2)解:如图,连接BE,∵AB=AC,AD=AE,∠BAC=∠DAE=90°,∴△ABE∠ △ACD,∴BE=DC,∠ABE=∠ACD,∵点M、N、P分别为DE,BC,EC中点,∴PM//DC,MP=12DC,PN//BE,NP=12BE,∴MP=NP,∠NPA=∠BEA,∠MPA=∠DCA,∵∠BAC=90°,∴∠ABE+∠AEB=90°,∴∠NPM=∠NPA+∠APM=∠BEA+∠ACD=∠BEA+∠ABE=90°,∴△MPN为等腰直角三角形,∴cos∠NMP=cos45°=MPMN=√22,∴MNMP=√2.16.【答案】(1)解:过点O 作OG∠DC ,垂足为G .∵AD∠BC ,AE∠BC 于E ,∴OA∠AD .∴∠OAD=∠OGD=90°.在∠ADO 和∠GDO 中 {∠OAD =∠OGD ∠ADO =∠GDO OD =OD,∴∠ADO∠∠GDO .∴OA=OG .∴DC 是∠O 的切线(2)解:如图所示:连接OF .∵OA∠BC ,∴BE=EF= 12BF=12. 在Rt∠OEF 中,OE=5,EF=12,∴OF= √OE 2+EF 2 =13.∴AE=OA+OE=13+5=18.∴tan∠ABC= AE BE = 32。
解直角三角形应用题考点一、直角三角形的性质1、直角三角形的两个锐角互余可表示如下:∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°可表示如下: ⇒BC=21AB ∠C=90°3、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°可表示如下: ⇒CD=21AB=BD=AD D 为AB 的中点 4、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD •=2⇒ AB AD AC •=2 CD ⊥AB AB BD BC •=2 6、常用关系式由三角形面积公式可得: AB •CD=AC •BC考点二、直角三角形的判定 (3~5分)1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
考点三、锐角三角函数的概念 (3~8分) 1、如图,在△ABC 中,∠C=90°①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA ,即casin =∠=斜边的对边A A②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即cbcos =∠=斜边的邻边A A③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即batan =∠∠=的邻边的对边A A A④锐角A 的邻边与对边的比叫做∠A 的余切,记为cotA ,即abcot =∠∠=的对边的邻边A A A2、锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数 3、一些特殊角的三角函数值4、各锐角三角函数之间的关系 (1)互余关系 sinA=cos(90°—A),cosA=sin(90°—A) tanA=cot(90°—A),cotA=tan(90°—A) (2)平方关系1cos sin 22=+A A5、锐角三角函数的增减性 当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小) (2)余弦值随着角度的增大(或减小)而减小(或增大) (3)正切值随着角度的增大(或减小)而增大(或减小) (4)余切值随着角度的增大(或减小)而减小(或增大) 考点四、解直角三角形 (3~5) 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
初三解直角三角形应用题在一个阳光明媚的下午,咱们的班级决定搞一次户外活动。
老师说,咱们去爬山,真是令人兴奋啊!同学们纷纷欢呼,想着在山顶可以俯瞰四周的美景,感觉就像一只飞翔的小鸟。
不过,话说回来,爬山可不是简单的事,尤其是当你脑袋里还在想着那个搞笑的段子时,脚下的路可得小心点。
到了山脚下,大家开始兴奋地讨论谁先到达山顶。
小明兴致勃勃地表示自己绝对能第一到达,顺便还给我们讲了个笑话。
大家哈哈大笑,结果小明的笑声把一只路过的小鸟吓跑了。
咱们这群孩子,有的急得像热锅上的蚂蚁,有的则在一旁笑嘻嘻地准备拍照,生怕错过任何一个瞬间。
开始爬山了,哎呀,这可真是个挑战!上坡的路弯弯曲曲,有的地方坡度还挺陡。
走着走着,小李突然说:“要是咱们能算出这个三角形的高就好了!”这话一出,大家都愣住了。
什么三角形?大家的脑袋里都开始冒出各种形状,有的甚至想到了吃的。
小红一边喘着气,一边用力挥手:“哎,你们别闹了,快点上山吧!”这时,小刚却认真起来:“我来给大家讲解一下直角三角形的知识!”哇,这小子一说,大家可都认真听了。
小刚一边指着前面的山,一边说:“看,这个山的高度就是直角三角形的一条边,坡道的长度就是斜边,咱们走的这条路,就是底边!”同学们都像听到了天籁之音,纷纷点头。
哎呀,真是个好机会,既能锻炼身体,又能学知识,真是两全其美。
小刚说完,大家突然觉得爬山也变得有趣了许多。
每个人都开始认真算起了角度、长度,搞得跟上数学课一样。
小明还在一旁想出了一道题:“如果这个直角三角形的底边是4米,高是3米,那斜边是多少呢?”同学们纷纷开始计算。
这个时候,小红开始笑了:“你们真是天真,以为在爬山还能做题呢!”终于,我们爬到了一个平台上,大家都累得气喘吁吁。
可是,看到眼前的美景,所有的疲惫都一扫而空。
山下的风景简直美得像画一样,远处的村庄就像点缀在绿色海洋里的小岛。
小刚得意地说:“你看,这就是直角三角形的力量!”这时,小明忍不住反击:“直角三角形能飞吗?我倒是想看!”就在大家说笑时,突然有个同学指着山下大喊:“看,那儿有个小湖!”大家的注意力瞬间被吸引过去,纷纷围拢过去,恨不得立刻飞下去。
解直角三角形的应用练习题参考答案与试题解析一.选择题(共5小题)1.(2012•襄阳)在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD.如图,已知小明距假山的水平距离BD为12m,他的眼镜距地面的高度为1.6m,李明的视线经过量角器零刻度线OA和假山的最高点C,此时,铅垂线OE经过量角器的60°刻度线,则假山的高度为()A.(4+1.6)m B.(12+1.6)m C.(4+1.6)m D.4m考点:解直角三角形的应用.分析:根据已知得出AK=BD=12m,再利用tan30°==,进而得出CD的长.解答:解:∵BD=12米,李明的眼睛高AB=1.6米,∠AOE=60°,∴DB=AK,AB=KD=1.6米,∠CAK=30°,∴tan30°==,解得CK=4(米),即CD=CK+DK=4+1.6=(4+1.6)米.故选:A.点评:本题考查的是解直角三角形的应用,根据题意得出tan30°==解答是解答此题的关键.2.(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()A.100米B.50米C.米D.50米考点:解直角三角形的应用.专题:几何图形问题.分析:过B作BM⊥AD,根据三角形内角与外角的关系可得∠ABC=30°,再根据等角对等边可得BC=AC,然后再计算出∠CBM的度数,进而得到CM长,最后利用勾股定理可得答案.解答:解:过B作BM⊥AD,∵∠BAD=30°,∠BCD=60°,∴∠ABC=30°,∴AC=CB=100米,∵BM⊥AD,∴∠BMC=90°,∴∠CBM=30°,∴CM=BC=50米,∴BM=CM=50米,故选:B.点评:此题主要考查了解直角三角形的应用,关键是证明AC=BC,掌握直角三角形的性质:30°角所对直角边等于斜边的一半.3.(2014•衡阳)如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB 的坡度i=1:1.5,则坝底AD的长度为()A.26米B.28米C.30米D.46米考点:解直角三角形的应用-坡度坡角问题.专题:几何图形问题.分析:先根据坡比求得AE的长,已知CB=10m,即可求得AD.解答:解:∵坝高12米,斜坡AB的坡度i=1:1.5,∴AE=1.5BE=18米,∵BC=10米,∴AD=2AE+BC=2×18+10=46米,故选:D.点评:此题考查了解直角三角形的应用中的坡度坡角的问题及等腰梯形的性质的掌握情况,将相关的知识点相结合更利于解题.4.(2014•西宁)如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)()A.10.8米B.8.9米C.8.0米D.5.8米考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.专题:几何图形问题.分析:延长CB交PQ于点D,根据坡度的定义即可求得BD的长,然后在直角△CDA中利用三角函数即可求得CD的长,则BC即可得到.解答:解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2.4,∴==.设BD=5k米,AD=12k米,则AB=13k米.∵AB=13米,∴k=1,∴BD=5米,AD=12米.在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8米,∴BC≈5.8米.故选:D.点评:本题考查仰角和坡度的定义,要求学生能借助仰角构造直角三角形并解直角三角形.5.(2014•临沂)如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为()A.20海里B.10海里C.20海里D.30海里考点:解直角三角形的应用-方向角问题.专题:几何图形问题.分析:如图,根据题意易求△ABC是等腰直角三角形,通过解该直角三角形来求BC的长度.解答:解:如图,∵∠ABE=15°,∠DAB=∠ABE,∴∠DAB=15°,∴∠CAB=∠CAD+∠DAB=90°.又∵∠FCB=60°,∠CBE=∠FCB,∠CBA+∠ABE=∠CBE,∴∠CBA=45°.∴在直角△ABC中,sin∠ABC===,∴BC=20海里.故选:C.点评:本题考查了解直角三角形的应用﹣方向角问题.解题的难点是推知△ABC是等腰直角三角形.二.填空题(共5小题)6.(2009•仙桃)如图所示,小华同学在距离某建筑物6米的点A处测得广告牌B点、C点的仰角分别为52°、35°,则广告牌的高度BC 为 3.5米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)考点:解直角三角形的应用-仰角俯角问题.专题:应用题;压轴题.分析:图中有两个直角三角形△ABD、△ACD,可根据两个已知角度,利用正切函数定义,分别求出BD 和CD,求差即可.解答:解:根据题意:在Rt△ABD中,有BD=AD•tan52°.在Rt△ADC中,有DC=AD•tan35°.则有BC=BD﹣CD=6(1.28﹣0.70)=3.5(米).点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.7.(2009•安徽)长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了2()m.考点:解直角三角形的应用-坡度坡角问题.专题:压轴题.分析:利用所给角的正弦函数求两次的高度,相减即可.解答:解:由题意知:平滑前梯高为4•sin45°=4•=.平滑后高为4•sin60°=4•=.∴升高了2()m.点评:本题重点考查了三角函数定义的应用.8.(2014•宁波)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出17个这样的停车位.(≈1.4)考点:解直角三角形的应用.专题:调配问题.分析:如图,根据三角函数可求BC,CE,由BE=BC+CE可求BE,再根据三角函数可求EF,再根据停车位的个数=(56﹣BE)÷EF+1,列式计算即可求解.解答:解:如图,BC=2.2×sin45°=2.2×≈1.54米,CE=5×sin45°=5×≈3.5米,BE=BC+CE≈5.04,EF=2.2÷sin45°=2.2÷≈3.14米,(56﹣5.04)÷3.14+1=50.96÷3.14+1≈16+1=17(个).故这个路段最多可以划出17个这样的停车位.故答案为:17.点评:考查了解直角三角形的应用,主要是三角函数及运算,关键把实际问题转化为数学问题加以计算.9.(2014•十堰)如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B 的距离是24海里.(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)考点:解直角三角形的应用-方向角问题.专题:几何图形问题.分析:作BD⊥AC于点D,在直角△ABD中,利用三角函数求得BD的长,然后在直角△BCD中,利用三角函数即可求得BC的长.解答:解:∠CBA=25°+50°=75°.作BD⊥AC于点D.则∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,∠ABD=30°,∴∠CBD=75°﹣30°=45°.在直角△ABD中,BD=AB•sin∠CAB=20×sin60°=20×=10.在直角△BCD中,∠CBD=45°,则BC=BD=10×=10≈10×2.4=24(海里).故答案是:24.点评:本题主要考查了方向角含义,正确求得∠CBD以及∠CAB的度数是解决本题的关键.10.(2014•抚顺)如图,河流两岸a、b互相平行,点A、B是河岸a上的两座建筑物,点C、D是河岸b上的两点,A、B的距离约为200米.某人在河岸b上的点P处测得∠APC=75°,∠BPD=30°,则河流的宽度约为100米.考点:解直角三角形的应用.专题:几何图形问题.分析:过点P作PE⊥AB于点E,先求出∠APE及∠BPE、∠ABP的度数,由锐角三角函数的定义即可得出结论.解答:解:过点P作PE⊥AB于点E,∵∠APC=75°,∠BPD=30°,∴∠APB=75°,∵∠BAP=∠APC=75°,∴∠APB=∠BAP,∴AB=PB=200m,∵∠ABP=30°,∴PE=PB=100m.故答案为:100.点评:本题考查的是解直角三角形的应用,熟知锐角三角函数的定义是解答此题的关键.三.解答题(共5小题)11.(2014•南昌)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果取整数,可以使用计算器)(参考数据:≈1.41,≈1.73,≈2.45)考点:解直角三角形的应用.分析:(1)连接DE.根据菱形的性质和角的和差关系可得∠CDE=∠BED=90°,再根据平行线的判定可得CD,EB的位置关系;(2)根据菱形的性质可得BE,DE,再根据三角函数可得BD,AD,根据AB=BD+AD,即可求解.解答:解:(1)猜想CD∥EB.证明:连接DE.∵中国结挂件是四个相同的菱形,每相邻两个菱形均成30°的夹角,菱形的锐角为60°∴∠CDE=60°÷2×2+30°=90°,∴∠BED=60°÷2×2+30°=90°,∴∠CDE=∠BED,∴CD∥EB.(2)BE=2OE=2×10×cos30°=10cm,同理可得,DE=10cm,则BD=10cm,同理可得,AD=10cm,AB=BD+AD=20≈49cm.答:A,B两点之间的距离大约为49cm.点评:此题考查了解直角三角形的应用,菱形的性质和平行线的判定,主要是三角函数的基本概念及运算,关键是运用数学知识解决实际问题.12.(2014•铁岭)如图,小丽假期在娱乐场游玩时,想要利用所学的数学知识测量某个娱乐场地所在山坡AE的长度.她先在山脚下点E处测得山顶A的仰角是30°,然后,她沿着坡度是i=1:1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度.(参考数据:≈1.41,结果精确到0.1米)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,作辅助线EF⊥AC,通过平角减去其他角从而得到∠AEF=45°即可求出AE的长度.解答:解:作EF⊥AC,根据题意,CE=18×15=270米,∵tan∠CED=1,∴∠CED=∠DCE=45°,∵∠ECF=90°﹣45°﹣15°=30°,∴EF=CE=135米,∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°﹣45°﹣60°﹣30°=45°,∴AE=135≈190.35米点评:本题考查了解直角三角形的应用,解答本题的关键是作辅助线EF⊥AC,以及坡度和坡角的关系.13.(2014•抚州)如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C、D两点间的距离;(2)当∠CED由60°变为120°时,点A向左移动了多少cm?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据≈1.732,可使用科学计算器)考点:解直角三角形的应用;菱形的性质.分析:(1)证明△CED是等边三角形,即可求解;(2)分别求得当∠CED是60°和120°,两种情况下AD的长,求差即可;(3)分别求得当∠CED是60°和120°,两种情况下DG的长度,即可求得x的范围.解答:解:(1)连接CD(图1).∵CE=DE,∠CED=60°,∴△CED是等边三角形,∴CD=DE=20cm;(2)根据题意得:AB=BC=CD,当∠CED=60°时,AD=3CD=60cm,当∠CED=120°时,过点E作EH⊥CD于H(图2),则∠CEH=60°,CH=HD.在直角△CHE中,sin∠CEH=,∴CH=20•sin60°=20×=10(cm),∴CD=20cm,∴AD=3×20=60≈103.9(cm).∴103.9﹣60=43.9(cm).即点A向左移动了43.9cm;(3)当∠CED=120°时,∠DEG=60°,∵DE=EG,∴△DEG是等边三角形.∴DG=DE=20cm,当∠CED=60°时(图3),则有∠DEG=120°,过点E作EI⊥DG于点I.∵DE=EG,∴∠DEI=∠GEI=60°,DI=IG,在直角△DIE中,sin∠DEI=,∴DI=DE•sin∠DEI=20×sin60°=20×=10cm.∴DG=2DI=20≈34.6cm.则x的范围是:20cm≤x≤34.6cm.点评:本题考查了菱形的性质,当菱形的一个角是120°或60°时,连接菱形的较短的对角线,即可把菱形分成两个等边三角形.14.(2014•宿迁)如图是某通道的侧面示意图,已知AB∥CD∥EF,AM∥BC∥DE,AB=CD=EF,∠AMF=90°,∠BAM=30°,AB=6m.(1)求FM的长;(2)连接AF,若sin∠FAM=,求AM的长.考点:解直角三角形的应用-坡度坡角问题.专题:几何图形问题.分析:(1)分别过点B、D、F作BN⊥AM于点N,DG⊥BC延长线于点G,FH⊥DE延长线于点H,根据AB∥CD∥EF,AM∥BC∥DE,分别解Rt△ABN、Rt△DCG、Rt△FEH,求出BN、DG、FH的长度,继而可求出FM的长度;(2)在Rt△FAM中,根据sin∠FAM=,求出AF的长度,然后利用勾股定理求出AM的长度.解答:解:(1)分别过点B、D、F作BN⊥AM于点N,DG⊥BC延长线于点G,FH⊥DE延长线于点H,在Rt△ABN中,∵AB=6m,∠BAM=30°,∴BN=ABsin∠BAN=6×=3m,∵AB∥CD∥EF,AM∥BC∥DE,同理可得:DG=FH=3m,∴FM=FH+DG+BN=9m;(2)在Rt△FAM中,∵FM=9m,sin∠FAM=,∴AF=27m,∴AM==18(m).即AM的长为18m.点评:本题考查了解直角三角形的应用,解答本题的关键是根据坡角构造直角三角形,利用三角函数解直角三角形,注意勾股定理的应用.15.(2014•邵阳)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)考点:解直角三角形的应用-方向角问题.专题:几何图形问题.分析:过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD 中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.解答:解:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.。
中考数学解直角三角形实际应用题型集锦全国各地解直角三角形中考题集锦1.(2019?济南)某数学社团开展实践性研究,在大明湖南门A 测得历下亭C 在北偏东37°方向,继续向北走105m 后到达游船码头B ,测得历下亭C 在游船码头B 的北偏东53°方向.请计算一下南门A 与历下亭C 之间的距离约为()(参考数据:tan37°≈34,tan53°≈43)A.225m B.275m C.300m D.315m2.(2019?日照)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B 处仰角为30°,则甲楼高度为()A.11米B.(36﹣153)米C.153米D.(36﹣103)米3.(2019?长春)如图,一把梯子靠在垂直水平地面的墙上,梯子AB的长是3米.若梯子与地面的夹角为α,则梯子顶端到地面的距离BC为()A.3sinα米B.3cosα米C.3sinα米D.3cosα米4.(2019?宜昌)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC 的值为()A.43B.34C.35D.455.(2019?广西)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O 的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米6动.如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为β,已知测量点与大桥主架的水平距离AB=a,则此时大桥主架顶端离水面的高CD为()A.a sinα+a sinβB.a cosα+a cosβC.a tanα+a tanβD.atanα+a tanβ7.(2019?苏州)如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为183m的地面上,若测角仪的高度是1.5m.测得教学楼的顶部A处的仰角为30°.则教学楼的高度是()A.55.5m B.54m C.19.5m D.18m8.(2019?阜新)如图,一艘船以40nmile/h的速度由西向东航行,航行到A处时,测得灯塔P在船的北偏东30°方向上,继续航行2.5h,到达B处,测得灯塔P在船的北偏西60°方向上,此时船到灯塔的距离为nmile.(结果保留根号)9.(2019?葫芦岛)如图,河的两岸a,b互相平行,点A,B,C是河岸b上的三点,点P是河岸a上的一个建筑物,某人在河岸b 上的A处测得∠PAB=30°,在B处测得∠PBC=75°,若AB=80米,则河两岸之间的距离约为米.(3≈1.73,结果精确到0.1米)10.(2019?辽阳)某数学小组三名同学运用自己所学的知识检测车速,他们将观测点设在一段笔直的公路旁且距公路100米的点A 处,如图所示,直线l表示公路,一辆小汽车由公路上的B处向C处匀速行驶,用时5秒,经测量,点B在点A北偏东45°方向上,点C 在点A北偏东60°方向上,这段公路最高限速60千米/小时,此车(填“超速”或“没有超速”)(参考数据:3≈1.732)11.(2019?大连)如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).12.(2019?徐州)如图,无人机于空中A处测得某建筑顶部B 处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)13.(2019?恩施州)如图,某地有甲、乙两栋建筑物,小明于乙楼楼顶A点处看甲楼楼底D点处的俯角为45°,走到乙楼B点处看甲楼楼顶E点处的俯角为30°,已知AB=6m,DE=10m.求乙楼的高度AC的长.(参考数据:2≈1.41,3≈1.73,精确到0.1m.)14.(2019?盘锦)如图,池塘边一棵垂直于水面BM的笔直大树AB在点C处折断,AC部分倒下,点A与水面上的点E重合,部分沉入水中后,点A与水中的点F重合,CF交水面于点D,DF=2m,∠CEB=30°,∠CDB=45°,求CB部分的高度.(精确到0.1m.参考数据:2≈1.41,3≈1.73)15.(2019?营口)如图,A,B两市相距150km,国家级风景区中心C位于A市北偏东60°方向上,位于B 市北偏西45°方向上.已知风景区是以点C为圆心、50km为半径的圆形区域.为了促进旅游经济发展,有关部门计划修建连接A,B两市的高速公路,高速公路AB是否穿过风景区?通过计算加以说明.(参考数据:3≈1.73)16.(2019?鞍山)如图为某海域示意图,其中灯塔D的正东方向有一岛屿C.一艘快艇以每小时20nmile 的速度向正东方向航行,到达A处时得灯塔D在东北方向上,继续航行0.3h,到达B处时测得灯塔D在北偏东30°方向上,同时测得岛屿C恰好在B处的东北方向上,此时快艇与岛屿C的距离是多少?(结果精确到1nmile.参考数据:2≈1.41,3≈1.73,6≈2.45)17.(2019?朝阳)小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P处测得古塔顶端M的仰角为60°,沿山坡向上走25m到达D处,测得古塔顶端M的仰角为30°.已知山坡坡度i=3:4,即tanθ=3,请你帮助小明计算古塔的高度ME.(结果精确到0.1m,参考数据:3≈1.732)418.(2019?抚顺)如图,学校教学楼上悬挂一块长为3m的标语牌,即CD=3m.数学活动课上,小明和小红要测量标语牌的底部点D到地面的距离.测角仪支架高AE=BF=1.2m,小明在E处测得标语牌底部点D的仰角为31°,小红在F处测得标语牌顶部点C的仰角为45°,AB=5m,依据他们测量的数据能否求出标语牌底部点D到地面的距离DH的长?若能,请计算;若不能,请说明理由(图中点A,B,C,D,E,F,H在同一平面内)(参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)19.(2019?铁岭)如图,聪聪想在自己家的窗口A处测量对面建筑物CD的高度,他首先量出窗口A到地面的距离(AB)为16m,又测得从A处看建筑物底部C的俯角α为30°,看建筑物顶部D的仰角β为53°,且AB,CD都与地面垂直,点A,B,C,D在同一平面内.(1)求AB与CD之间的距离(结果保留根号).(2)求建筑物CD的高度(结果精确到1m).(参考数据:sin53°≈0.8,cos53°≈0.6,tan53≈1.3,3≈1.7)20.(2019?株洲)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A处测得汽车前端F的俯角为α,且tanα=13,若直线AF与地面l1相交于点B,点A到地面l1的垂线段AC的长度为1.6米,假设眼睛A处的水平线l2与地面l1平行.(1)求BC的长度;(2)假如障碍物上的点M正好位于线段BC的中点位置(障碍物的横截面为长方形,且线段MN为此长方形前端的边),MN⊥l1,若小强的爸爸将汽车沿直线l1后退0.6米,通过汽车的前端F1点恰好看见障碍物的顶部N点(点D为点A的对应点,点F1为点F的对应点),求障碍物的高度.。
最新中考数学典型的解直角三角形应用问题解直角三角形广泛应用于社会的方方面面,涉及航空、建筑、工业、植树造林、水利工程等。
解答这类问题主要是把实际问题转化为解直角三角形问题,即将实际问题中的数量关系,转化为直角三角形中元素之间的关系,并画出正确的示意图,利用已学过图形的性质,作出必要的辅助线来解决。
解直角三角形的关键是构造直角三角形,然后再利用有关的三角知识进行求解。
下面举例说明。
例1如图1,某电信部门计划修建一条连接B、C两地的电缆。
测量人员在山脚A点测得B、C两地的仰角分别为、,在B地测得C地的仰角为。
已知C地比A地高200m,电缆BC至少长多少米(精确到1m)?解:作于H,过B作于D,于E。
由题意知,设BC=x m。
在中,,。
在中,。
所以,在中,,所以BD=。
由此得解得故电缆BC至少需要147m。
点拨:本题是典型的长度(距离)计算问题,解这类题的关键就是要在所给出的图形中构造相关的直角三角形,进而利用锐角的三角函数知识构造出方程计算即可。
这是解直角三角形问题的一种常用方法,希望同学们认真掌握。
例2如图2,一艘渔船在A处观测到东北方向有一小岛,已知小岛C周围4.8海里范围内是水产养殖场。
渔船沿北偏东方向航行10海里到达B处,在B处测得小岛C在北偏东方向,这时渔船改变航线向正东(沿BD线)方向航行,这艘渔船是否有进入养殖场的危险?解:过点B作于M,故BM//AF故在中,,过点C作于N,交BD于K在中,设CK=x,则在中,因,故AN=CN又MN=BK,BM=KN,解得x=5因5海里>4.8海里,故渔船没有进入养殖场的危险。
点拨:本题是航海问题。
解答是通过已知方位角,构造出它们所在的三角形,进而利用有关的三角函数知识解决,解题关键是找出适当的三角形。
渔船继续航行有无危险,就是看一看所构成的直角三角形的直角边CK与水产养殖场的半径孰大孰小。
通过以上两例,可以看出解决这类问题要掌握转化的思想方法,把实际问题正确地转化为数学模型��画出图形(包括可添加适当的辅助线把它们分割成一些直角三角形和矩形,将解非直角三角形问题转化为解直角三角形问题。
2023年上海市15区中考数学一模汇编专题08 解直角三角形的应用(解答题22题)一.解答题(共15小题)1.(2022秋•青浦区校级期末)如图,在港口A的南偏东37°方向的海面上,有一巡逻艇B,A、B相距20海里,这时在巡逻艇的正北方向及港口A的北偏东67°方向上,有一渔船C发生故障.得知这一情况后,巡逻艇以25海里/小时的速度前往救援,问巡逻艇能否在1小时内到达渔船C处?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin67°≈,cos67°≈,tan67°≈)2.(2022秋•嘉定区校级期末)某小区开展了“行车安全,方便居民”的活动,对地下车库作了改进.如图4,这小区原地下车库的入口处有斜坡AC长为13米,它的坡度为i=1:2.4,AB⊥BC,为了居民行车安全,现将斜坡的坡角改为17°,即∠ADC=17°(此时点B、C、D在同一直线上).求斜坡改进后的起点D与原起点C的距离(结果精确到0.1米).(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)3.(2022秋•杨浦区校级期末)湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C接该游客,再沿CA 方向行驶,与救援船相遇后将该游客转运到救援船上.已知C在A的北偏东30°方向上,B在A的北偏东60°方向上,且在C的正南方向1000米处.(1)求湖岸A与码头C的距离(结果精确到1米,参考数据:)(2)救援船的平均速度为180米/分,快艇的平均速度为320米/分,在接到通知后,快艇能否在6分钟内将该游客送上救援船?请说明理由.(接送游客上下船的时间忽略不计)4.(2022秋•青浦区校级期末)如图,在距某输电铁塔GH(GH垂直地面)的底部点H左侧水平距离45米的点B处有一个山坡,山坡AB的坡度,山坡坡底点B到坡顶A的距离AB等于30米,在坡顶A处测得铁塔顶点G的仰角为30°(铁塔GH与山坡AB在同一平面内).(1)求山坡的高度;(2)求铁塔的高度GH.(结果保留根号)5.(2022秋•静安区期末)有一把长为6米的梯子AB,将它的上端A靠着墙面,下端B放在地面上,梯子与地面所成的角记为α,地面与墙面互相垂直(如图1所示).一般满足50°≤α≤75°时,人才能安全地使用这架梯子.(1)当梯子底端B距离墙面2.5米时,求α的度数(结果取整数),此时人是否能安全地使用这架梯子?(2)当人能安全地使用这架梯子,且梯子顶端A离开地面最高时,梯子开始下滑,如果梯子顶端A沿着墙面下滑1.5米到墙面上的D点处停止,梯子底端B也随之向后平移到地面上的点E处(如图2所示),此时人是否能安全使用这架梯子?请说明理由.6.(2022秋•黄浦区校级期末)如图,某地下车库的入口处有斜坡AB,它的坡度为i=1:2,斜坡AB的长为6米,车库的高度为AH(AH⊥BC),为了让行车更安全,现将斜坡的坡角改造为14°(图中的∠ACB=14°).(1)求车库的高度AH;(2)求点B与点C之间的距离(结果精确到1米).(参考数据:sin14°=0.24,cos14°=0.97,tan14°=0.25,cot14=4.01)7.(2022秋•徐汇区校级期末)某地一居民的窗户朝南.窗户的离地高度为0.8米,此地一年的冬至这一天的正午时刻太阳光与地面的夹角最小为α,夏至这一天的正午时刻太阳光与地面的夹角最大为β.若你是一名设计师,请你为教学楼的窗户设计一个直角形遮阳蓬BCD,要求它既能最大限度地遮挡夏天炎热的阳光,又能最大限度地使冬天温暖的阳光射入室内.根据测量测得∠α=30°,∠β=60°,AB=1.5米.若同时满足下面两个条件:(1)当太阳光与地面的夹角是α时,太阳光刚好射入室内.(2)当太阳光与地面的夹角是β时,太阳光刚好不射入室内.请你求出直角形遮阳蓬BCD中CD的长、CD离地面的高度.8.(2022秋•浦东新区期末)某地一段长为50米的混泥土堤坝,堤坝的横断面ABCD是等腰梯形(如图所示),坝顶AD宽为8米,坝高为4米,斜坡AB的坡度为1:1.5.(1)求横断面ABCD的面积;(2)为了提高堤坝的防洪能力,现需将原堤坝按斜坡AB的坡度竖直加高1米,求加高堤坝需要多少立方米的混泥土?(堤坝的体积=横断面的面积×堤坝的长度)9.(2022秋•金山区校级期末)无人机在实际生活中应用广泛.如图所示,小明利用无人机测量大楼的高度,无人机在空中P处,测得楼CD楼顶D处的俯角为45°,测得楼AB楼顶A处的俯角为60°.已知楼AB和楼CD之间的距离BC为100米,楼AB的高度为10米,从楼AB的A处测得楼CD的D处的仰角为30°(点A、B、C、D、P在同一平面内).(1)填空:∠APD=度,∠ADC=度;(2)求楼CD的高度(结果保留根号);(3)求此时无人机距离地面BC的高度.10.(2022秋•闵行区期末)2022年11月12日10时03分,搭载天舟五号货运飞船的长征七号遥六运载火箭,在海南文昌航天发射场成功发射.天舟五号货运飞船重约13.6吨,长度BD=10.6米,货物仓的直径可达3.35米,是世界现役货物运输能力最大、在轨支持能力最全面的货运飞船,堪称“在职最强快递小哥”.已知飞船发射塔垂直于地面,某人在地面A处测得飞船底部D处的仰角45°,顶部B处的仰角为53°,求此时观测点A到发射塔CD的水平距离(结果精确到0.1米).(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)11.(2022秋•徐汇区期末)如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需要绕行B地.已知B地位于A地的北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向,若要打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长(用进一法.结果保留整数)(参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.73)12.(2022秋•黄浦区期末)圭表(如图1)是我国古代度量日影长度的天文仪器,它包括一根直立的杆(称为“表”)和一把南北方向水平放置且与杆垂直的标尺(称为“圭”).当正午的阳光照射在“表”上时,“表”的影子便会投射在“圭”上.我国古代很多地区通过观察“表”在“圭”上的影子长度来测算二十四节气,并以此作为指导农事活动的重要依据.例如,我国古代历法将一年中白昼最短的那一天(当日正午“表”在“圭”上的影子长度为全年最长)定为冬至;白昼最长的那一天(当日正午“表”在“圭”上的影子长度为全年最短)定为夏至.某地发现一个圭表遗迹(如图2),但由于“表”已损坏,仅能测得“圭”上记录的夏至线与冬至线间的距离(即AB的长)为11.3米.现已知该地冬至正午太阳高度角(即∠CBD)为35°34′,夏至正午太阳高度角(即∠CAD)为82°26′,请通过计算推测损坏的“表”原来的高度(即CD的长)约为多少米?(参考数据见表,结果精确到个位)αsinαcosαtanα35°34′0.580.810.7282°26′0.990.137.5(注:表中三角比的值是近似值)13.(2022秋•杨浦区期末)如图,高压电线杆AB垂直地面,测得电线杆AB的底部A到斜坡C的水平距离AC长为15.2米,落在斜坡上的电线杆的影长CD为5.2米,在D点处测得电线杆顶B的仰角为37°.已知斜坡CD的坡比i=1:2.4,求该电线杆AB的高.(参考数据:sin37°=0.6)14.(2022秋•徐汇区期末)如图,在大楼AB的正前方有一斜坡CD,CD=26米,坡度i=1:2.4,小明在斜坡下端C处测得楼顶点B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为30°,DE与地面垂直,垂足为E,其中点A、C、E在同一直线上.(1)求DE的值;(2)求大楼AB的高度(结果保留根号).15.(2022秋•浦东新区校级期末)如图,一栋居民楼AB的高为16米,远处有一栋商务楼CD,小明在居民楼的楼底A处测得商务楼顶D处的仰角为60°,又在商务楼的楼顶D处测得居民楼的楼顶B处的俯角为45°.其中A、C两点分别位于B、D两点的正下方,且A、C两点在同一水平线上,求商务楼CD 的高度.(参考数据:≈1.414,≈1.732.结果精确到0.1米)。
解直角三角形的应用题型直角三角形是初中数学中一个重要的概念,也是解决实际问题中常用的基本图形之一。
在应用题中,我们经常需要用到直角三角形的性质和定理,以解决各种实际问题。
下面列举一些常见的直角三角形应用题型。
1. 求斜边长已知直角三角形的一条直角边和另一条边的长度,求斜边长。
这类问题可以用勾股定理解决,即斜边的长度等于直角边长度的平方加上另一条边长度的平方的平方根。
例题:已知直角三角形的一个直角边为3,另一条边长为4,求斜边长。
解:斜边长等于3的平方加上4的平方的平方根,即√(3+4)=√25=5。
2. 求角度已知直角三角形两个角度,求第三个角度。
由于直角三角形的内角和为180度,因此第三个角度可以用90度减去已知的两个角度得到。
例题:已知直角三角形两个角度分别为30度和60度,求第三个角度。
解:第三个角度等于90度减去30度和60度的和,即90-30-60=0度。
3. 求高已知直角三角形的斜边和一条直角边,求高。
我们可以通过求出这个三角形的面积以及底边长度来求出高,也可以利用正弦定理或余弦定理求出高。
例题:已知直角三角形的斜边长为5,直角边长为3,求高。
解:利用勾股定理可求出这个三角形的面积为(3*4)/2=6。
利用面积公式S=1/2*底边长*高,可得高为(2*6)/3=4。
4. 求面积已知直角三角形的两条直角边长度,求面积。
我们可以利用面积公式S=1/2*底边长*高求出面积。
例题:已知直角三角形的两条直角边长分别为4和3,求面积。
解:利用面积公式S=1/2*4*3,可得面积为6。
以上是直角三角形应用题的一些常见类型,希望能对大家的学习有所帮助。
中考专题训练——解直角三角形的应用附解析1.图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A处,手柄长AB =20cm,AB与墙壁AD的夹角∠α=30°,喷出的水流BC与AB形成的夹角∠ABC=80°.现在住户要求:当人站在E处淋浴时,水流正好喷洒在人体的C处,且使DE=50cm,CE=150cm.问:安装师傅应将支架固定在离地面多高的位置?(结果精确到1cm,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,≈1.73,≈1.41).2.为了完成“综合与实践”作业任务,小明和小华利用周末时间邀约一起去郊外一处空旷平坦的草地上放风筝,小明负责放风筝,小华负责测量相关数据.如图,当小明把风筝放飞到空中点P处时,小华分别在地面的点A、B处测得∠PAB=45°,∠PBA=30°,AB=200米,请你求出风筝的高度PC(点C在点P的正下方,A、B、C在地面的同一条直线上)(参考数据:≈1.414,≈1.732)3.如图1所示是一种手机平板支架,由托板、支撑板和底座构成.图2是其侧面结构示意图,支撑板CD=40mm,托板AB固定在支撑板顶点C处,且CB=40mm,托板AB 可绕点C转动,支撑板CD可绕点D转动.(1)如图2,当∠CDE=60°时,求点C到直线DE的距离;(2)如图3,当∠DCB=90°时,再将CD绕点D转动,使点B落在DE上,求此时∠CDB的度数.4.火灾是生活中最常见、最突出的一种灾难,消防车是救援火灾的主要装备.图1是一辆登高云梯消防车的实物图,图2是其工作示意图,起重臂AC(10m≤AC≤20m)是可伸缩的,且起重臂AC可绕点A在一定范围内上下转动,张角∠CAE(90°≤∠CAE≤150°),转动点A距离地面的高度AE=3.5m.(1)当起重臂AC的长度为12m,张角∠CAE=120°,求云梯消防车最高点C距离地面的高度CF.(2)某日一居民家突发火灾,该居民家距离地面的高度为180m,该消防车能否实施有效救援?(参考数据:≈1.732)5.如图,是放在水平桌面上的台灯的几何图,已知台灯底座高度为2cm,固定支点O到水平桌面的距离为7.5cm,当支架OA、AB拉直时所形成的线段与点M共线且与底座垂直,此时测得B到底座的距离为31.64cm(线段AB,AO,OM的和),经调试发现,当∠OAB =115°,∠AOM=160°时,台灯所投射的光线最适合写作业,测量得A到B的水平距离(线段AC)为10cm.求:(1)∠BAC=°,OM=;(2)此时点B到桌面的距离.(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,≈1.414)6.如图1的风力发电机,风轮的三个叶片均匀分布,当风轮的叶片在风力作用下旋转时,最高点距地面145m,最低点距地面55m.如图2是该风力发电机的示意图,发电机的塔身OD垂直于水平地面MN(点O,A,B,C,D,M,N在同一平面内).(1)求风轮叶片OA的长度;(2)如图2,点A在OD右侧,且α=14.4°.求此时风叶OB的端点B距地面的高度.(参考数据:sin44.4°≈0.70,tan44.4°≈0.98)7.如图1,是某品牌的可伸缩篮球架,其侧面可抽象成图2,结点F,G,H,M,N可随着伸缩杆EF的伸缩转动,从而控制篮球圈ON离地面AB的高度,ON∥AB,主杆AH⊥AB,G,C,D均在主干AH上,结点N,G,F共线,DE∥AB,经测量,AD=150cm,DC=CG=GH=MN=GF=50cm,MH=NG=GD,∠NGD=33°,此时,EF∥AH.(结果保留小数点后一位)(1)①∠M=°,EF与AB的位置关系;②求EF的长度.(2)在图1的基础上,调节伸缩杆EF,得到图3,图4是图3的示意图,经测量,此时,篮球圈ON离地面AB的高度刚好达到国际标准305cm,求NF绕着G点顺时针旋转的度数.(参考数据:sin57°≈0.84,cos57°≈0.55,tan57°≈1.54)8.已知图1是超市购物车,图2是超市购物车侧面示意图,测得支架AC=80cm,BC=60cm,AB,DO均与地面平行.(1)若支架AC与BC之间的夹角∠ACB=90°,求两轮轮轴A,B之间的距离;(2)若OF的长度为60cm,∠FOD=120°,求点F到AB所在直线的距离.(结果精确到0.1)(参考数据:≈1.414,≈1.732)9.为应对新冠疫情,学校购进一批酒精消毒瓶(如图1),AB为喷嘴,△BCD为按压柄,CE为伸缩连杆,BE和EF为导管,其示意图如图2,∠DBE=∠BEF=108°,BD=8cm,BE=6cm,当按压柄△BCD按压到底时,BD转动到BD′,此BD′∥EF(如图3).(1)求点D转动到点D′的路径长;(2)求点D到直线EF的距离(结果精确到0.1cm).(参考数据sin36°≈0.59,cos36°≈0.81,tan30°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)10.如图1是学生常用的一种圆规,其手柄AB=8mm,两脚BC=BD=56mm,如图2所示,当∠CBD=74°时.(1)求A离纸面CD的距离.(2)用该圆规作如图3所示正六边形,求该正六边形的周长.(参考数据:sin37°≈0.60,cos37°≈0.80,sin74°≈0.96,cos74°≈0.28,结果精确到0.1)11.住宅的采光是建楼和购房时人们所关心的问题之一.如图,住宅小区南、北两栋楼房的高度均为16.8m.已知当地冬至这天中午12时太阳光线与地面所成的角是35°.(参考数据:sin35°≈0.57;cos35°≈0.81;tan35°≈0.70)(1)要使这时南楼的影子恰好落在北楼的墙脚,两楼间的距离应为多少米(精确到0.1m)?(2)如果两栋楼房之间的距离为20m,那么这时南楼的影子是否会影响北楼一楼的采光?12.某小区门口安装了汽车出入道闸.道闸关闭时,如图①,四边形ABCD为矩形,AB长6米,AD长2米,点D距地面为0.4米.道闸打开的过程中,边AD固定,连杆AB,CD分别绕点A,D转动,且边BC始终与边AD平行.(1)如图②,当道闸打开至∠ADC=60°时,边CD上一点P到地面的距离PE为2.4米,求点P到MN的距离PF的长;(2)一辆载满货物的货车过道闸,已知货车宽2.1米,高3.2米.当道闸打开至∠ADC =53°时,货车能否驶入小区?请说明理由.(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)13.如图①是某中型挖掘机,该挖掘机是由基座、主臂和伸展臂构成,图②是共侧面结构示意图(MN是基座,AB是主臂,BC是伸展臂),若主臂AB长为4米,主臂伸展角∠MAB的范围是:30°≤∠MAB≤60°,伸展臂伸展角∠ABC的范围是:45°≤∠ABC≤105°.(1)如图③,当∠MAB=45°,伸展臂BC恰好垂直并接触地面时,求伸展臂BC的长(结果保留根号);(2)若(1)中BC长度不变,当∠MAB=30°时,求该挖掘机最远(即伸展臂伸展角∠ABC最大时)能挖掘到距A水平正前方多少米的土石.(结果保留根号)14.激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?15.图1是疫情期间测温员用“额温枪”对学生测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直,量得胳膊MN=30cm,MB=44cm,肘关节M与枪身端点A之间的水平宽度为26.1cm(即MP的长度),∠ABM =113.6°.(1)求枪身BA的长度;(2)测温时规定枪身端点A与额头距离范围为3cm~5cm.在图2中,若测得∠BMN=68.6°,学生与测温员之间距离为50cm.问此时枪身端点A与学生额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据sin66.4°≈0.92,cos66.4°≈0.4,tan66.4°≈2.29,)16.如图1是十五中行政楼的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转35°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2.(参考数据:sin35°≈0.6,cos35°≈0.8,≈1.4)(1)求开门过程中B与C走过的路径之和;(2)此时B与C之间的距离为多少?(结果保留一位小数)17.为解决群众“健身去哪儿”问题,某区2021年新建、改建90个市民益智健身苑点,图1是某益智健身苑点中的“侧摆器”.锻炼方法:面对器械,双手紧握扶手,双脚站立于踏板上,腰部发力带动下肢做左右摆式运动.(1)如图2是侧摆器的抽象图,已知摆臂OA的长度为80厘米,在侧摆运动过程中,点A为踏板中心在侧摆运动过程中的最低点位置,点B为踏板中心在侧摆运动过程中的最高点位置,∠BOA=25°,求踏板中心点在最高位置与最低位置时的高度差.(精确到0.1厘米)(sin25°≈0.423,cos25°≈0.906,tan25°≈0.466)(2)小杰在侧摆器上进行锻炼,原计划消耗400大卡的能量,由于小杰加快了运动频率,每小时能量消耗比原计划增加了100大卡,结果比原计划提早12分钟完成任务,求小杰原计划完成锻炼需多少小时?18.某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)19.“荡秋千”一直以来都是人们喜闻乐见的休闲方式之一,某天,小鹏和小运两人玩荡秋千.左图为实际图,右图为侧面几何图.静止时秋千位于铅垂线AB上,转轴A到地面的距离AB为3m,荡秋千的起始位置为C,终点为D,点C距离地面为1.16米,安全链AC为2.3m.需要解决问题如下:(1)秋千位于起始位置点C时,安全链AC与铅垂线AB夹角(即∠CAB)的度数;(2)如果我们把荡秋千的最高点与起始点的铅直高度之差记作H,起始点至最高点的路径长记作L,H与L的比值记作P(愉悦度),据科学研究表明,当0.20<P<0.22时,C推出后可达到最高点D处,此时∠CAD=100°.请问这个过程能否实现愉悦感最强?说明理由.(结果精确到0.01,参考数据:sin37°=0.6,cos37°=0.8,sin27°=0.452,π=3)20.如图①是大家熟悉的柜式空调,关闭时叶片竖直向下.如图②,当启动时,出风口叶片会同步开始逆时针旋转到最大旋转角90°时返回,旋转速度是每秒10°,同时空调风从叶片口直线吹出.AB由5个叶片组成的出风口,经过测量,A点、B点距地面高度分别是170cm、145cm在空调正前方100cm处站着一个高70cm的小朋友(线段EF表示).(1)从启动开始,多长时间小朋友头顶E处感受到空调风;(2)若叶片从闭合旋转到最大角度的过程中,小朋友的头顶E处有多长时间感受到空调风;(3)当选择上下扫风模式时,叶片会旋转到最大角度后原速返回.从启动到第一次返回起始位的过程中,该小朋友头顶E处从第一次感受到空调风到再次感受到空调风中间间隔了多长时间.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).参考答案与试题解析1.图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A处,手柄长AB =20cm,AB与墙壁AD的夹角∠α=30°,喷出的水流BC与AB形成的夹角∠ABC=80°.现在住户要求:当人站在E处淋浴时,水流正好喷洒在人体的C处,且使DE=50cm,CE=150cm.问:安装师傅应将支架固定在离地面多高的位置?(结果精确到1cm,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,≈1.73,≈1.41).【分析】过点B作BG⊥D'D,垂足为G,延长EC、GB交于点F.在△GAB中先求出GB、GA,再在△FAB中求出CF,最后利用线段的和差关系求出AD.【解答】解:如图,过点B作BG⊥D'D,垂足为G,延长EC、GB交于点F.在Rt△ABG中,∠BAG=∠a=30°,AB=20cm,∴GB=AB=10cm,.在Rt△BCF中,∠FBC=180°﹣60°﹣80°=40°,BF=DE﹣BG=40(cm),∴CF=BF•tan∠FBC=40tan40°≈33.6(cm),∴AD=CE+CF﹣AG=150+33.6﹣17.3≈166(cm).答:安装师傅应将支架固定在离地面166cm的位置.2.为了完成“综合与实践”作业任务,小明和小华利用周末时间邀约一起去郊外一处空旷平坦的草地上放风筝,小明负责放风筝,小华负责测量相关数据.如图,当小明把风筝放飞到空中点P处时,小华分别在地面的点A、B处测得∠PAB=45°,∠PBA=30°,AB=200米,请你求出风筝的高度PC(点C在点P的正下方,A、B、C在地面的同一条直线上)(参考数据:≈1.414,≈1.732)【分析】设PC=x米,根据等腰直角三角形的性质用x表示出AC,根据正切的定义列出方程,解方程求出x,得到CD的长,结合图形计算,得到答案.【解答】解:设PC=x米,在Rt△ACP中,∠PAC=45°,∴AC=PC=x,∴BC=200﹣x,在Rt△BCP中,∠PBA=30∴tan∠PBA=,∴=,解得x=100﹣100≈100×1.732﹣100=73.2,即PC=73.2米,答:风筝的高度PC约是73.2米.3.如图1所示是一种手机平板支架,由托板、支撑板和底座构成.图2是其侧面结构示意图,支撑板CD=40mm,托板AB固定在支撑板顶点C处,且CB=40mm,托板AB 可绕点C转动,支撑板CD可绕点D转动.(1)如图2,当∠CDE=60°时,求点C到直线DE的距离;(2)如图3,当∠DCB=90°时,再将CD绕点D转动,使点B落在DE上,求此时∠CDB的度数.【分析】(1)过点C作CF⊥DE,垂足为F,在Rt△CDF中,利用锐角三角函数的定义求出CF的长,即可解答;(2)在Rt△DCB中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)过点C作CF⊥DE,垂足为F,在Rt△CDF中,∠CDE=60°,CD=40mm,∴CF=CD•sin60°=40×=60(mm),∴点C到直线DE的距离为60mm;(2)在Rt△DCB中,CD=40mm,CB=40mm,∴tan∠CDB===,∴∠CDB=30°,∴此时∠CDB的度数为30°.4.火灾是生活中最常见、最突出的一种灾难,消防车是救援火灾的主要装备.图1是一辆登高云梯消防车的实物图,图2是其工作示意图,起重臂AC(10m≤AC≤20m)是可伸缩的,且起重臂AC可绕点A在一定范围内上下转动,张角∠CAE(90°≤∠CAE≤150°),转动点A距离地面的高度AE=3.5m.(1)当起重臂AC的长度为12m,张角∠CAE=120°,求云梯消防车最高点C距离地面的高度CF.(2)某日一居民家突发火灾,该居民家距离地面的高度为180m,该消防车能否实施有效救援?(参考数据:≈1.732)【分析】(1)过点A作AG⊥CF,垂足为F.先在Rt△AGC中求出CG,再利用直角三角形的边角间关系求出CF;(2)先计算当AC长20m、∠CAE=150°时救援的高度,再判断该消防车能否实施有效救援.【解答】解:(1)过点A作AG⊥CF,垂足为F.由题意知:四边形AEFG是矩形.∴FG=AE=3.5m,∠EAG=∠AGC=∠AGF=90°.∵∠CAE=120°,∴∠CAG=∠CAE﹣∠EAG=在Rt△AGC中,∵sin∠CAG=,∴CG=AC×sin30°=12×=6(m).∴CF=CG+GF=3.5+6=9.5(m).答:云梯消防车最高点C距离地面的高度CF为9.5m.(2)过点C作CH⊥AE,交EA的延长线于点H.当AC=20m,∠CAE=150°时,∠HAC=30°.在Rt△AHC中,∵cos∠HAC=,∴AH=cos∠HAC×AC=cos30°×20=×20=10≈1.732×10=17.32(m).∴HE=AH+AE=3.5+17.32=20.82(m).由题意知,四边形HEFC是矩形,∴CF=HE=20.82m.∵20.82<180,∴该消防车不能实施有效救援.5.如图,是放在水平桌面上的台灯的几何图,已知台灯底座高度为2cm,固定支点O到水平桌面的距离为7.5cm,当支架OA、AB拉直时所形成的线段与点M共线且与底座垂直,此时测得B到底座的距离为31.64cm(线段AB,AO,OM的和),经调试发现,当∠OAB=115°,∠AOM=160°时,台灯所投射的光线最适合写作业,测量得A到B的水平距离(线段AC)为10cm.求:(1)∠BAC=45°,OM= 5.5cm;(2)此时点B到桌面的距离.(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,≈1.414)【分析】(1)延长MO交AC于点D,则∠ADO=90°,先利用平角定义求出∠AOD=20°,然后利用直角三角形的两个锐角互余可得∠DAO=70°,再利用角的和差关系可求出∠BAC,最后根据题意利用支点O到水平桌面的距离减去台灯底座高度即可求出OM 的长;(2)先在Rt△ABC中,利用锐角三角函数的定义求出BC,AB的长,从而求出AO的长,然后在Rt△ADO OD的长,进行计算即可解答.【解答】解:(1)延长MO交AC于点D,则∠ADO=90°,∵∠AOM=160°,∴∠AOD=180°﹣∠AOM=20°,∴∠DAO=90°﹣∠AOD=70°,∵∠OAB=115°,∴∠BAC=∠OAB﹣∠DAO=45°,由题意得:OM=7.5﹣2=5.5(cm),故答案为:45;5.5cm;(2)在Rt△ABC中,∠BAC=45°,AC=10cm,∴BC=AC•tan45°=10(cm),AB=AC=10≈14.14(cm),由题意得:AO=31.64﹣AB﹣OM=12(cm),在Rt△ADO中,∠AOD=20°,∴OD=AO•cos20°≈12×0.94=11.28(cm),∴BC+OD+7.5=28.78(cm),∴此时点B到桌面的距离约为28.78cm.6.如图1的风力发电机,风轮的三个叶片均匀分布,当风轮的叶片在风力作用下旋转时,最高点距地面145m,最低点距地面55m.如图2是该风力发电机的示意图,发电机的塔身OD垂直于水平地面MN(点O,A,B,C,D,M,N在同一平面内).(1)求风轮叶片OA的长度;(2)如图2,点A在OD右侧,且α=14.4°.求此时风叶OB的端点B距地面的高度.(参考数据:sin44.4°≈0.70,tan44.4°≈0.98)【分析】(1)以点O为圆心,OA的长为半径作圆,延长DO交⊙O于点P,设直线DO 与⊙O交于点Q,根据题意可得PD=145m,DQ=55m,从而求出PQ的长,进而可得OA=OP=PQ,进行计算即可解答;(2)过点B作BE⊥MN,垂足为E,过点O作OF⊥BE,垂足为F,从而得∠DOF=90°,EF=OD,进而求出∠BOF=44.4°,然后在Rt△BOF中求出BF,进行计算即可解答.【解答】解:如图,以点O为圆心,OA的长为半径作圆,延长DO交⊙O于点P,设直线DO与⊙O交于点Q,由题意得:PD=145m,DQ=55m,∴PQ=PD﹣DQ=145﹣55=90(m),∴OA=OP=PQ=45(m),∴风轮叶片OA的长度为45m;(2)如图,过点B作BE⊥MN E,过点O作OF⊥BE,垂足为F,则四边形ODEF是矩形,∴∠DOF=90°,EF=OD,由题意得:∠AOB=120°,AOD=14.4°,∴∠BOF=∠AOB+∠AOD﹣∠DOF=44.4°,∴BF=OB sin44.4°≈45×0.70=31.5(m),∵OD=PD﹣OP=145﹣45=100(m),∴EF=OD=100m,∴BE=BF+EF=131.5(m),∴此时风叶OB的端点B距地面的高度为131.5m.7.如图1,是某品牌的可伸缩篮球架,其侧面可抽象成图2,结点F,G,H,M,N可随着伸缩杆EF的伸缩转动,从而控制篮球圈ON离地面AB的高度,ON∥AB,主杆AH⊥AB,G,C,D均在主干AH上,结点N,G,F共线,DE∥AB,经测量,AD=150cm,DC=CG=GH=MN=GF=50cm,MH=NG=GD,∠NGD=33°,此时,EF∥AH.(结果保留小数点后一位)(1)①∠M=147°,EF与AB的位置关系垂直;②求EF的长度.(2)在图1的基础上,调节伸缩杆EF,得到图3,图4是图3的示意图,经测量,此时,篮球圈ON离地面AB的高度刚好达到国际标准305cm,求NF绕着G点顺时针旋转的度数.(参考数据:sin57°≈0.84,cos57°≈0.55,tan57°≈1.54)【分析】(1)①根据平行四边形的判定定理可知四边形GHMN是平行四边形,可得∠M =∠HGN=147°;由AH⊥AB,EF∥AH,可知EF⊥AB;②过G作GP⊥EF,可求FP =GF•sin57°≈50×0.84=42.0cm,由四边形GDEP为平行四边形可得GD=PE,即可求解;(2)过点G作AB的平行线PG,再过点N作PG的垂线交PG于点P,由cos∠GNP===0.55,可求∠GNP≈57°,可得∠NGP≈33°,∠NGD≈123°,即可求得∠PGD的值.【解答】解:(1)①∵GH=MN,MH=NG,∴四边形GHMN是平行四边形,∵∠NGD=33°,∴∠M=∠HGN=147°,∵AH⊥AB,EF∥AH,∴EF⊥AB,故答案为:147,垂直;②过G作GP⊥EF,垂足为P,∵∠NGD=33°,∴∠FGP=57°,∴FP=GF•sin57°≈50×0.84=42.0cm,∵GP⊥EF,EF⊥AB,∴GP∥AB,又∵DE∥AB,∴GP∥DE,∵EF∥AH,∴四边形GDEP为平行四边形,∴GD=PE,∴EF=DG+PF=50+50+42≈142.0cm;(2)过点G作AB的平行线PG,再过点N作PG的垂线交PG于点P.∴NP=305﹣50﹣50﹣150=55cm,∵NG=GD=100cm,∴cos∠GNP===0.55,∴∠GNP≈57°,∴∠NGP≈33°,∴∠NGD≈123°,∴∠PGD≈123°﹣33°=90°,故NF绕着G点顺时针旋转了90°.8.已知图1是超市购物车,图2是超市购物车侧面示意图,测得支架AC=80cm,BC=60cm,AB,DO均与地面平行.(1)若支架AC与BC之间的夹角∠ACB=90°,求两轮轮轴A,B之间的距离;(2)若OF的长度为60cm,∠FOD=120°,求点F到AB所在直线的距离.(结果精确到0.1)(参考数据:≈1.414,≈1.732)【分析】(1)根据勾股定理求出AB的长度即可;(2)作辅助线,分别求出C点到AB的距离,F点到直线DO的距离,求和即可.【解答】解:(1)∵支架AC与BC之间的夹角(∠ACB)为90°,∴AB===100(cm),即两轮轮轴A,B之间的距离为100cm;(2)过C点作CH⊥AB于H,过F点作FG⊥DO延长线与G,则扶手F到AB所在直线的距离为FG+CH,∵OF的长度为60cm,∠FOD=120°,∴∠FOG=180°﹣120°=60°,∵∠G=90°,∴∠F=30°,∴OG=OF=30,∴FG=30,由(1)知AB=100,AC=80,BC=60,=AC•BC=AB•,∴S△ABC即×100×CH=×60×80,解得CH=48,∴FG+CH=48+30≈48+30×1.732≈100.0cm,即扶手F到AB所在直线的距离为100.0cm.9.为应对新冠疫情,学校购进一批酒精消毒瓶(如图1),AB为喷嘴,△BCD为按压柄,CE为伸缩连杆,BE和EF为导管,其示意图如图2,∠DBE=∠BEF=108°,BD=8cm,BE=6cm,当按压柄△BCD按压到底时,BD转动到BD′,此BD′∥EF(如图3).(1)求点D转动到点D′的路径长;(2)求点D到直线EF的距离(结果精确到0.1cm).(参考数据sin36°≈0.59,cos36°≈0.81,tan30°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)【分析】(1)由平行线的性质可求得∠D'BE=72°,从而可求得∠DBD'=36°,利用弧长公式即可求解;(2)过点D作DG⊥BD'于点G,过E作EH⊥BD'于点H,可求得DG=4.72cm,HE=5.7cm,利用平行线的性质可求解.【解答】解:(1)∵BD′∥EF,∠DBE=∠BEF=108°,∴∠D'BE=180°﹣∠BEF=72°,∴∠DBD'=∠DBE﹣∠D'BE=36°,∵BD=8cm,∴点D转动到点D′的路径长为:(cm);(2)过点D作DG⊥BD'于点E作EH⊥BD'于点H,如图,Rt△BDG中,DG=BD•sin36°≈8×0.59=4.72(cm),Rt△BEH中,HE=BE•sin72°=6×0.95=5.7(cm),∴DG+HE=10.42cm,∵BD'∥EF,∴点D到直线EF的距离约为10.42cm.10.如图1是学生常用的一种圆规,其手柄AB=8mm,两脚BC=BD=56mm,如图2所示,当∠CBD=74°时.(1)求A离纸面CD的距离.(2)用该圆规作如图3所示正六边形,求该正六边形的周长.(参考数据:sin37°≈0.60,cos37°≈0.80,sin74°≈0.96,cos74°≈0.28,结果精确到0.1)【分析】(1)连接CD,延长AB交CD于点E,则AE⊥CD,利用等腰三角形的三线合一性质可得∠CBE=37°,CD=2CE,然后在Rt△BCE中,利用锐角三角函数的定义求出BE的长,最后进行计算即可解答;(2)在Rt△BCE中,利用锐角三角函数的定义求出CE的长,从而求出CD的长,进而求出正六边形的边长,然后进行计算即可解答.【解答】解:(1)连接CD AB交CD于点E,则AE⊥CD,∵BC=BD=56mm,∴∠CBE=∠CBD=37°,CD=2CE,在Rt△BCE中,BE=BC•cos37°≈56×0.8=44.8(mm),∵AB=8mm,∴AE=AB+BE=8+44.8=52.8(mm),∴A离纸面CD的距离约为52.8mm;(2)在Rt△BCE中,∠CBE=37°,BC=56mm,∴CE=BC•sin37°≈56×0.6=33.6(mm),∴CD=2CE=67.2(mm),∴正六边形的边长为67.2mm,∴正六边形的周长=6×67.2=403.2(mm),∴正六边形的周长约为403.2mm.11.住宅的采光是建楼和购房时人们所关心的问题之一.如图,住宅小区南、北两栋楼房的高度均为16.8m.已知当地冬至这天中午12时太阳光线与地面所成的角是35°.(参考数据:sin35°≈0.57;cos35°≈0.81;tan35°≈0.70)(1)要使这时南楼的影子恰好落在北楼的墙脚,两楼间的距离应为多少米(精确到0.1m)?(2)如果两栋楼房之间的距离为20m,那么这时南楼的影子是否会影响北楼一楼的采光?【分析】(1)根据直角三角形的边角关系进行计算即可;(2)根据直角三角形的边角关系计算出AN即可.【解答】解:(1)如图1,由题意可知,AB=CD=16.8m,∠ADB=35°∵tan∠ADB=,∴≈0.7,∴BD≈24.0米,答:两楼间的距离应为24.0m;(2)如图2,过点M作MN∥BD,在Rt△AMN中,BD=20m=MN,∠AMN=35°,∴AN=tan35°×MN≈14.0(m),∴MD=AB﹣AN=16.8﹣14.0=2.8(m),答:这时南楼的影子会影响北楼一楼的采光,且影子在CD的高度为2.8m.12.某小区门口安装了汽车出入道闸.道闸关闭时,如图①,四边形ABCD为矩形,AB长6米,AD长2米,点D距地面为0.4米.道闸打开的过程中,边AD固定,连杆AB,CD分别绕点A,D转动,且边BC始终与边AD平行.(1)如图②,当道闸打开至∠ADC=60°时,边CD上一点P到地面的距离PE为2.4米,求点P到MN的距离PF的长;(2)一辆载满货物的货车过道闸,已知货车宽2.1米,高3.2米.当道闸打开至∠ADC =53°时,货车能否驶入小区?请说明理由.(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】(1)在Rt△PDQ中,由∠PDQ=30°得出DQ=2,进而求出FP即可;(2)当∠ADC=53°,PE=3.2米时,求出PF,与2.1米比较即可得出答案.【解答】解:(1)如图,过点D作DQ⊥PE,垂足为Q,由题意可知,∠ADC=60°,PE=2.4米,QE=0.4米,在Rt△PDQ中,∠PDQ=30°,PQ=2.4﹣0.4=2(米),∴tan30°=,∴DQ==2(米),∴PF=AB﹣DQ=(6﹣2)(米),(2)当∠ADC=53°,PE=3.2米时,则∠DPQ=53°,PQ=3.2﹣0.4=2.8(米),∴DQ=PQ•tan53°≈2.8×1.33 3.724(米),∴PF=6﹣3.724≈2.276(米),∵2.276>2.1,∴能通过.13.如图①是某中型挖掘机,该挖掘机是由基座、主臂和伸展臂构成,图②是共侧面结构示意图(MN是基座,AB是主臂,BC是伸展臂),若主臂AB长为4米,主臂伸展角∠MAB的范围是:30°≤∠MAB≤60°,伸展臂伸展角∠ABC的范围是:45°≤∠ABC≤105°.(1)如图③,当∠MAB=45°,伸展臂BC恰好垂直并接触地面时,求伸展臂BC的长(结果保留根号);(2)若(1)中BC长度不变,当∠MAB=30°时,求该挖掘机最远(即伸展臂伸展角∠ABC最大时)能挖掘到距A水平正前方多少米的土石.(结果保留根号)【分析】(1)根据题意可得:∠BCA=90°,然后在Rt△ABC中,利用锐角三角函数的定义求出BC的长,即可解答;(2)过点B作BD⊥AC,垂足为D,根据题意可得:∠MAB=30°,∠ABC=105°时,伸展臂伸展的最远,从而利用三角形内角和定理求出∠ACD=45°,然后在RtABD中,利用锐角三角函数定义求出AD的长,再在Rt△BCD中,利用锐角三角函数的定义求出CD的长,进行计算即可解答.【解答】解:(1)如图:由题意得:∠BCA=90°,在Rt△ABC中,∠MAB=45°,AB=4米,∴BC=AB•sin45°=4×=2(米),∴伸展臂BC的长为2米;(2)过点B作BD⊥AC,垂足为D,由题意得:∠MAB=30°,∠ABC=105°时,伸展臂伸展的最远,∴∠ACB=180°﹣∠ABC﹣∠MAB=45°,在RtABD中,AB=4米,∴AD=AB•cos30°=4×=2(米),在Rt△BCD中,BC=2米,CD=BC•cos45°=2×=2(米),∴AC=AD+CD=(2+2)米,∴该挖掘机最远能挖掘到距A水平正前方(2+2)米的土石.14.激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?【分析】(1)过点A作AD⊥BC于点D,根据题意可得AB=AC,当∠BAC=33°时,当∠BAC=40°时,利用锐角三角函数即可解决问题;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意列出方程即可解决问题.【解答】解:(1)如图,过点A作AD⊥BC于点D,根据题意可知:AB=AC,AD⊥BC,∴BC=2BD,∠BAD=∠CAD=∠BAC,当∠BAC=33°时,∠BAD=∠CAD=16.5°,在△ABD中,BD=AD×tan16.5°≈3.5×0.30=1.05(m),∴BC=2BD=2.10(m),当∠BAC=40°时,∠BAD=∠CAD=20°,在△ABD中,BD=AD×tan20°≈3.5×0.36=1.26(m),∴BC=2BD=2.52m,答:小佳家要选择电视屏幕宽为2.10m﹣2.52m之间的激光电视就能享受黄金观看体验;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意可得:=,解得:x=16000,经检验x=16000是原方程的解,符合题意,答:今年这款激光电视每台的售价是16000元.15.图1是疫情期间测温员用“额温枪”对学生测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直,量得胳膊MN=30cm,MB=44cm,肘关节M与枪身端点A之间的水平宽度为26.1cm(即MP的长度),∠ABM =113.6°.(1)求枪身BA的长度;(2)测温时规定枪身端点A与额头距离范围为3cm~5cm.在图2中,若测得∠BMN=68.6°,学生与测温员之间距离为50cm.问此时枪身端点A与学生额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据sin66.4°≈0.92,cos66.4°≈0.4,tan66.4°≈2.29,)【分析】(1)过点B作BH⊥MQ,垂足为H,则BA=HP,AB∥MQ,利用平行线的性质可得∠BMH=66.4°,然后在Rt△BMH中,利用锐角三角函数的定义求出MH的长,从而求出HP的长,即可解答;(2)延长QM交FG于点K,则KQ=50cm,∠NKM=90°,利用平角定义先求出∠NMK 的度数,再在Rt△NMK中,利用锐角三角函数的定义求出KM的长,从而求出PQ的长,进行比较即可解答.【解答】解:(1)过点B作BH⊥MQ,垂足为H,则BA=HP,AB∥MQ,∵∠ABM=113.6°,∴∠BMH=180°﹣∠ABM=66.4°,在Rt△BMH中,∠BMH=66.4°,BM=44cm,∴MH=BM•cos66.4°≈44×0.4=17.6(cm),∵MP=26.1cm,∴BA=HP=MP﹣MH=26.1﹣17.6=8.5(cm),∴枪身BA的长度约为8.5cm;(2)此时枪身端点A与学生额头的距离不在规定范围内,理由:延长QM交FG于点K,则KQ=50cm,∠NKM=90°,∵∠BMN=68.6°,∠BMH=66.4°,∴∠NMK=180°﹣∠BMN﹣∠BMH=45°,。
解直角三角形应用题考点一、直角三角形的性质1、直角三角形的两个锐角互余可表示如下:∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°可表示如下: ⇒BC=21AB ∠C=90°3、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°可表示如下: ⇒CD=21AB=BD=AD D 为AB 的中点 4、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD •=2⇒ AB AD AC •=2 CD ⊥AB AB BD BC •=2 6、常用关系式由三角形面积公式可得: AB •CD=AC •BC考点二、直角三角形的判定 (3~5分)1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
考点三、锐角三角函数的概念 (3~8分) 1、如图,在△ABC 中,∠C=90°①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA ,即casin =∠=斜边的对边A A②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即cbcos =∠=斜边的邻边A A③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即batan =∠∠=的邻边的对边A A A④锐角A 的邻边与对边的比叫做∠A 的余切,记为cotA ,即abcot =∠∠=的对边的邻边A A A2、锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数 3、一些特殊角的三角函数值4、各锐角三角函数之间的关系 (1)互余关系 sinA=cos(90°—A),cosA=sin(90°—A) tanA=cot(90°—A),cotA=tan(90°—A) (2)平方关系1cos sin 22=+A A5、锐角三角函数的增减性 当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小) (2)余弦值随着角度的增大(或减小)而减小(或增大) (3)正切值随着角度的增大(或减小)而增大(或减小) (4)余切值随着角度的增大(或减小)而减小(或增大) 考点四、解直角三角形 (3~5) 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
2、解直角三角形的理论依据在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c(1)三边之间的关系:222c b a =+(勾股定理) (2)锐角之间的关系:∠A+∠B=90° (3)边角之间的关系:ba B ab Bc a B c b B a b A b a A c b A c a A ========cot ,tan ,cos ,sin ;cot ,tan ,cos ,sin初三数学解直角三角形的应用 知识精讲【同步教育信息】 一. 本周教学容:解直角三角形的应用[学习目标]1. 了解解直角三角形在测量及几何问题中的应用。
2. 掌握仰角、俯角、坡度等概念,并会解有关问题。
3. 会用直角三角形的有关知识解决某些简单实际问题。
二. 重点、难点: 1. 仰角、俯角在进行测量时,视线与水平线所成角中,规定:视线在水平线上方的叫做仰角。
视线在水平线下方的叫做俯角。
2. 坡度坡面的铅直高度h 和水平宽度L 的比叫做坡度(或叫坡比),用字母i 表示,即i hL=。
如果把坡面与水平面的夹角记作α(叫做坡角),那么i hL==tan α。
3. 直角三角形在实际问题中的应用在解决实际问题时,解直角三角形有着广泛的作用。
具体来说,要求我们善于将某些实际问题中的数量关系归结为直角三角形的边,角之间的关系,这样就可运用解直角三角形的方法了。
[教学难点]运用解直角三角形的知识,结合实际问题示意图,正确选择边角关系,解决实际问题。
【典型例题】例1. “曙光中学”有一块三角形形状的花圃ABC ,现可直接测量到∠A=30°,AC=40米,BC=25米,请你求出这块花圃的面积。
解:分两种情况计算(1)如图1,过C 作CD ⊥AB 于D ,则图1CD AD AC ===2030203,·°cos DB CB CD =-=2215,故S AB CD ABC △·×==+=+121220315202003150()()(米2)(2)如图2,过C作CD⊥AB且交AB的延长线于D,图2由(1)可得CD=20,AD DB==20315,,所以S AB CDABC△·==+122003150()(米2)点拨:通过作高,把解某些斜三角形的问题转化为解直角三角形的问题。
例2. 某片绿地的形状如图3所示,其中∠A=60°,AB⊥BC,AD⊥CD,AB=200m,CD=100m,求AD、BC的长。
(精确到1m,31732≈.)图3解:延长AD,交BC的延长线于点E,可构成两个直角三角形,在Rt△ABE中,∠A=60°,AB=200m∴·BE AB A==tan2003(m)AEABm===cos()6020012400°在Rt△CDE中,∠CED=30°,CD=100m∴·∠DE CD CED m==cot()1003CECDCEDm===sin∠10012200∴AD AE DE m=-=-4001003227≈()BC BE CE m=-=-2003200146≈()点拨:其他四边形,如平行四边形,梯形等,常通过作高实现多边形向直角三角形转化。
例3. 如图4所示,某电视塔AB 和楼CD 的水平距离为100米,从楼顶C 处及楼底D 处测得塔顶A 的仰角分别为45°和60°,试求塔高和楼高。
图4(精确到0.1m ,参考数据:214142317320==..,)解:在Rt △ADB 中,∵∠ADB=60°,DB=100m ,∴AB DB ADB m ====tan tan .()∠×°10060100317320 在△ACE 中,∠ACE=45° ∴AE=CE=100∴CD EB AB AE m ==-=-=173********..()答:电视塔高是173.2m ,楼高是73.2m 。
点拨:搞清仰角、俯角等概念,同时要找合适的直角三角形。
例4. 如图5,在比水面高2m 的A 地,观测河对岸有一直立树BC 的顶部B 的仰角为 30°,它在水中的倒影B'C 顶部B'的俯角是45°,求树高BC (结果保留根号)图5解:设树高BC=x(m),过A 作AE ⊥BC 于E , 在Rt △ABE 中,BE x BAE BAE AEBE =-==230,∠°,∠cot ∴AE BE BAE x x ==-=-·∠·cot ()()2332∵∠B'AE=45°,AE ⊥BC ∴B E AE x '()==-32又∵B E B C EC BC AD x ''=+=+=+2∴x m =+()()423 答:树高BC 为()423+m点拨:树与树的倒影长度相等,即BC=B'C ,是此题的隐含条件。
例5. 为防水患,在漓江上游修筑防洪堤,其横截面为一梯形,如图6,堤的上底宽AD 和堤高DF 都是6米,其中∠B=∠CDF 。
图6(1)求证:△ABE ∽△CDF ;(2)如果tanB=2,求堤的下底BC 的长。
(1)证明:∵AE ⊥BC ,DF ⊥BC ∠B=∠CDF∴△ABE ∽△CDF(2)解:在Rt △ABE 中,tan B AEBE==2, ∴BE AE==23 在Rt △CDF 中,tan tan ∠CDF CFDFB ===2 ∴CF=2DF=12∴BC BE EF CF m =++=++=361221()答:堤的下底BC 的长是21m 。
点拨:与堤坝有关的问题,首先要搞清坡度(坡比),坡角等概念,同时还要将四边形问题转化为解直角三角形。
例6. 如图7,水库的横断面是梯形,坝顶宽6m ,坝高23m ,斜坡CD 坡度i'=1:1,斜坡AB 坡度i =13:,求斜坡AB 的长及坡角α和坝底宽AD (精确到0.1m )。
图7 解:过B ,C 两点分别作BE ⊥AD 于E ,CF ⊥AD 于F , 则B E CF ==23m , 在Rt △ABE 中,tan α===i 1333∴°,∴α===30246AB BE m () ∵i BE AE AE ===132313,即, ∴AE m =233() 在Rt △CFD 中,i CF FD '==11∴FD=CF=23(m )∴AD AE EF FD =++=++=+23362329233≈×≈29231732688+..()m 答:斜坡AB 长4m ,坡角α为30°,坝底宽AD 约为68.8m 。
点拨:求出近似值要符合题目要求。
例7. 如图8,某轮船沿正北方向航行,在A 点处测得灯塔C 在北偏西30°,船以每小时20海里的速度航行2小时到达B 点后,测得灯塔C 在北偏西75°,问当此船到达灯塔C 的正东方时,船距灯塔C 有多远?(结果保留两位有效数字)?图8解:在△ABC 中,AB=20×2=40(海里),∠A=30° ∠°°°,BCA =-=753045过B 作BE ⊥AC 于E则AE AB ===cos304032203°×(海里) BE AB ===sin30401220°×(海里) ∴AC AE CE BE =+=+=+=+203203202031()(海里) 过C 作CD ⊥AB 于D ,则CD CA ==+sin ().3010312732°≈(海里) 答:船到达灯塔正东时,它距灯塔27.32海里。