公开课解三角形中的值及取值范围问题
- 格式:pptx
- 大小:216.19 KB
- 文档页数:19
第11讲解三角形中面积最值与取值范围问题题型一:三角形面积最大值问题【例1】已知ABC 的内角,,A B C 所对的边分别为,,a b c ,若3A π=,a =则ABC 面积的最大值为()A.4B .2C .1D【例2】在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若()tan tan 2B C +=,且2a =,则ABC 的面积的最大值为A .3B .2C D .【答案】A【解析】:因为()tan tan2AB C +=,且B C A +=π-,所以()22tan2tan tan 1tan 2A B C A A +=-=--tan 02A =>,所以tan 2A =,则2π3A =.由于2a =为定值,由余弦定理得222π42cos 3b c bc =+-,即224b c bc =++.根据基本不等式得22423b c bc bc bc bc =++≥+=,即43bc ≤,当且仅当b c =时,等号成立.所以11433sin 22323ABC S bc A =≤⨯⨯=.故选:A【例3】在ABC △中,a ,b ,c 分别为内角A ,B ,C 的对边,若4a c +=,2sin sin sin B A C =+,则ABC △的面积的最大值为()AB .2C.D .4【答案】A 【解析】因为2sin sin sin B A C =+,所以2b a c =+,因4a c +=,所以2=b ,由余弦定理得()acac ac ac ac b ac c a ac b c a B 221224216222cos 22222-=--=--+=-+=所以ac B ac 212cos 2-=,所以acacB -=6cos ,所以()()()()acac ac ac ac B B 22222661cos 1sin --=--=-=因11sin 22ABCSac B ac ac ∆==⋅==因为ac c a 2≥+,所以()442=+≤c a ac,ABC S ∆=≤=【例4】在ABC △中,a ,b ,c 分别为内角A ,B ,C的对边,若2a =,b =,则ABC △的面积的最大值为()AB .2C .D .4【答案】A 【解析】因为2a =,b =,由余弦定理得()2222222324432432cos c c cc cc bcac b A -=⋅-+=-+=所以()()2244244222223216324121632161232441cos 1sin c c c cc c c c c A A -+-=-+-=--=-=因21sin 2ABCS bc A ∆===设t c =2,则ABCS∆==≤【例5】在ABC 中,,,A B C 所对的边分别为,,.a b c 若2222312++=a b c ,则ABC 面积最大值为__________【例6】如图,在ABC 中,3ABC ∠=,点D 在线段AC 上,且2AD DC =,3BD =,则ABC 面积的最大值为___.【例7】ABC 的内角,,A B C 的对边分别为,,a b c ,已知B c C b a sin cos +=.(Ⅰ)求B ;(Ⅱ)若2=b ,求ABC 面积的最大值.【详解】(1)∵Bc C b a sin cos +=∴由正弦定理知B C C B A sin sin cos sin sin +=①在三角形ABC 中,()C B A +-=π∴()B C C B C B A sin sin cos sin sin sin +=+=②由①和②得C B C B sin cos sin sin =而()π,0∈C ,∴0sin ≠C ,∴B B cos sin =又()π,0∈B ,∴4π=B(2)ac B ac S ABC 42sin 21==∆,由已知及余弦定理得:4=a 2+c 2﹣2ac cos 4π≥2ac ﹣2ac 22⨯,整理得:ac≤,当且仅当a =c 时,等号成立,则△ABC 面积的最大值为(1212222⨯=+1=+【题型专练】1.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若8ac =,sin sin 20a B c A +=,则ABC 面积的最大值为______.2.材料一:已知三角形三边长分别为,,a b c ,则三角形的面积为S =,其中2a b cp ++=.这个公式被称为海伦一秦九韶公式.材料二:阿波罗尼奥斯(Apollonius )在《圆锥曲线论》中提出椭圆定义:我们把平面内与两个定点12,F F 的距离的和等于常数(大于)12F F 的点的轨迹叫做椭圆.根据材料一或材料二解答:已知ABC 中,6,10BC AB AC =+=,则ABC 面积的最大值为()A .6B .10C .12D .20【答案】C【分析】令(2,8)AB x =∈,根据材料一海伦公式写出ABC 面积S ,由二次函数性质求面积最大值即可.3.在ABC 中,角,,A B C的对边分别为,,a b c .已知角,3C AB =边上的高为(1)若ABC S = ABC 的周长;(2)求ABC 面积的最小值.。
Җ㊀山东㊀冯海侠㊀㊀在新高考形势下, 解三角形 应该会出现在第17题或第18题的位置,一般都属于中等或中等偏下难度的题目,是学生必拿分的题.高考对正弦定理和余弦定理的考查较为灵活,题型多变㊁综合性强,有利于培养学生的创新意识.这类问题简单,但部分学生却拿不到满分,尤其是求最值或范围的问题.下面笔者以两道高考题为例来归纳这类问题的解答方法及技巧,希望能帮助读者突破瓶颈,提高学习效率.例1㊀(2019年全国卷Ⅲ理18)әA B C 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a s i nA +C2=b s i n A .(1)求B ;(2)若әA B C 为锐角三角形,且c =1,求әA B C 面积的取值范围.(1)由a s i n A +C2=b s i n A ,可得s i n A s i n π-B 2=s i n B s i n A ,即s i n A c o s B2=s i n B s i n A ,因为s i n A ʂ0,所以c o s B 2=s i n B =2s i n B 2c o s B2.又因为B ɪ(0,π),所以B 2ɪ(0,π2),则c o s B 2ʂ0,所以s i n B 2=12,则B 2=π6,即B =π3.(2)由c =1,a s i n A =c s i n C,可得a =c s i n A s i n C =s i n A s i n C.所以S әA B C =12a c s i n B =12ˑ32a =34a =34s i n A s i n C =34s i n (B +C )s i n C=34ˑ32c o s C +12s i n Cs i n C =38+38ˑ1t a n C.又因为әA B C 是锐角三角形,故0<C <π2且0<2π3-C <π2,所以π6<C <π2,则t a n C >33,即0<1t a n C <3,所以S әA B C ɪ(38,32).例2㊀(2013年全国卷Ⅱ理17)әA B C 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b c o s C +c s i n B .(1)求B ;(2)若b =2,求әA B C 面积的最大值.(1)由已知条件及正弦定理得s i n A =s i n B c o s C +s i n C s i n B .①又因为A =π-(B +C ),故s i n A =s i n (B +C )=s i n B c o s C +c o s B s i n C .②由①②得s i n B =c o s B ,又B ɪ(0,π),所以B =π4.(2)әA B C 的面积S =12a c s i n B =24a c ,由已知条件及余弦定理得4=a 2+c 2-2a c c o sπ4ȡ2a c -2a c ,故a c ɤ42-2=2(2+2),当且仅当a =c 时,等号成立.因此,S =12a c s i n B =24a c ɤ24ˑ2(2+2)=2+1,即әA B C 面积的最大值为2+1.解三角形中的最值及范围问题主要有两种方法,其一是利用基本不等式求最大值或最小值,这类问题多与余弦定理相结合,常见形式如下.(1)a 2=b 2+c 2-2b c c o s A ȡ2b c -2b c c o s A ,从而求出b c 的最大值;(2)a 2=b 2+c 2-2b c c o s A =(b +c )2-(2-2c o s A )b c ȡ(b +c )2-(2-2c o s A )(b +c 2)2.在使用基本不等式时一定不要忘了等号的验证,同时,要将所求式子转化为含有一个未知数的函数,大多情况下是转化成关于某个角的函数,利用三角函数性质及角的条件求解,有时也转化为某个边的函数,再结合边的范围求解.解三角形中的最值和范围问题是重点也是难点,综合性较强,所以学生不仅要有扎实的基本功,还要灵活应变,掌握做题技巧,这样在高考中才能取得满意的成绩.(作者单位:山东省菏泽市巨野县第一中学)3。
第14讲解三角形中周长最大值及取值范围问题【考点分析】考点一:解三角形中角的最值及范围问题①利用锐角三角形,⎪⎩⎪⎨⎧<<<<<<πππC B A 000,求出角的范围②利用余弦定理及基本不等式求角的最值:bca bc bc a cb A 222cos 2222-≥-+=考点一:解三角形中周长的最值及范围问题①利用基本不等式:()bca bc cb bc a c b A 222cos 22222--+=-+=,再利用bc c b 2≥+及a c b >+,求出c b +的取值范围②利用三角函数思想:()B A R B R C R B R c b ++=+=+sin 2sin 2sin 2sin 2,结合辅助角公式及三角函数求最值【题型目录】题型一:三角形角的最值及范围问题题型二:三角形边周长的最值问题题型三:三角形边周长的最值范围问题【典型例题】题型一:三角形角的最值及范围问题【例1】在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且sin sin 2sin B C A +=,则A 的最大值为()A .2π3B .π6C .π2D .π3【例2】在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos 0a B c +=,则tan C 的最大值是()A .1BCD【例3】锐角ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若2cos b a a C -=,则()A .2C A =B .A 的取值范围是(,)64ππC .2A C=D .2ca的取值范围是【例4】已知在锐角ABC 中,sin tan 1cos BA B=+.(1)证明:2B A =;(2)求tan tan 1tan tan B AA B-+⋅的取值范围.【题型专练】1.在锐角三角形ABC 中,角,,A B C 所对的边分别为,,a b c ,若cos cos b b A a B +=,则()A .2AB =B .64B ππ<<C .(ab∈D .22a b bc=+2.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为S ,若222sin()SA C b a +=-,则1tan 3tan()A B A +-的取值范围为()A .,3⎡⎫+∞⎪⎢⎣⎭B .4,33⎡⎤⎢⎥⎣⎦C .4,33⎛⎫⎪ ⎪⎝⎭D .433⎡⎫⎪⎢⎪⎣⎭题型二:三角形边周长的最值问题【例1】已知ABC 的内角,,A B C 的对应边分别为,,a b c ,6c =,60B =︒,则b 的最小值为()A .3B .C .D .6【例2】设ABC 边a ,b ,c 所对的角分别为A ,B ,C ,若ABC 的面积为212c ,则以下结论中正确的是()A .b aa b+取不到最小值2B .b aa b+的最大值为4C .角C 的最大值为2π3D .23b a ca b ab+-的最小值为-【例3】已知ABC 的内角A 、B 、C 所对的边长分别为a 、b 、c ,且()()()2sin sin 2sin sin a A B c b B C -=-+,若2AD DB =,1CD = ,求:(1)求()cos A B +的值;(2)求2b a +的最大值.【例4】△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知cos2A +cos2B +2sin A sin B =1+cos2C .(1)求角C ;(2)设D 为边AB 的中点,△ABC 的面积为CD 的最小值.【例5】ABC 三角形的内角,,A B C 的对边分别为,,a b c ,(2)sin (2)sin 2sin a b A b a B c C -+-=(1)求C ∠;(2)已知6c =,求ABC 周长的最大值.【题型专练】1.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,满足sin 2sin sin A B C =,则c bb c+的最大值为______,此时内角A 的值为______2.在平面四边形ABCD 中,20AB AD ==,π3BAD ∠=,2π3BCD ∠=.(1)若5π12ABC ∠=,求BC 的长;(2)求四边形ABCD 周长的最大值.3.在条件:①2sin 30b A =,②3sin cos a b A a B =-,③22cos a b C c =+中任选一个,补充在下列问题中,然后解答补充完整的题目.已知a ,b ,c 分别为锐角ABC 的三个内角A ,B ,C 的对边,3b =,而且__________;(1)求角B 的大小;(2)求ABC 周长的最大值.4.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC 周长的最大值.5.已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,(cos 3)a C C b c +=+.(1)求角A ;(2)若5a =,求ABC △的周长的最大值.题型三:三角形边周长的最值范围问题【例1】在锐角ABC 中,内角,,A B C 所对的边分别为,,a b c .若1c =,π3B =,则a 的取值范围为_____________;sin sin AC 的最大值为__________.【例2】设ABC 的内角A ,B ,C 的对边分别为a ,b ,.c 已知6a =,2b =,要使ABC 为钝角三角形,则c 的大小可取__________(取整数值,答案不唯一).【例3】在锐角ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且2cos 2a cC b-=.(1)求角B 的大小;(2)求ac的取值范围.【例4】平面四边形ABCD 中,75A B C ∠=∠=∠= ,AB =2,则AD 长度的取值范围________.【例5】某公园有一块等腰直角三角形的空地ABC ,其中斜边BC 的长度为400米,现欲在边界BC 上选择一点P ,修建观赏小径PM ,PN ,其中M ,N 分别在边界AB ,AC 上,小径PM ,PN 与边界BC 的夹角都是60︒,区域PMB 和区域PNC 内部种郁金香,区域AMPN 内种植月季花.(1)探究:观赏小径PM ,PN 的长度之和是否为定值?请说明理由;(2)为深度体验观赏,准备在月季花区城内修建小径MN ,当点P 在何处时,三条小径(PM ,PN ,MN )的长度之和最少?【例6】请从下面三个条件中任选一个,补充在下面的横线上,并解答.①()()()sin sin sin 0a c A C b a B +-+-=;②2cos 12cos C C C =+;③2sin sin 2sin cos B A C A -=.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若.(1)求角C ;(2)若4c =,求△ABC 周长的取值范围.【例7】在ABC 中,,a b c 为角,,A B C 所对的边,且cos cos 2B bC a c=-.(1)求角B 的值;(2)若b ,求2a c -的取值范围.【例8】在ABC 中,内角,,A B C 的对边分别为,,a b c ,且()()sin sin 2sin sin sin a A c C B b C B =-++.(1)求角A ;(2)若ABC 为锐角三角形,求)2b c a-的取值范围.【题型专练】1.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos cos 2B bC a c=-,则下列说法正确的有()A .3B π=B .若sin 2sinC A =,且ABC 的面积为ABC 的最小边长为2C .若b =时,ABC 是唯一的,则a ≤D .若b =ABC 周长的范围为2.锐角ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若2cos b a a C -=,则()A .2C A =B .A 的取值范围是(,)64ππC .2A C=D .2ca的取值范围是3.已知三角形ABC 中,内角A ,B ,C 所对边分别为a ,b ,c ,且(2)cos cos 0a c B b C --=.(1)求角B ;(2)若b =2,求a c +的取值范围.4.在锐角ABC 中,内角,,A B C 的对边分别为,,a b c ,且满足()22sin sin sin sin A B B A B -=+.(1)证明:2A B =.(2)求bc 的取值范围.5.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知()()2sin 2sin 2sin a c A c a C b B -+-=.(1)求B ;(2)若ABC 为锐角三角形,且2b =,求ABC 周长的取值范围.6.如图:某公园改建一个三角形池塘,90C ∠=︒,2AB =(百米),1BC =(百米),现准备养一批观赏鱼供游客观赏.(1)若在ABC 内部取一点P ,建造APC 连廊供游客观赏,如图①,使得点P 是等腰三角形PBC 的顶点,且2π3CPB ∠=,求连廊AP PC PB ++的长(单位为百米);(2)若分别在AB ,BC ,CA 上取点D ,E ,F ,并建行连廊,使得DEF 变成池中池,放养更名贵的鱼类供游客观赏.如图②,当DEF 为正三角形时,求DEF 的面积的最小值.7.在锐角ABC 中,角A ,B ,C 所对的边为a ,b ,c ,若sin sin cos cos 3sin B C A CA a c=+,且222sin sin sin sin sin A B C A B +-=⋅,则ba c +2的取值范围是()A .B .(6,C .D .2)。
解三角形的范围与最值问题解三角形的范围与最值问题三角形是我们初中数学中常见的几何图形,解决三角形的范围和最值问题是三角函数的重要内容。
本文将从范围和最值两个方面进行探讨。
一、解三角形的范围问题解三角形的范围问题主要是要找到三角函数定义域中的解集,也就是角的取值范围。
1. 正弦函数正弦函数的定义域为全集R,一个完整的正弦函数周期为360度,即sinθ=sin(θ+360°)。
因此,对于任意θ∈R,正弦函数的值总是在[-1,1]之间取值。
2. 余弦函数余弦函数的定义域为全集R,一个完整的余弦函数周期为360度,即cosθ=cos(θ+360°)。
因此,对于任意θ∈R,余弦函数的值总是在[-1,1]之间取值。
3. 正切函数正切函数的定义域由其分母不为零的限定,即tanθ存在当且仅当cosθ≠0,即θ∈R\{nπ+π/2|n∈N}。
对于任意θ∈R,正切函数没有上下界,其取值范围为全集R。
4. 余切函数余切函数的定义域由其分母不为零的限定,即cotθ存在当且仅当sinθ≠0,即θ∈R\{nπ|n∈N}。
对于任意θ∈R,余切函数没有上下界,其取值范围为全集R。
以上是几个常见三角函数的定义域和取值范围,要求掌握它们的基本特征和计算方法。
二、解三角形的最值问题解三角形的最值问题主要是要找到三角函数在定义域中的最大值和最小值,其思路一般是利用极值点或者函数的单调性来进行分析。
1. 正弦函数和余弦函数的最值正弦函数和余弦函数的最值为1和-1,当且仅当θ=nπ(n∈N)时取到。
当θ非整数倍π时,正弦函数和余弦函数的值位于-1和1之间。
2. 正切函数和余切函数的最值正切函数和余切函数都没有最值,但它们在某些点上趋近于无穷或者负无穷,这些点称为函数的特殊点。
正切函数的特殊点为θ=nπ+π/2(n∈Z),此时tanθ趋近于正无穷或负无穷,取决于极限方向。
余切函数的特殊点为θ=nπ(n∈Z),此时cotθ趋近于正无穷或负无穷,取决于极限方向。
浅谈解三角形中的最值与取值范围的解题方法摘要:解三角形是高考重点考查内容,其中涉及到最值与取值范围问题,对基础一般的学生来说难度相对大点,学生比较害怕,所以本文整理了解三角形中最值与取值范围的基本解题思路,即一般情况下除了求面积最大值是用基本不等式之外,其他求最值与取值范围,化简成角的的范围去控制,转化为某一变量的函数求解基本能把问题解决.关键词:基本不等式;最值;取值范围一、化成角,转化为某一变量的函数求解(一)用正弦定理化边为角,用正弦和差角公式求解.例1.角A,B,C所对的边分别为a,b,c,且△ABC的面积 ,a=2,且A [ ],则边c的取值范围为:______________.解:由正弦定理整理得:c=A+B+C= , B= , 又a=2,∴C=﹣A,故c=== +1,又,∴1≤tan A≤,∴ 1≤≤∴c∈[2, +1].,由题得,求边的范围,化成角的范围去控制,用正弦定理,正弦的和差角公式化简,结合三角函数的图像与性质即有界性可求得结果.例2.已知△ABC的内角A,B,C的对边分别为a,b,c,若A=2B,求的取值范围.解:由正弦定理,A=2B, A+B+C= ,得:=====,A∈(0,π),∴2B∈(0,π),且A+B=3B∈(0,π),所以B∈(0,),令t=cos B,则,则f(t)=,求导得:在恒成立,故f(t)在上单调递减,所以f(1)<f(t)<f(),即,故的取值范围为.求边的范围,还是先考虑用角去控制,用正弦定理把边化为角之后,用正弦的和差角公式化简,用换元法整理后,求导化简,判断函数单调性从而求得取值范围.(二)用三角关系及正弦和差角公式求解.例3.角A,B,C所对的边分别为a,b,c且△ABC为锐角三角形,B=,则cos A+cos B+cos C的取值范围为________.解:B=,A+B+C= ,∴C=﹣A,∴cos A+cos B+cos C=cos A+cos(﹣A)+cos=cos A﹣ cos A+sin A+= cos A+ sin A+=sin(A+)+,△ABC为锐角三角形,∴<A<,∴<A+<,∴<sin(A+)≤1,∴ +<sin(A+)+≤,故所求的取值范围为(, ].例4.(2019•新课标Ⅲ)△ABC的内角A、B、C的对边分别为a,b,c.已知a sin=b sin A.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.解:(1)略;(2)∴△ABC面积S=a•1sinB=a,由正弦定理:,因为△ABC为锐角三角形,所以,∴,,所以<a<2.故△ABC面积S=a的取值范围为(,).本道题求面积的取值范围,通过整理转化求边的取值范围,然后转化为角的范围来控制.(三)用三角形的三角关系及二倍角,辅助角公式化简.例5.已知△ABC中,内角A,B,C的对边分别为a,b,c,满足,,求△ABC周长l的取值范围.解:由正弦定理得,因为所以,,, .又,所以,.所以所求△ABC周长l=a+b+c的取值范围为.求三角形周长取值范围,已知一组对边对角,用正弦定理求出2R,结合正弦的和差角公式,辅助角公式,利用三角函数的有界性控制范围,这道题可以变为求周长的最值,思路一样,此处略.二、用基本不等式求解例6.在△ABC中,A=,△ABC的面积为2,则的最小值为()A. B. C. D.==bc=2,∴bc=8,解:由题得S△ABC∴=,令t=则t>0,上式==≥2﹣=,当且仅当2t+1=2,即t=,可得b=2c,又bc=8,解得c=4,b=2时,等号成立;∴的最小值为:.故选:C.求与角有关的范围,直接用角来控制,换元后用基本不等式求解,难在需要配凑能约去的分母部分.本题也可以把角化为边,用边求解,同样用换元方法也可以,此处略.例7.△ABC的内角A,B,C的对边分别为a,b,c,已知且B为锐角,b=1,则△ABC面积的最大值为_______.,解: A+B+C= , ,,, 0 故B= .又b=1,由余弦定理b2=a2+c2﹣2ac•cos B得,当且仅当a=c时,等号成立.最值与取值范围的解题方法有多种,但是对于基础比较比较差的学生来说,方法多不一定就是好的,特别对于普通历史班中,学生基础较弱,方法多了学生还难以选择,我们可以总结最适合学生解题的一种(或者两种)方法,让学生多练习一类方法,提高解题速度,所以解三角形中很多都是化成角,变为某一变量的函数去求解,需要注意定义域范围,求面积最大值就用基本不等式即可.参考文献:1.高磊.运用一题多变探究三角形中的最值与范围问题[J].数学通讯,2020年(12);49-52.2.罗礼明.解三角形中的最值与范围问题求解策略[J].数学通讯,2020年(7);50-56.第4页(共4页)。
《解三角形中范围与最值问题》教学设计【课题名称】解三角形中范围与最值问题 【课型】微专题复习课 【授课班级】高三(15)班【教学目标】1.通过剖析高考题,利用正弦定理、余弦定理解决一类解三角形范围与最值问题,减少对解三角形最值的畏难情绪.2.通过递进式学习,体验解三角最值的过程,感悟不同方法的要领. 【教学重难点】解三角形范围与最值问题的方法归纳和选择.【考情分析】通过全国卷考点可以发现,解三角形有关的最值与范围问题是高考的重要考点,2011~2021年的高考题考查了9次,以在解答题的第一题或填空题压轴题的形式呈现,值得剖析此类问题. 【教学过程】1.分析思路,提炼方法 例题 (2014年全国Ⅰ卷16)已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为【学习导问】条件如何化简?角化边还是边化角?面积如何表示?二.灵动探究,变式演练2.类比迁移,“固化”思维变式探究1:变式探究1 在问题1的基础上,ABC∆周长的取值范围为【学习导问】求ABC∆周长,本质是求什么?周长问题是常见问题,学生思考后说思路由例题的二元函数bc,类比到b+c,思维难度不大,让学生都容易入手变式探究2:ABC∆中,3,60==BCA ,则ACAB2+的最大值为_______.【学习导问】与探究1对比,有何差异?选择什么解题方法更方便?尝试解题,遇到障碍,调整策略由探究1的b+c到探究2的2b+c,让学生体会系数的不同,优选的方法会不同,总结解题经验. 学生可以课后进一步阅读第4页.变式探究3:ABC∆中,3,30==BCA ,点 D满足DCBD2=,则线段 AD 的最大值为______.【学习导问】分析条件,从数入手?还是从形入手?学生尝试借助已有经验,从代数或几何直观的角度求AD的最大值从数的角度,可以建立AD与a,b,c的关系,进而转化222cb+;从形的角度,可以转化为圆弧上的动点到定点D的距离问题,体会数与形之美.三.互动评说,灵活应用3.小组合作,共同提升在中,CBCAAB2,2==,则S△ABC的最大值为( )A.22 B.23C.32D.23【学习任务】1.结合条件,将动态问题具体化2.小组合作,选择合适的方法加以解决.小组合作,相互交流,展示方法例题和变式探究解决了已知对边对角的一类最值与范围问题,如果将问题变为已知一边,另两边成倍数关系ABC∆的问题,考验学生的灵活应用能力. 同时渗透数学文化——阿波罗尼奥斯圆.四.课堂小结 总结解题方法与技巧学生总结学到的知识 归纳整理,提炼解题方法 五.作业布置 (一)课堂反馈练习1.在例题中,若ABC ∆是锐角三角形,则ABC ∆的面积的取值范围为_______;若b ≥a ,则2b ﹣c 的取值范围为_______. 2. ABC ∆中, 30=A ,点 D 满足DA CD 2= ,,则ABC ∆面积的最大值为______.3.ABC ∆中,2=AB ,622=-CB CA ,当角C 最大时,C tan 等于_______. (二)小组合作尝试每个小组利用一个条件和问题编拟一个题目,并解答,再和其它小组交流.条件:在ABC ∆中,,,a b c 分别为ABC ∆的三个内角,,A B C 的对边, 1. 3,3==c C π2.3,3=+=b a C π3.b a c 2,3==4.3,3=+=b a c问题:1.求△ABC 周长的取值范围2.求△ABC 面积的取值范围3.求△ABC 的AB 边的中线长的取值范围独立完成与小组合作完成二轮复习,教师多指导学生解题思路,规范书写,同时学生课后定量练习,解题方法归纳整理也必不可少3=BD【课后反思】___________________________________________________________________ _______________________________________________________________________________。
解法探究2023年12月上半月㊀㊀㊀解三角形中的最值或范围问题◉哈尔滨师范大学教师教育学院㊀李鸿媛㊀㊀摘要:解三角形的最值或范围问题是高考考查的热点内容之一,并且对解三角形的命题设计,不只局限于解三角形,而是通常利用正余弦定理㊁三角形面积公式等求解三角形的边㊁角㊁周长和面积的最值等问题.这类问题的解法主要是将边角互化转化为三角函数的最值问题,或利用基本不等式求最值.本文中对这类问题加以归类解析,以提升学生的解题能力.关键词:解三角形;最值;范围1与边有关的最值或范围问题例1㊀在әA B C 中,角A ,B ,C 的对边分别是a ,b ,c ,角B =π3,若a +c =4,则b 的取值范围为.解析:由a +c =4,B =π3,由余弦定理得b 2=a 2+c 2-2a c c o s B ,则b 2=(a +c )2-2a c -2a c c o s π3,即b 2=16-3a c .由a +c ȡ2a c ,得4ȡ2a c ,即0<a c ɤ4,于是4ɤb 2<16,所以2ɤb <4.评析:本题利用已知条件结合余弦定理,借助基本不等式求三角形边的取值范围[1],渗透了逻辑推理㊁数学运算等数学核心素养.例2㊀在әA B C 中,角A ,32B ,C 成等差数列,且әA B C 的面积为1+2,则A C 边长的最小值是.解析:由A ,32B ,C 成等差数列,得A +C =3B .又A +B +C =π,所以B =π4.设角A ,B ,C 所对的边分别为a ,b ,c ,则由S әA B C =12a c s i n B =1+2,可得a c =22+4.由余弦定理得b 2=a 2+c 2-2a c c o s B ,则b 2=a 2+c 2-2a c .又a 2+c 2ȡ2a c ,则b 2ȡ(2-2)a c ,即b 2ȡ(2-2)(22+4),所以b ȡ2(当且仅当a =c 时,等号成立).故A C 边长的最小值为2.评析:本题考查了学生对等差数列的概念㊁三角形内角和定理㊁三角形面积公式㊁余弦定理等的掌握情况.解题的关键是将余弦定理与不等式相结合,进而求出三角形一边的最值.2与角有关的最值或范围问题例3㊀在әA B C 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ʂπ2,s i n C +s i n (B -A )=2s i n2A ,则角A 的取值范围为.解法一:在әA B C 中,C =π-(A +B ),则s i n C =s i n (A +B ),所以s i n (A +B )+s i n (B -A )=2s i n 2A ,即2s i n B c o s A =22s i n A c o s A .又A ʂπ2,则c o s A ʂ0,所以s i n B =2s i n A .由正弦定理,得b =2a ,则A 为锐角.又s i n B =2s i n A ɪ(0,1],于是可得s i n A ɪ(0,22],故A ɪ(0,π4].评析:解法一利用三角形内角和定理㊁两角和与差的正弦公式㊁正弦定理与三角函数的性质等知识,对学生的推理能力㊁运算能力和直观想象能力进行了考查.解法二:在әA B C 中,C =π-(A +B ),则s i n C =s i n (A +B ),所以s i n (A +B )+s i n (B -A )=2s i n 2A ,即2s i n B c o s A =22s i n A c o s A .又A ʂπ2,则c o s A ʂ0,所以s i n B =2s i n A .由正弦定理,可得b =2a .结合余弦定理,可以得到c o s A =b 2+c 2-a 22b c =12b 2+c 22b c ȡ212b 2 c 22b c =22,当且仅当c =22b 时,等号成立,故A ɪ(0,π4].评析:解法二考查了三角形内角和定理㊁两角和与差的正弦公式㊁正弦定理㊁余弦定理㊁基本不等式等知识.这种解题方法需要学生灵活运用两个正数的和与积的关系,充分体现学生的数学运算能力和数据分析能力.3与周长有关的最值或范围问题例4㊀әA B C 为锐角三角形,角A ,B ,C 所对的472023年12月上半月㊀解法探究㊀㊀㊀㊀边分别为a ,b ,c ,已知33b s i n C +c c o s B =a ,且c =2,求әA B C 周长的最大值.解析:由33b s i n C +c c o s B =a ,根据正弦定理,得33s i n B s i n C +s i n C c o s B =s i n A .由A =π-(B +C ),得s i n A =s i n (B +C ).所以33s i n B s i n C +s i n C c o s B =s i n (B +C ),即33s i n B s i n C =s i n B c o s C .由s i n B ʂ0,得33s i n C =c o s C .又c o s C ʂ0,所以t a n C =3.而0<C <π,则C =π3.根据正弦定理,得a =433s i n A ,b =433s i n B ,则a +b +c =433s i n A +433s i n B +2=433s i n A +433s i n (2π3-A )+2=433(32s i n A +32c o s A )+2=4s i n (A +π6)+2.由әA B C 为锐角三角形,可知0<A <π2,0<2π3-A <π2,ìîíïïïï解得π6<A <π2.所以π3<A +π6<2π3.因此32<s i n (A +π6)ɤ1.故23+2<4s i n (A +π6)+2ɤ6.因此әA B C 周长的最大值为6.评析:这道题解题的关键是利用正弦定理将边化为角,转化为求三角函数的最值问题[2],考查了逻辑推理和数学运算等核心素养.4与面积有关的最值或范围问题例5㊀әA B C 的内角A ,B ,C 所对的边分别是a ,b ,c ,已知2(c -a c o s B )=3b .(1)求角A ;(2)若a =2,求әA B C 面积的取值范围.解法一:(1)略.(2)由(1)知A =π6,又a =2,根据正弦定理,可得b =4s i n B ,c =4s i n C .由C =π-A -B =5π6-B ,得s i n C =s i n (5π6-B ).所以,S әA B C =12b c s i n A =14b c =4s i n B s i n C =4s i n B s i n(5π6-B )=4s i n B (12c o s B +32s i n B )=2s i n B c o s B +23s i n 2B =s i n2B -3c o s 2B +3=2s i n (2B -π3)+3.由0<B <5π6,得-π3<2B -π3<4π3,所以可知-32<s i n (2B -π3)ɤ1,故0<S әA B C ɤ2+3,即әA B C 面积的取值范围为(0,2+3].解法二:(1)略.(2)由(1)知A =π6,a =2,则S әA B C =14b c .由c o s A =b 2+c 2-a 22b c =b 2+c 2-42b c =32,可得b 2+c 2-4=3b c .又b 2+c 2ȡ2b c ,则0<b c ɤ42-3=4(2+3),所以0<S әA B C ɤ2+3.故әA B C 面积的取值范围为(0,2+3].评析:本题求解三角形面积的取值范围,解法一通过正弦定理将边转化为角,再利用三角函数的性质,求解三角形面积的取值范围.解法二先利用余弦定理,结合不等式b 2+c 2ȡ2b c ,求解b c 的取值范围,接着利用三角形面积S әA B C =12b c s i n A 求出面积的取值范围[3].这两种解法都考查了数学运算㊁逻辑推理等数学核心素养.数学这门学科需要学生具备较强的逻辑推理能力㊁运算能力㊁直观想象能力等.针对解三角形最值或范围问题,学生需要熟练掌握三角形的面积公式㊁同角三角函数的基本关系㊁正弦定理㊁余弦定理㊁基本不等式等知识,并能够进行综合运用.参考文献:[1]刘海涛.谈解三角形中有关求范围或最值的解题策略[J ].数理化学习(高中版),2022(7):3G7.[2]张露梅.解三角形中的范围或最值问题[J ].中学生数理化(高二数学),2021(11):35G36.[3]玉素贞.解三角形最值问题的两种转化策略分析[J ].考试周刊,2021(49):85G86.Z57。
专题24 解三角形中的最值、范围问题解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. 1、正弦定理:2sin sin sin a b cR A B C===,其中R 为ABC 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边,或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行 学/科-+网 例如:(1)222222sin sin sin sin sin A B A B C a b ab c +-=⇔+-= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B Ca A= 2、余弦定理:2222cos a b c bc A =+-变式:()()2221cos a b c bc A =+-+ 此公式在已知,a A 的情况下,配合均值不等式可得到b c +和bc 的最值4、三角形中的不等关系(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少(2)在三角形中,边角以及角的三角函数值存在等价关系:sin sin cos cos a b A B A B A B >⇔>⇔>⇒<其中由cos cos A B A B >⇔<利用的是余弦函数单调性,而sin sin A B A B >⇔>仅在一个三角形内有效.5、解三角形中处理不等关系的几种方法(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值) (2)利用均值不等式求得最值【经典例题】例1.【2018届百校联盟TOP20高三四月联考全国一卷】已知四边形中,,设与面积分别为,则的最大值为_____.【答案】【解析】分析:利用余弦定理推,求出的表达式,利用二次函数以及余弦函数的值的范围,求的最大值即可.点睛:求解三角函数的最值(或值域)时一定要注意自变量的取值范围,由于三角函数的周期性,正弦函数、余弦函数的最大值和最小值可能不在自变量区间的端点处取得.例2.【2018届普通高等学校招生全国统一考试高三下学期第二次调研】在中,角A,B,C所对的边分别为,则实数a的取值范围是____________.【答案】.【解析】由,得,所以,则由余弦定理,得,解得,又,所以的范围是.例3.【2018届浙江省杭州市高三第二次检测】在△ABC 中,角A,B,C 所对的边分别为a,b,c.若对任意λ∈R,不等式恒成立,则的最大值为_____.【答案】2例4.【衡水金卷信息卷三】已知的三边分别为,,,所对的角分别为,,,且满足,且的外接圆的面积为,则的最大值的取值范围为__________.【答案】【解析】由的三边分别为,,可得:,可知:,,,例5.【2018届湖南省株洲市高三检测(二)】已知中,角所对的边分别是,且.(1)求角的大小; (2)设向量,边长,当取最大值时,求边的长. 【答案】(1)(2).【解析】分析:(1)由题意,根据正弦定理可得,再由余弦定理可得,由此可求角的大小; (2)因为由此可求当取最大值时,求边的长.(2)因为所以当时,取最大值,此时,由正弦定理得,例6.【2018届四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.学/科/*网(Ⅰ)求角;(II )若,当有且只有一解时,求实数的范围及的最大值.【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A 的值. (II )先根据有且只有一解利用正弦定理和三角函数的图像得到m 的取值范围,再写出S 的函数表达式求其最大值.详解:(Ⅰ)由己知(Ⅱ)由己知,当有且只有一解时,或,所以;当时,为直角三角形,当 时,由正弦定理 ,,所以,当时,综上所述,.例7.【2018届四川省资阳市高三4月(三诊)】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且()()sin sin a b A B +- ()sin sin c C B =-.(1)求A .(2)若4a =,求22b c +的取值范围.【答案】(1)3A π=;(2)(]16,32.221616b c bc +=+>,进而可得结果.试题解析:(1)根据正弦定理得()()a b a b +- ()c c b =-,即222a b c bc -=-,则222122b c a bc +-=,即1cos 2A =,由于0πA <<,【方法点睛】本题主要考查正弦定理及余弦定理的应用,属于中档题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 除了直接利用两定理求边和角以外,恒等变形过程中,一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答. 例8.【2018届甘肃省张掖市高三三诊】已知3cos,cos 44x x m ⎛⎫= ⎪⎭, sin ,cos 44x x n ⎛⎫= ⎪⎝⎭,设函数()f x m n =⋅.(1)求函数()f x 的单调增区间;(2)设ABC ∆的内角A , B , C 所对的边分别为a , b , c ,且a , b , c 成等比数列,求()f B 的取值范围.【答案】(1) 424,433k k ππππ⎡⎤-+⎢⎥⎣⎦, k Z ∈.(2) ⎛ ⎝⎦. 【解析】试题分析:(1)由题()13cos ,cos sin ,cos sin 4444262x x x x x f x m n π⎛⎫⎛⎫⎛⎫=⋅=⋅=++ ⎪ ⎪ ⎪⎭⎝⎭⎝⎭,根据正弦函数的性质222262x k k πππππ-≤+≤+可求其单调增区间;(2)由题2b ac =可知2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==≥=, (当且仅当a c =时取等号),所以03B π<≤,6263B πππ<+≤,由此可求 ()f B 的取值范围.(当且仅当a c =时取等号),所以03B π<≤, 6263B πππ<+≤, ()1f B <≤,综上, ()f B的取值范围为⎛ ⎝⎦. 例9.【2018届吉林省吉林市高三第三次调研】锐角ABC ∆中, ,,A B C 对边为,,a b c ,()()()222sin cos ba c B C A C --+=+(1)求A 的大小; (2)求代数式b c a +的取值范围.【答案】(1)3π(22b ca+<≤ 【解析】试题分析:(1)由()()()222sin cos b a c B C A C --+=+及余弦定理的变形可得2cos sin B A B -,因为cos 0B ≠,故得sin A =ABC ∆中3A π=.(2)利用正弦定理将所求变形为2sin sin 32sin sin 6B B b c B a A ππ⎛⎫++ ⎪+⎛⎫⎝⎭==+ ⎪⎝⎭,然后根据6B π+的取值范围求出代数式b ca+的取值范围即可.试题解析: (1)∵2222cos b a c ac B --=-, ()()()222sin cos b a c B C A C --+=+,∴()()2cos sin cos ac B B C A C -+=+ , ∴()()2cos sin ,B A B ππ--=-∴2cos sin B A B -=,∴23sin sin sin sin sin 3222sin sin sin 6sin 3B B B Bb c B C B a A A πππ⎛⎫+++ ⎪++⎛⎫⎝⎭====+ ⎪⎝⎭,∵ABC ∆为锐角三角形,且3A π=∴02{02B C ππ<<<<,即02{ 2032B B πππ<<<-<, 解得62B ππ<<,∴2,363B πππ<+<sin 16B π⎛⎫<+≤ ⎪⎝⎭.2b c a +<≤.故代数式b c a +的取值范围2⎤⎦.点睛:(1)求b ca+的取值范围时,可根据正弦定理将问题转化为形如()sin y A x ωϕ=+的函数的取值范围的问题解决,这是在解三角形问题中常用的一种方法,但在解题中要注意确定角x ωϕ+的范围.(2)解答本题时要注意“锐角三角形”这一条件的运用,根据此条件可的求得6B π+的范围,然后结合函数的图象可得sin 6B π⎛⎫+⎪⎝⎭的范围,以达到求解的目的. 例10.【2018届衡水金卷信息卷(一)】已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,若向量()()2,cos ,,cos m b c B n a A =-=-,且//m n .(1)求角A 的值;(2)已知ABC ∆的外接圆半径为2ABC ∆周长的取值范围. 【答案】(1) 3A π=(2) (]4,6 【解析】试题分析:(1)由//m n ,得62)0c c o s A a c o s B-+=(,利用正弦定理统一到角上易得1cos 2A =;(2)根据题意,得2sin 2a R A ==,由余弦定理,得()223a b c bc =+-,结合均值不等式可得()216b c +≤,所以b c +的最大值为4,又2b c a +>=,从而得到ABC ∆周长的取值范围.得1cos 2A =.又()0,A π∈,所以3A π=.(2)根据题意,得2sin 2a R A ===.由余弦定理,得()22222cos 3a b c bc A b c bc =+-=+-,即()223432b c bc b c +⎛⎫=+-≤ ⎪⎝⎭,整理得()216b c +≤,当且仅当2b c ==时,取等号, 所以b c +的最大值为4.又2b c a +>=,所以24b c <+≤,所以46a b c <++≤. 所以ABC ∆的周长的取值范围为(]4,6.【精选精练】1.【2018届东莞市高三第二次考试】在中,若,则的取值范围为( )A.B.C.D. 【答案】D【解析】因为,所以,即,即,2.【2018届湖南省衡阳市高三二模】在中,已知为的面积),若,则的取值范围是( )A.B.C.D.【答案】C【解析】 ,,,,又,,,,故选C.3.【2018届四川省绵阳市高三三诊】四边形ABCD 中, AB =, 1BC CD DA ===,设ABD ∆、BCD ∆的面积分别为1S 、2S ,则当2212S S +取最大值时, BD =__________.【点睛】本小题主要考查三角形的面积公式的应用,考查同角三角函数关系,考查利用余弦定理解三角形,考查二次函数最值的求法.首先根据题目所求,利用三角形面积公式,写出面积的表达式,利用同角三角函数关系转化为余弦值,利用余弦定理化简,再利用配方法求得面积的最值,并求得取得最值时BD 的值. 4.【2018届广东省肇庆市高三第三次模拟】已知的角对边分别为,若,且的面积为,则的最小值为________.【答案】5.【2018届辽宁省辽南协作校高三下学期一模】设的内角所对的边分别为且+,则的范围是__________.【答案】 【解析】由+得,所以,即,再由余弦定理得 ,即,解得,又,所以的范围是.点睛:在解三角形问题中,一般需要利用余弦定理结合均值不等式,来求两边和的取值范围或者是三角形的面积的最值,只需运用余弦定理,并变形为两边和与两边积的等式,在利用均值不等式转化为关于两边和或两边积的不等式,解不等式即可求出范围.6.【2018届四川省攀枝花市高三第三次(4月)统考】已知锐角ABC ∆的内角A B C 、、的对边分别为a b c 、、,且2cos 2,2a C c b a +==,则ABC ∆的最大值为__________.即4bc ≤,所以ABC ∆的最大值为max 11sin 422S bc A ==⨯= 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.7.【2018届宁夏石嘴山市高三4月适应性测试(一模)】已知,,a b c 分别为ABC ∆内角,,A B C 的对边,且sin cos b A B =.(1)求角B ;(2)若b =ABC ∆面积的最大值.【答案】(1)3B π=;(2).【解析】试题分析:(1)由正弦定理边化角得到tan B =(2)由余弦定理得2222cos b a c ac B =+-, 2212a c ac =+-结合222a c ac +≥即可得最值.试题解析:(1)∵sin cos b A B =,∴由正弦定理可得sin sin cos B A A B =,即ABC ∆面积的最大值为.8.【2018届四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.(Ⅰ)求角;(II )若,当有且只有一解时,求实数的范围及的最大值.【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A 的值. (II )先根据有且只有一解利用正弦定理和三角函数的图像得到m 的取值范围,再写出S 的函数表达式求其最大值.详解:(Ⅰ)由己知由余弦定理得,所以,即,,所以.由正弦定理 ,,所以,当时,综上所述,.点睛:本题在转化有且只有一解时,容易漏掉m=2这一种情况.此时要通过正弦定理和正弦函数的图像分析,不能死记硬背.先由正弦定理得再画正弦函数的图像得到或.9.【衡水金卷信息卷(二)】在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知sin cos a C A =. (1)求角A 的大小;(2)若2b =,且43B ππ≤≤,求边c 的取值范围.【答案】(1) 3A π=;(2) 1⎡⎤⎣⎦.在ABC ∆中,由正弦定理,得sin sin b c B C=,∴22sin 2sin 311sin sin sin tan B C B c B B B B π⎛⎫- ⎪⎝⎭===+=+,∵43B ππ≤≤,∴1tan B ≤≤21c ≤≤,即c的取值范围为1⎡⎤⎣⎦.10.【2018届辽宁省沈阳市东北育才学校高三三模】已知ABC ∆三个内角 ,,A B C 的对边分别为,,a b c ,ABC ∆的面积S满足222a b c =+-. (1)求角C 的值;(2)求()cos2cos A A B +-的取值范围. 【答案】(1)23π;(2)(tan C =0C π<<, 23C π∴=.(2)()3cos2cos =cos2cos 2cos232A A B A A A A π⎛⎫+-+-= ⎪⎝⎭23A π⎛⎫+ ⎪⎝⎭0,2333A A ππππ<<∴<+<(203A π⎛⎫+∈ ⎪⎝⎭ 11.【2018届江苏省姜堰、溧阳、前黄中学高三4月联考】在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知222a c b -=,且sin cos 3cos sin A C A C =.(1)求b 的值;(2)若4B π=, S 为ABC ∆的面积,求cos S A C +的取值范围.【答案】(1) 4b =(2) (【解析】试题分析:(1)利用正余弦定理, sin cos 3cos sin A C A C =可转化为2222b ac -=,又222a c b -=,从而得到b 的值; (2)由正弦定理1sin sin 2S bc A A C ==,故324S AcosC A π⎛⎫+=- ⎪⎝⎭限制角A的范围,求出cos S A C +的取值范围.(2)由正弦定理sin sin b c B C =得114sin 4sin sin sin 22sin4S bc A A C A C π==⋅⋅=()324S AcosC A C A π⎛⎫∴+=-=-⎪⎝⎭, 在ABC ∆中,由3040{ 202A A C A C πππ<<<<<<> 得3,82A ππ⎛⎫∈ ⎪⎝⎭ 320,44A ππ⎛⎫∴-∈ ⎪⎝⎭,3cos 24A π⎫⎛⎫∴-∈⎪ ⎪⎪⎝⎭⎝⎭(S AcosC ∴+∈.12.【衡水金卷信息卷 (五)】在锐角ABC ∆中,内角A , B , C 的对边分别为a , b , c ,且25sin 2sin 224B C A π+⎛⎫+-=- ⎪⎝⎭.(1)求角A ;(2)若a =ABC ∆周长的取值范围. 【答案】(1) 3A π=(2) (3+(3.试题解析:(1)∵252224B C sin A sin π+⎛⎫+-=- ⎪⎝⎭,∴()15224cos B C cos A -+-=-, ∴2152124cosA cos A +--=-,整理,得28210cos A cosA --=,∴14cosA =-或12cosA =, ∵02A π<<,∴12cosA =,即3A π=.(2)设ABC ∆的外接圆半径为r,则22a r sinA===,∴1r =. ∴()2b c r sinB sinC +=+ 223sinB sin B π⎡⎤⎛⎫=+-⎪⎢⎥⎝⎭⎣⎦6B π⎛⎫=+ ⎪⎝⎭,∴ABC ∆周长的取值范围是(3+.。
第11讲 解三角形中面积最值与取值范围问题题型一:三角形面积最大值问题【例1】已知ABC 的内角,,A B C 所对的边分别为,,a b c ,若3A π=,a =则ABC 面积的最大值为( ) ABC .1DABCS=,即ABC 面积的最大值为故选:A.【例2】在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若()tan tan 2B C +=,且2a =,则ABC 的面积的最大值为 AB C D .【答案】A【解析】:因为()tan tan2AB C +=,且B C A +=π-, 所以()22tan2tan tan 1tan 2A B C A A +=-=--tan 02A =>,所以tan 2A =2π3A =. 由于2a =为定值,由余弦定理得222π42cos 3b c bc =+-,即224b c bc =++.根据基本不等式得22423b c bc bc bc bc =++≥+=,即43bc ≤,当且仅当b c =时,等号成立. 所以114sin 223ABCSbc A =≤⨯=故选:A【例3】在ABC △中,a ,b ,c 分别为内角A ,B ,C 的对边,若4a c +=,2sin sin sin B A C =+,则ABC △的面积的最大值为( ) AB .2C. D .4【答案】A 【解析】因为2sin sin sin B A C =+,所以2b a c =+,因4a c +=,所以2=b ,由余弦定理得()acacac ac ac b ac c a ac b c a B 221224216222cos 22222-=--=--+=-+= 所以ac B ac 212cos 2-=,所以acacB -=6cos ,所以 ()()()()acac ac ac ac B B 22222661cos 1sin --=--=-=因11sin 22ABCS ac B ac ac ∆==⋅== 因为ac c a 2≥+,所以()442=+≤c a ac,ABC S ∆【例4】在ABC △中,a ,b ,c 分别为内角A ,B ,C的对边,若2a =,b =,则ABC △的面积的最大值为() A B .2C .D .4【答案】A 【解析】因为2a =,b =,由余弦定理得()2222222324432432cos cc cc cc bca cb A -=⋅-+=-+= 所以()()2244244222223216324121632161232441cos 1sin cc c c c c c c c A A -+-=-+-=--=-=因21sin 2ABCS bc A ∆===设t c =2,则ABCS∆==≤【例5】在ABC 中,,,A B C 所对的边分别为,,.a b c 若2222312++=a b c ,则ABC 面积最大值为__________,由此可得ABC 面积的最大值22cos bc -时,等号成立,23cos A -设ABC 的面积为23cos sin -=t 当且仅当A +sin 23cos -A ,故ABC 面积最大值为3【例6】如图,在ABC 中,π3ABC ∠=,点D 在线段AC 上,且2AD DC =,3BD =,则ABC 面积的最大值为___.在ABC 中,由余弦定理,得)22x c a =+2213a c ++由基本不等式得4所以ABC 面积的最大值为1sin 2ABCSac =故答案为:278【点睛】解决此题的关键就是利用余弦定理算两次,得到表达式利用基本不等式得出角形的面积公式即可【例7】ABC 的内角,,A B C 的对边分别为,,a b c ,已知B c C b a sin cos +=. (Ⅰ)求B ;(Ⅰ)若2=b ,求ABC 面积的最大值. 【详解】(1)ⅠB c C b a sin cos +=Ⅰ由正弦定理知B C C B A sin sin cos sin sin += Ⅰ 在三角形ABC 中,()C B A +-=πⅠ()B C C B C B A sin sin cos sin sin sin +=+= Ⅰ 由Ⅰ和Ⅰ得C B C B sin cos sin sin =而()π,0∈C ,Ⅰ0sin ≠C ,ⅠB B cos sin = 又()π,0∈B ,Ⅰ4π=B(2)acB ac S ABC 42sin 21==∆ ,由已知及余弦定理得:4=a 2+c 2﹣2ac cos 4π≥2ac ﹣2ac 2⨯, 整理得:ac≤,当且仅当a =c 时,等号成立,则ⅠABC 面积的最大值为(112222⨯=1= 【题型专练】1.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若8ac =,sin sin 20a B c A +=,则ABC 面积的最大值为______. ABC S =ABC S 最大值为故答案为:2.材料一:已知三角形三边长分别为,,a b c ,则三角形的面积为S =其中2a b cp ++=.这个公式被称为海伦一秦九韶公式.材料二:阿波罗尼奥斯(Apollonius )在《圆锥曲线论》中提出椭圆定义:我们把平面内与两个定点12,F F 的距离的和等于常数(大于)12F F 的点的轨迹叫做椭圆.根据材料一或材料二解答:已知ABC 中,6,10BC AB AC =+=,则ABC 面积的最大值为( ) A .6B .10C .12D .20,根据材料一海伦公式写出ABC 面积(2,8),而所以ABC 面积144, 5=时,max S 故选:C3.在ABC 中,角,,A B C 的对边分别为,,a b c .已知角π,3C AB =边上的高为 (1)若4ABCS=ABC 的周长;(2)求ABC 面积的最小值. ABC 的周长;(2)法一:由此可得sin ,进而求得ABC 面积的最小值;法二:利用基本不等式与余弦定理求得,从而求得ABC 面积的最小值【详解】(ABCS =, 3ABCS=,23,则ab 又由2a b +得2a +因此(a b +故ABC 的周长为2)法一:由题意可得a 又因为sin A所以ABC 的面积为,所以ABC 面积的最小值为法二:在ABC 中由余弦定理可得,2b ab -, 又由(1)可知所以22216a b a =4=时,等号成立所以ABC S =△4.在ABC 中,角,,A B C 的对边分别为,,cos cos 2a b c C c B ⎛⎫=- ⎪⎝⎭.(1)求角C ;(2)若ABC 的外接圆半径为2,求ABC 面积的最大值.ABCS=,所以ABC 面积的最大值为5.已知锐角ⅠABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,()sin cos sin A C B B =.(1)求C的值;(2)若c=ⅠABC面积S的最大值6.在ABC中,内角A,B,C的对边分别是a,b,c.已知ABC的外接圆半径R=且tan tancos AB CC+=.(1)求B和b的值;(2)求ABC面积的最大值.又ABC 的外接圆半径2)解:由余弦定理由基本不等式得且仅当a c =ABCS=故ABC 面积的最大值为7.ABC 的内角,,A B C 的对边分别为,,a b c ,设)cos 2(sin cos sin A B B A -=. (1)若a c b 3=+,求A ;(2)若2=a ,求ⅠABC 的面积的最大值. 【解析(1)Ⅰsin A cos B =sin B (2﹣cos A ), 结合正、余弦定理,可得a •a 2+c 2−b 22ac=b •(2−b 2+c 2−a 22bc), 化简得,c =2b ,代入b +c =√3a ,得a =√3b ,由余弦定理知,cos A =b 2+c 2−a 22bc =b 2+4b 2−3b 22b⋅2b =12,ⅠA Ⅰ(0,π),ⅠA =π3.(2)由(1)知,c =2b ,由余弦定理知,cos A =b 2+c 2−a 22bc =5b 2−44b 2=54−1b2, ⅠⅠABC 的面积S =12bc sin A =b 2√1−cos 2A =b 2•√1−(54−1b2)2=b 2•√−916+52b2−1b4=√−916b 4+52b 2−1=√−916(b 2−209)2+169, 当b 2=209时,S 取得最大值,为43. 8.在ABC ∆中,内角、、A B C 所对的边分别为,,a b c ,D 是AB 的中点,若1CD = 且1()sin ()(sin sin )2a b A c b C B -=+-,则ABC ∆面积的最大值是___5如图,设CDA θ∠=,则CDB πθ∠=-,在CDA ∆和CDB ∆中,分别由余弦定理可得22221144cos ,cos()c c b a c cθπθ+-+-=-=, 两式相加,整理得2222()02c a b +-+=,Ⅰ2222()4c a b =+-.Ⅰ由()()1sin sin sin 2a b A c b C B ⎛⎫-=+- ⎪⎝⎭及正弦定理得()()1c b 2a b a c b ⎛⎫-=+- ⎪⎝⎭, 整理得2222aba b c +-=,Ⅰ 由余弦定理的推论可得2221cos 24a b c C ab +-==,所以sin C =把Ⅰ代入Ⅰ整理得2242aba b ++=, 又222a b ab +≥,当且仅当a b =时等号成立,所以54222ab ab ab ≥+=,故得85ab ≤.所以118sin 22545ABC ab C S ∆=≤⨯⨯=.即ABC ∆5.故答案为5题型二:三角形面积的取值范围问题【例1】若在ABC 中,30,1C a b =︒+=,则ABC 面积S 的取值范围是___________.【例2】在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足2cos 2b C a c =-.若ABC 的外接圆的面积为163π,则三角形面积的取值范围是____________. 再根据ABC 的外接圆的面积求得其直径,又由ABC 的外接圆的面积为因为ABC 为锐角三角形,所以ABC 的面积取值范围为故答案为:8⎛ ⎝【例3】设锐角ABC 的内角A ,B ,C 的对边分别为a ,b ,c cos 2B B +=,c =,则ABC 面积的取值范围为______. 于ABC 为锐角三角形,从而可,进而可求出ABC 面积的取值范围【详解】由题,因为锐角ABC ,故故由3B π=,2c =因为锐角ABC ,故cos60BA ⋅︒12ABC ABCABC S SS<<,即ABCS<33632ABC S <<△,【例4】在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知22sin sin sin sin B C A C -=. (1)证明:2B C =;(2)若A 是钝角,2a =,求ABC 面积的取值范围. ABCS=【详解】(cos B =sin sin a A =2sin sin b ∴=ABC ∴的面积sin 22sin 3C ⋅=⋅= 2sin 2C ⋅=tan 22tan 2C C ⋅06C π<<又因为函数所以0tan <,则ABC 面积的取值范围为【例5】已知锐角三角形ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,向量(2sin ,m A =,(),n b a =,且m n ⊥.(1)求角B 的大小;(2)若3c =,求ABC 面积的取值范围. )由已知可得出2sin m n b ⋅=值范围,再利用三角形的面积公式可求得ABC 面积的取值范围)解:由已知可得2sin 3m n b A a ⋅=-=A 、B 均为锐角,则0,故3sin 2B =,因此,(2)解:由(,故2π3A C +=,又因为所以π33sin C C a ⎫⎛⎫+⎪ ⎪⎭⎝=又因为0ABCS=所以ABC 面积的取值范围是【题型专练】1.在ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且满足()2BA B A a c C cCB C ⋅=⋅-. (1)求角B 的大小;(2)若3b =,求ABC 的面积S 的取值范围.)BA B A C cCB C ⋅=⋅可得(A 、B ∈12B,故B (2)解:由正弦定理可得2,则a =12S ac ∴=20A <<故32S =2.在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,2sin 6b c B a +⎛⎫+= ⎪⎝⎭.(1)求角A 的大小;(2)若ABC 是锐角三角形,4c =,求ABC 面积的取值范围. ABCS=,根据ABC 为锐角三角形求得,即可求得ABCS=由正弦定理得:b =ABC 为锐角三角形,62C ππ<<,从而23S <△所以ABC 面积的取值范围是3.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2a b A =. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【答案】(1) 3B π=;(2). 【分析】(1)根据题意sin sin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sin sin 2A CB +=.0<B π<,02A C π+<<因为故2A C B +=或者2A CB π++=,而根据题意A BC π++=,故2A C B π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=.(2)解法一:因为ABC 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=,故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =, 由三角形面积公式有:222sin()111sin 3sin sin sin 222sin 4sin ABCC a A Sac B c B c B c C Cπ-=⋅=⋅=⋅=22sin cos cos sin 2123133(sin cos )sin 3tan 38tan C C C C C ππππ-==-=+又因,tan 62C C ππ<<>,318tan C <+<故82ABCS <<. 故ABCS的取值范围是 解法二:若ABC ∆为锐角三角形,且1c =,由余弦定理可得1cos3b a π==由三角形ABC 为锐角三角形,可得2211a a a +-+>且2211a a a +-+>,且2211a a a +>-+, 解得122a <<, 可得ABC ∆面积13sin 234S a π==∈.4.已知锐角ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,以a ,b ,c 为边长的三个正方形的面积依次为1S ,2S ,3S ,且123S S S ab +-=.(1)求C ;(2)若c =ABCS 的取值范围.因为ABC 是锐角三角形,所以1sin 22A ⎛< ⎝ABC S的取值范围是5.已知ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,ABC 的面积为S ,且满足()2cos cos b c A a C -=,cos cos 1b C c B +=.(1)求A 和a 的大小;(2)若ABC 为锐角三角形,求ABC 的面积S 的取值范围.因为ABC 中sin (0,π)A ∈,所以cos b C c +综上,π3A =,因为ABC 为锐角三角形,故从而ABC 的面积231sin 2B ⎛ ⎝33sin 22⎛ ⎝,从而ABC 的面积的取值范围为题型三:四边形面积范围问题【例1】如图,在平面四边形ABCD 中,2AB BC CD ===,AD =(1)若DB 平分ADC ∠,证明:A C π+=;(2)记ABD △与BCD △的面积分别为1S 和2S ,求2212S S +的最大值. 在,ABD BCD 中,利用余弦定理可构造方程求得23cos 146A ⎫-+⎪⎪⎭,结合二次函数性质可得最大值DB 平分ADC ∠,∴∠由余弦定理得:即1243BD BD +cos AD A =cos CD C =2BD AB =1683∴-2212S S +=1212cos =-(0,A π∈【例2】如图,设ABC 的内角A 、B 、C 的对边分别为a 、b 、c cos cos )2sin a C c A b B +=,且3CAB π∠=.若点D 是ABC 外一点,1CD =,3AD =,则当角D 等于多少度时,四边形ABCD 的面积有最大值,并求出最大值.,可判断出ABC 为等边三角形,利用的面积关于面积的最大值及其对应的θ【详解】解:(3cos a 由正弦定理可得(3sin (3sin B =CAB ∠=,B ⎛∴∠∈ ⎝所以,ABC 为等边三角形,设由余弦定理可得21sin 2AC =12AD CD =⋅0θπ<<大值53+【题型专练】1.如图所示,边长为1的等边ABC 的中心是G ,直线MN 经过G 点与AB AC 、分别交于M 、N 点,已知233MGA ππαα⎛⎫∠=≤≤ ⎪⎝⎭,(1)设12S S 、分别是AGM 、AGN 的面积,试用α表示1S 、2S ;(2)当线段MN 绕G 点旋转时,求221211y S S =+的最大值和最小值.πa时,y2∠=.2.在四边形ABCD中,2AB=,60∠=∠=,设CBDαABC BCD∠=,90Aα=时,求线段AD的长度;△面积的最大值.(2)求BCD15时,在75,45ADB ∠, sin45sin75AB AD =,得()2sin 45cos30cos 45sin 302sin7531sin45sin 45AD +==+中,90ABD α∠=-,()180609030ADB αα=---=+,)()3sin60sin 30sin 30BD AB BD αα=⇒=++, Rt BCD 中,()3cos cos sin 30BC BD ααα==+, )3sin sin 30BD ααα==+,)13sin 3222sin 30BCD S α===⋅26tan 13tan 12tan αα++。
专题5解三角形中的最值与范围问题一、三角形中的最值范围问题处理方法1、利用基本不等式或常用不等式求最值:化角为边余弦定理公式里有“平方和”和“积”这样的整体,一般可先由余弦定理得到等式,再由基本不等式求最值或范围,但是要注意“一正二定三相等”,尤其是取得最值的条件。
2、转为三角函数求最值:化边为角如果所求整体结构不对称,或者角度有更细致的要求,用余弦定理和基本不等式难以解决,这时候可以转化为角的关系,消元后使得式子里只有一个角,变为三角函数最值问题进行解决。
要注意三角形隐含角的范围、三角形两边之和大于第三边。
二、边化角与角化边的变换原则在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三三个自由角)时,要用到三角形的内角和定理.【分析】设220CDBD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解. 【详解】[方法一]:余弦定理 设220CDBD m ==>, 则在ABD △中,2222cos 42AB BD AD BD AD ADB m m =+⋅∠=++,在ACD 中,22222cos 444AC CD AD CD AD ADC m m =+−⋅∠=+−, 所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++−++−===−+++++++44≥=−当且仅当311m m +=+即1m =−时,等号成立,所以当ACAB取最小值时,1m =−.1.[方法二]:建系法令 BD=t ,以D 为原点,OC 为x 轴,建立平面直角坐标系. 则C (2t,0),A (1,B (-t,0)()()()2222222134441244324131111t AC t t AB t t t t t t BD −+−+∴===−≥−++++++++==当且仅当即时等号成立。
三角形中的最值、范围问题一、知识与方法1、正弦定理可将边用角的正弦值表示:2sin sin sin a b cR A B C===, 2sin a R A =,2sin b R B =,2sin c R C =2、在三角形ABC ∆中,若 222c a b =+,则C 为直角;若 222c a b >+,则C 为钝角;若 222c a b <+, 则C 为锐角;3、在锐角三角形中,已知角C ,求B 的范围,可由下列限制条件求出:02022B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩ 4、三角形有关最值和范围求解(1)利用余弦定理和基本不等式进行解答; (2)利用正弦定理和三角函数值域进行解答; 例如:已知角C ,求解 sin sin m A n B +的范围 :解题方法:()()sin sin =sin +sin sin +sin m A n B m A n A C m A n A C π+--=+,再利用三角函数和差角公式和辅助角公式进行化简,求出三角函数的值域;注意:若三角形为锐角三角形,已知角C ,则需满足02022B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,从而进一步限制B 的范围.(3)利用三角形三边关系进行解答; 若为锐角三角形,则222222222c a b b a c a b c ⎧<+⎪<+⎨⎪<+⎩,若为钝角三角形,如角C 为钝角,则222c a b a b c ⎧>+⎨+>⎩二、题型训练题型一 利用余弦定理和基本不等式求面积与周长最值问题例1.(2021•丙卷模拟)在ABC ∆中角A ,B ,C 的对边分别为a ,b ,c ,若()(sin sin )sin ()a b A B C b c -+=+,2b c +=,则ABC ∆的面积的最大值为( )A .14B C .12D 【解答】解:因为()(sin sin )sin ()a b A B C b c -+=+, 由正弦定理得()()()a b a b c b c -+=+, 所以222a b bc c -=+,由余弦定理得2221cos 22b c a A bc +-==-,由A 为三角形内角得23A π=, 因为2b c +=, 所以2()12b c bc +=,所以113sin 1222ABC S bc A ∆=⨯⨯=1b c ==时取等号, 故选:B . 方法点拨:本题考查正弦定理的边角互化、余弦定理和基本不等式求最值,熟练利用正余弦定理和基本不等式是解题的关键. 巩固训练:1.(2021•河南模拟)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,2cos cos cos a A b C c B =+,当ABC ∆的外接圆半径2R =时,ABC ∆面积的最大值为( )A B .C .D .【解答】解:2cos cos cos a A b C c B =+,∴由正弦定理可得2sin cos sin cos sin cos A A B C C B =+,即2sin cos sin()sin A A B C A =+=,(0,)A π∈, 1cos 2A ∴=,即3A π=,由余弦定理,2221222b c bc bc bc =+-⨯⨯-, 则12bc ,(当且仅当b c =时等号成立),ABC ∴∆的面积11sin 1222S bc A=⨯=b c =时,等号成立, 故选:C .2.在ABC ∆中,A ,B ,C 的对边分别为a ,b ,c ,若1(sin )cos sin cos 2b C A A C -=,且a =ABC ∆面积的最大值为( )A .B .C .D .【解答】解:已知等式整理得:1cos sin cos cos sin sin()sin 2b A A C A C A C B =+=+=,即2sin cos b B A=,由正弦定理sin sin a b A B =2cos A =,即sin tan cos AA A==60A ∴=︒,由余弦定理得:2222cos a b c bc A =+-,即22122b c bc bc bc bc =+--=,则1sin 332ABC S bc A ∆=,即ABC ∆面积的最大值为故选:B .3.(2021春•鼓楼区校级期末)在ABC ∆中,1cos 2a c Bb =+.(1)若7a b +=,ABC ∆的面积为c ; (2)若4c =,求ABC ∆周长的最大值. 【解答】解:(1)由正弦定理知,sin sin sin a b cA B C==, 1cos2a c Bb =+,∴1sin sin cos sin 2A C B B =+,即1sin()sin cos sin 2B C C B B +=+,1sin cos cos sin sin cos sin 2B C B C C B B ∴+=+,∴1sin cos sin 2B C B =,sin 0B ≠,∴1cos 2C =, (0,)C π∈,∴3C π=,11sin 22S ab C ab ===12ab ∴=,由余弦定理知,22222cos ()3493613c a b ab A a b ab =+-=+-=-=,∴c =(2)由余弦定理知,2222cos c a b ab A =+-,2222()()16()3()344a b a b a b ab a b ++∴=+-+-⋅=, 8a b ∴+,当且仅当4a b ==时,取等,ABC ∴∆周长的最大值为4812+=.4.(2021•一模拟)已知ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,且()(sin sin )sin ()0a c A C B a b -+--=.(1)求C ;(2)若ABC S ∆=,2c =,求ABC ∆周长的最小值.【解答】解:(1)ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且()(sin sin )()sin 0a c A C b a B -++-=.利用正弦定理得:()()()0a c a c b a b -++-=,整理得:2220a c b ab -+-=,即2221cos 22a b c C ab +-==,由于0C π<<, 所以:3C π=.(2)因为11sin sin 223ABC S ab C ab π∆====,所以解得8ab =,所以周长22a b c ab c +++=,当且仅当a b ==所以ABC ∆周长的最小值为2.5.(2021•永州模拟)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c (sin )b A A =. (1)求B ;(2)若3b =,求ABC ∆周长最大时,ABC ∆的面积.【解答】解:(1)(sin )b A A =,∴sin (sin )C B A A =,∴)sin sin cos A B B A B A +=+,∴cos cos sin sin cos A B B A B A B A =+,∴sin B B =,∴tan B ,0B π<<,∴3B π=.(2)222cos 2a c b B ac+-=, 据(1)可得3B π=,∴222122a c b ac +-=,222b ac ac ∴=+-,29()3a c ac ∴=+-,∴222()9()3()24a c a c a c +++-=, 当且仅当3a c ==时等号成立,即当3a c ==时,a c +取得最大值,即周长取得最大值,此时133sin 23ABC S π∆=⨯⨯⨯=6.(2021•巴中模拟)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c.已知sin sin(),3b A a B b π=+=. (1)求ABC ∆的外接圆直径; (2)求ABC ∆周长的取值范围. 【解答】解:(1)sin sin()3b A a B π=+,∴由正弦定理,可得sin sin sin sin()3B A A B π=+,(0,)A π∈,sin 0A >,∴sin sin()3B B π=+,化简可得,1sin 2B B =,∴tan B =,(0,)B π∈,∴3B π=,由正弦定理可得,ABC ∆的外接圆直径21sin bR B ===. (2)由(1)可知,3B π=,由余弦定理可得,222b a c ac =+-, 222221()3()3()()24a cb ac ac a c a c +∴=+-+-=+, 当且仅当a c =时,等号成立,b , 2()3ac ∴+,即3a c +,又a cb +>=,∴3a c <+,∴332a b c++,ABC ∴∆的取值范围为.题型二 利用正弦定理和三角函数值域求三角形角度有关的最值、范围问题 例2.在△ABC 中,a 2+c 2=b 2+ac .(Ⅰ)求∠B 的大小; (Ⅱ)求cos A +cos C 的最大值.【解答】解:(Ⅰ)∵在△ABC 中,a 2+c 2=b 2+ac .∴a 2+c 2﹣b 2=ac .∴cos B ===,∴B =(Ⅱ)由(I )得:C =﹣A ,∴cos A +cos C =cos A +cos (﹣A )=cos A ﹣cos A +sin A=cos A +sin A =sin (A +). ∵A ∈(0,), ∴A +∈(,π),故当A +=时,sin (A +)取最大值1,即cos A +cos C 的最大值为1.方法点拨:本题考查了余弦定理、三角形内角和、三角函数和差角公式、辅助角公式以及三角函数值域,熟练掌握余弦定理、三角函数辅助角公式、三角函数值域求解的方法是解题的关键. 巩固训练:1.(2021•沈阳四模)在①2cos cos c b Ba A-=,②2cos 2a C c b +=,③1sin cos sin 2cos 2a A C c A A +=这三个条件中任选一个,补充在下面问题中,并解答该问题.问题:锐角ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且______. (1)求A ;(2)求cos cos B C +的取值范围. 【解答】解:(1)选① 因为2cos cos c b Ba A -=, 所以2sin sin cos sin cos C B BA A-=, 所以2sin cos sin cos sin cos C A B A A B -=,整理得2sin cos sin cos sin cos sin()sin C A B A A B A B C =+=+=. 因为sin 0C ≠,所以1cos 2A =. 因为(0,)2A π∈,所以3A π=.选②因为2cos 2a C c b +=,所以2sin cos sin 2sin 2sin()A C C B A C +==+, 所以2sin cos sin 2sin cos 2cos sin A C C A C A C +=+, 整理得sin 2cos sin C A C =. 因为sin 0C ≠,所以1cos 2A =. 因为(0,)2A π∈,所以3A π=.选③因为1sin cos sin 2cos 2a A C c A A +,所以sin sin cos sin sin cos cos A A C C A A B A +=,所以sin (sin cos sin cos )cos A A C C A B A +=,整理得sin sin cos A B B A =.因为sin 0B ≠,所以sin A A =.因为(0,)2A π∈,所以tan 3A A π=.(2)因为3A π=,所以1cos cos cos cos()cos sin()26B C B B A B B B π+=-+=+=+.因为2(0,),(0,)232B C B πππ∈=-∈,所以(,)62B ππ∈,所以2(,)633B πππ+∈,所以sin()6B π+∈,故cos cos B C +∈.2.(2021•下城区校级模拟)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin sin b B a A c A -=.(1)求证:2B A =;(2)若ABC ∆是锐角三角形,求sin sin AC的取值范围. 【解答】解:(1)由sin sin sin b B a A c A -=得22b a ac -=, 由余弦定理2222cos b a c ac B =+-, 代入22b a ac -=得22cos ac c ac B =-, 则2cos a c a B =-,由正弦定理得sin sin 2sin cos A C A B =-,所以sin sin()2sin cos A A B A B =+-,得sin sin()A B A =-, 由220b a ac -=>知b a >,故B A >, 所以A B A =-或()A B A π+-=(舍去) 所以2B A ⋯=,(2)3C A π=-,由0,02,03222A A A ππππ<<<<<-<得64A ππ<<,sin sin sin sin sin sin3sin(2)sin cos2cos sin 2A A A AC A A A A A A A===++,32sin 11(,1)3sin 4sin 34sin 2A A A A ==∈--.题型三 利用正弦定理和三角函数值域求三角形边长有关的最值、范围问题例3.(2021•汕头三模)在①22(sin sin )sin 3sin sin B C A B C +=+,②22cos c a B b =+,③cos cos 2cos 0b C c B a A +-=这三个条件中任选一个,补充到下面问题中,并解答问题.在ABC ∆中,内角A ,B ,C 的对边长分别为a ,b ,c ,且____.(1)求角A 的大小;(2)若ABC ∆是锐角三角形,且2b =,求边长c 的取值范围. 【解答】解:(1)选条件①.因为22(sin sin )sin 3sin sin B C A B C +=+, 所以222sin sin sin sin sin B C A B C +-=, 根据正弦定理得,222b c a bc +-=, 由余弦定理得,1cos 2A =, 因为A 是ABC ∆的内角, 所以3A π=选条件②,因为1cos 2c a B b =+,由余弦定理222122a c b c a b ac +-=⨯+,整理得222b c a bc +-=, 由余弦定理得,1cos 2A =, 因为A 是ABC ∆的内角, 所以3A π=.选条件③,因为cos cos 2cos 0b C c B a A +-=, sin cos sin cos 2sin cos 0B C C B A A ∴+-=.sin()2sin cos B C A A ∴+=,即sin 2sin cos A A A =因为0A π<<,sin 0A ≠.∴1cos 2A =, ∴3A π=;(2)因为3A π=,ABC ∆为锐角三角形,所以022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62B ππ<<在ABC ∆中,2sin sin c C B=,所以212sin()sin )322sin sin B B B c B B π-+===,即1c . 由62B ππ<<可得,tan B >,所以10tan B<<,所以14c <<. 方法点拨:本题第一问考查正余弦定理的变形及应用,第二问边长范围问题考查正弦定理的边角互化,结合锐角三角形角度的范围和三角函数值域求解出角度的范围.巩固训练:1.在锐角ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且220c a ab --=. (1)求证:2C A =;(2)若2a =,求c 的取值范围.【解答】解:(1)证明:因为220c a ab --=, 结合余弦定理,得2222cos c a b ab C =+-, 所以22cos ab b ab C =-,即2cos a b a C =-,由正弦定理,得sin sin 2sin cos sin()2sin cos A B A C A C A C =-=+- sin cos sin cos sin()C A A C C A =-=-,因为ABC ∆为锐角三角形, 所以A C A =-,即2C A =; (2)由(1)2C A =, 由正弦定理,得sin sin a cA C=,所以2cos 4cos c a A A ==,由题意,得02032022A A A ππππ⎧<<⎪⎪⎪<-<⎨⎪⎪<<⎪⎩,解得64A ππ<<,所以4cos c A =∈.2.(2021春•慈溪市期末)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知向量m 、n 满足:(2,6)m a =,(,2sin )n b B =,且//m n . (Ⅰ)求角A ;(Ⅱ)若ABC ∆是锐角三角形,且2a =,求b c +的取值范围. 【解答】解:(Ⅰ)因为//mn ,所以2a Bb =,2sin a B=, 由正弦定理得:2sin sin A B B =, 因为sin 0B≠, 所以sin A , 所以3A π=或23π. (Ⅱ)因为2a =,所以由正弦定理得sin sin sin a b c A B C ====,得:b B ,c C =,所以21sin )sin()]sin ]4sin()326b c B C B B B B B B ππ++=+-=++=+,因为ABC ∆是锐角三角形, 所以02B π<<,且2032B ππ<-<,可得62B ππ<<, 所以2363B πππ<+<sin()16B π<+,所以4b c <+.3.(2021春•青山湖区校级期中)在ABC ∆中,3B π=,AC ,则2AB BC +的最大值为( )A.B.C .3 D .4【解答】解:因为3B π=,AC由正弦定理得2sin sin sin a c bA C B===,所以2sin a A =,22sin 2sin()3c C A π==-,由则222sin()4sin 5sin )3AB BC A A A A A πϕ+=-++=+,其中ϕ为辅助角,根据正弦函数的性质得)A ϕ+的最大值 故选:B .4.(2021•B 卷模拟)在锐角ABC ∆中,a ,b ,c 分别为内角A ,B ,C 的对边,且有2b =. 在下列条件中选择一个条件完成该题目:①cos (cos )cos 0C B B A +-=;②2sin (2)sin (2)sin a A b c B c b C =-+-. (1)求A 的大小; (2)求2a c +的取值范围.【解答】解:(1)若选择①,因为cos (cos )cos 0C B B A +-=, 所以cos()cos cos cos 0A B B A B A -++=,即cos cos sin sin cos cos cos 0A B A B B A B A -++=,所以sin sin cos A B B A =, 因为sin 0B ≠,可得sin A A =,所以tan A =,可得3A π=;若选择②,因为2sin (2)sin (2)sin a A b c B c b C =-+-. 所以222222a b bc c bc =-+-,所以222bc b c a =+-,可得2221cos 22b c a A bc +-==,可得3A π=.(2)设ABC ∆外接圆半径为R ,则有22sin sin b R B B==, 可得222122(2sin sin )sin )sin())sin )1sin sin sin 2a c R A C C A B B B B B B +=+==+=+=,因为ABC ∆为锐角三角形,可得022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,可得62B ππ<<,所以sin B 在(6π,)2π单调递增,cos B 在(6π,)2π(6π,)2π单调递减,所以21a c +∈,4).5.(2021•肥城市模拟)已知锐角ABC ∆的外接圆半径为1,内角A ,B ,C 的对边分别为a ,b ,c ,ABC ∆的面积为S2224)S c b =+-.(1)求C ; (2)求bca的取值范围. 【解答】解:(1)2224)S c b =+-,∴222)4a b c S +-=,∴1cos 4sin 2C ab C =⨯sin C C =,cos 0C ∴≠,tan C又(0,)C π∈∴3C π=,(2)ABC ∆的外接圆半径为1,∴2sin cC=, 又正弦定理sin sin sin a b cA B C==, 2sin a A ∴=,2sin b B =,∴21sin()sin)3322sin sin2tanA A Abca A A Aπ-+======+,又因为ABC∆是锐角三角形,∴22ABππ⎧<<⎪⎪⎨⎪<<⎪⎩,即2232AAπππ⎧<<⎪⎪⎨⎪<-<⎪⎩,∴62Aππ<<,∴tan A>,1tan A<<,32tan A<<∴bca<<6.(2021春•庐阳区校级期末)在ABC∆中,内角A,B,C所对的边分别为a,b,c,(1cos)cosa b C c B++=.(1)求角C的大小;(2)若c=,求ABC∆周长的取值范围.【解答】解:(1)因为(1cos)cosa b C c B++=,所以由正弦定理得sin sin(1cos)sin cosA B C C B++=,又sin()sin()sinB C A Aπ+=-=,所以sin()sin sin cos sin cos0B C B B C C B+++-=,所以2sin cos sin0B C B+=,因为(0,)Bπ∈,所以sin0B≠,所以1cos2C=-,又(0,)Cπ∈,所以23Cπ=.(2)因为c=,23Cπ=,所以由正弦定理得2sin sin sin3b aB A===,则2sinb B=,2sina A=,故ABC∆的周长2sin2sin2sin2sin()3L B A B Bπ+=+-2sin2(sin cos cos sin)33B B Bππ=+-sin B B=+2sin()3B π=++,因为03B π<<,所以(33B ππ+∈,2)3π,sin()3B π+∈1],2sin()3B π+∈2+,故ABC ∆周长的取值范围为2.7.(2021春•淮安期末)从①(2)cos cos 0b c A a B -+=;②222b c a +-=;③(tan tan )2tan b A B c B +=这三个条件中选一个,补充到下面问题中,并完成解答.已知ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且____. (1)求角A 的大小;(2)若ABC ∆为锐角三角形,b =ABC ∆的周长的取值范围.【解答】解:(1)若选①,在ABC ∆中,由正弦定理得:sin cos 2sin cos sin cos 0B A C A A B -+=, 因为A B C π++=,A ,B ,(0,)C π∈, 所以sin 2sin cos 0C C A -=, 且sin 0C ≠, 因此1cos 2A =,(0,)A π∈, 可得3A π=;若选②,在ABC ∆中,由余弦定理得12cos sin 2bc A bc A ,所以sin A A , 因为sin 0A ≠,因此tan A =,且(0,)A π∈, 故3A π=;若选③,在ABC ∆中,2tan sin cos cos sin sin 1tan cos sin cos sin c A A B A B Cb B A B A B+=+==,且sin 0C ≠, 由正弦定理得:22sin sin sin cos sin c C Cb B A B==, 故1cos 2A =,可得3A π=;(2)因为ABC ∆为锐角三角形, 所以(0,)2B π∈,(0,)2C π∈,因此(,)62B ππ∈,sin sin c a C ==,可得c =3sin a B=, 所以ABC∆的周长为)31cos 333sin sin tan 2B B a c b B B B π+++++=+++,由于(,)62B ππ∈,可得(212B π∈,)4π,可得tan (22B∈,所以ABC ∆的周长取值范围为(3++.8.(2021•烟台模拟)在条件①222sin sin sin sin A B C B C --=,②1cos 2b a Cc =+,③(cos )cos cos 0C C A B +=中,任选一个补充在下面问题中并求解. 问题:在锐角ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,1c =,____. (1)求A ;(2)求ABC ∆面积的取值范围.【解答】解:(1)若选①222sin sin sin sin A B C B C --=,由正弦定理得222a b c --=,由余弦定理得222cos 2b c a A bc +-=, 由A 为三角形内角得6A π=;(2)14ABC S b ∆=,由正弦定理得51sin()cos sin 1622sin sin sin 2tan C C Cc Bb CC C C π-====,由题意得02506C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得32C ππ<<,所以tan Cb <ABC S ∆<<故ABC ∆面积的取值范围; (1)若选②1cos 2b a Cc =+,由正弦定理得1sin sin cos sin 2B AC C =+,所以1sin()sin cos sin 2A C A C C +=++,所以1sin cos sin cos sin cos sin 2A C C A A C C +=+,化简得1sin cos sin 2C A C =,因为sin 0C >, 所以1cos 2A =, 由A 为三角形内角得3A π=;(2)ABC S ∆,,由正弦定理得21sin()sin sin 1322sin sin sin 2C C Cc Bb CC C π-+====由题意得022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<,所以tan C , 故122b <<,ABC S ∆<<故ABC ∆面积的取值范围; (1)若选③(cos )cos cos 0C C A B +=,所以(cos )cos cos()0C C A A C -+=,化简得sin sin cos A C C A =, 因为sin 0C >,所以tan A =, 由A 为三角形内角得3A π=;(2)ABC S ∆,由正弦定理得21sin()sin sin 1322sin sin sin 2C C Cc Bb CC C π-+====由题意得022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<,所以tan C , 故122b <<,ABC S ∆<<故ABC ∆面积的取值范围.题型四 利用三角形三边关系求解范围问题例4.(2019•新课标Ⅲ)ABC ∆的内角A 、B 、C 的对边分别为a ,b ,c .已知sinsin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【解答】解:(1)sin sin 2A C a b A +=,即为sin cos sin 22B Ba ab A π-==, 可得sin cossin sin 2sin cos sin 222B B BA B A A ==, sin 0A >, cos2sin cos 222B B B ∴=, 若cos 02B=,可得(21)B k π=+,k Z ∈不成立, 1sin22B ∴=, 由0B π<<,可得3B π=;(2)若ABC ∆为锐角三角形,且1c =,由余弦定理可得1cos3b a π=,由三角形ABC 为锐角三角形,可得2211a a a +-+>且2211a a a +-+>, 解得122a <<,可得ABC ∆面积13sin 234S a π==∈.方法点拨:本题求解三角形面积的取值范围,由于一边和角度已知,可转化为求边长的范围,利用锐角三角形三边关系列出不等关系,从而求解出面积范围. 巩固训练:1.(2021•新高考Ⅱ)在ABC ∆中,角A ,B ,C 所对的边长为a ,b ,c ,1b a =+,2c a =+.(Ⅰ)若2sin 3sin C A =,求ABC ∆的面积;(Ⅱ)是否存在正整数a ,使得ABC ∆为钝角三角形?若存在,求出a 的值;若不存在,说明理由. 【解答】解:()2sin 3sin I C A =,∴根据正弦定理可得23c a =,1b a =+,2c a =+, 4a ∴=,5b =,6c =,在ABC ∆中,运用余弦定理可得2222224561cos 22458a b c C ab +-+-===⨯⨯,22sin cos 1C C +=,sin C ∴===∴11sin 4522ABC S ab C ∆==⨯⨯=()II c b a >>,ABC ∴∆为钝角三角形时,必角C 为钝角, 222222(1)(2)cos 022(1)a b c a a a C ab a a +-++-+==<+,2230a a ∴--<, 0a >, 03a ∴<<,三角形的任意两边之和大于第三边, a b c ∴+>,即12a a a ++>+,即1a >, 13a ∴<<,a 为正整数,2a ∴=.。
第09讲拓展四:三角形中周长(定值,最值,取值范围)问题(精讲)目录第一部分:知识点精准记忆第二部分:典型例题剖析高频考点一:周长(边长)定值高频考点二:周长(边长)最值高频考点三:周长(边长)取值范围第三部分:高考真题感悟第一部分:知识点精准记忆1、基本不等式核心技巧:利用基本不等式2a b+≤,在结合余弦定理求周长取值范围;2、利用正弦定理化角核心技巧:利用正弦定理2sin a R A =,2sin b R B =,代入周长(边长)公式,再结合辅助角公式,根据角的取值范围,求周长(边长)的取值范围.第二部分:典型例题剖析高频考点一:周长(边长)定值1.(2022·河南洛阳·高二阶段练习(理))在ABC 中,角,,A B C 的对边分别为,,a b c ,22cos c b a B =+.(1)求角A ;(2)若2a =,ABC 面积)22212S a b c =++,求△ABC 的周长.【答案】(1)π3;(2)6(1)在ABC 中,∵22cos c b a B =+,∴由正弦定理可得2sin sin 2sin cos C B A B =+.又∵()πC A B =-+,()sin sin C A B =+,∴()2sin sin 2sin cos A B B A B +=+.整理得2cos sin sin A B B =.∵sin 0B >,∴1cos 2A =,()0,πA ∈.∴π3A =.(2)∵()22212S a b c =++,∴)2221sin 212bc A a b c =++,)224b c =++,亦即2234bc b c =++.又由余弦定理知224b c bc +-=,∴4bc =.∴()234b c bc +-=.∴4b c +=.∴ABC 的周长为6a b c ++=.2.(2022·江西·临川一中模拟预测(文))△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c.已知2a b ==.(1)若π6A =,求sin 2B ;(2)当A 取得最大值时,求△ABC 的周长.【答案】(1)3±(2)3(1)由正弦定理得sin sin a b A B =,即πsin 62sin B =,解得sin 3B =,∵0πB <<,∴cos 3B =±,∴sin 22sin cos 3B B B ==±;(2)由余弦定理得22221cos 24b c a c A bc c +-+==,∴2121442c c c c +≥=,当且仅当1c =时,等号成立,此时,△ABC的周长为33.(2022·广东惠州·高三阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,()sin A A b =+.(1)求B ;(2)若3b =,ABC ABC 周长.【答案】(1)3B π=(2)9(1)()sin A A b =+,由正弦定理:sin sin sin a b cA B C==,()sin sin os n B A A C =+,又∵A B C π++=()sin sin cos A B B A B A +=+,cos sin sin sin cos A B A B B A B A =+,cos sin sin A B A B =,∵0A π<<,∴sin 0A ≠sin B B =,又∵0B π<<,∴tan B =3B π=.(2)由题意知1sin 244ABC S ac B ac ===△,∴9ac =由余弦定理得2222cos a c b ac B =+-,又∵3b =,3B π=,∴2222cos 18a cb ac B +=+=∴()222236a c a c ac +=++=,故6a c +=,所以ABC 的周长9a b c ++=.4.(2022·河南·模拟预测(理))在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知π3A =,4c =.(1)若sin cos 2B B -=,求ABC 外接圆的面积;(2)若a =,求ABC 的周长.【答案】(1)8π(2)答案见解析(1)因为π2sin cos42B B B ⎛⎫-=-= ⎪⎝⎭,所以π1sin 42B ⎛⎫-= ⎪⎝⎭,因为π3A =,所以203B π<<,所以54412B πππ-<-<则ππ46B -=,则5π12B =.因为π3A =,所以ππ4C A B =--=.设ABC 外接圆的半径为R,由正弦定理得42πsin sin 4c R C ===则R =ABC 外接圆的面积2π8πS R ==.(2)由余弦定理可得2222cos a b c bc A =+-,代入数据,得213164b b =+-,解得1b =或3.当1b =时,ABC的周长为53b =时,ABC的周长为7+.5.(2022·四川绵阳·高一期中)在ABC 中,内角A B C ,,的对边分别为a ,b ,c ,已知22232a cb +=+.(1)求cos B 的值;(2)若32BA BC →→⋅=,2b ac =,求ABC 的周长.【答案】(1)3cos 4B =;(2)3.(1)解:由已知得:22232a cb ac +-=由余弦定理得2223cos 24b ac B ac +-==.(2)解:BA BC →→⋅33cos 42ac B ac ===,解得2ac =,所以22b ac ==,b =由余弦定理知2222cos b a c ac B =+-,于是()()22222cos 7a c ac ac B a c =+--=+-,解得3a c +=,故ABC的周长为3+.6.(2022·辽宁·铁岭市清河高级中学高一期中)在ABC 中,()sin sin sin b B a A b c C =-+(1)求角A 的大小(2)若BC边上的中线AD =ABC S = ABC 的周长【答案】(1)23A π=;(2)8+.(1)由已知sin sin ()sin b B a A b c C =-+,由正弦定理得:222b a bc c =--,由余弦定理得:2221cos 22b c a A bc +-==-,在ABC 中,因为(0,)A π∈,所以23A π=;(2)由1sin 24ABC S bc A ===△8bc =①,由(1)知222b a bc c =--,即2228b c a +=-②,在ABD △中,由余弦定理得:222(2cos 22a a c ADB =+-⋅⋅∠,在ADC 中,由余弦定理得:222()2cos 22a ab ADC =+-⋅⋅∠,因为cos cos ADB ADC ∠=-∠,所以222242a b c +=+③,由①②③,得228,56,8a b c bc =+==,所以b c +====所以ABC 的周长8a b c ++=+7.(2022·河南省实验中学高一期中)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2C =sin 2A +cos 2B +sin A sin C .(1)求角B 的大小;(2)若b =B 的角平分线交AC 于D ,且BD =1,求ABC 的周长.【答案】(1)120°(2)4+(1)解:因为cos 2C =sin 2A +cos 2B +sin A sin C ,所以1﹣sin 2C =sin 2A +1﹣sin 2B +sin A sin C ,即sin 2B =sin 2A +sin 2C +sin A sin C ,由正弦定理得,b 2=a 2+c 2+ac ,由余弦定理得,cos B 222122a cb ac +-==-,由B 为三角形内角得B =120°;(2)由题意得:ABC ABD BCD S S S =+△△△,且∠ABD =∠CBD 12=∠B =60°,BD =1,所以111sin sin 60sin 60222ac B c BD a BD =⋅⋅+⋅⋅ ,=(a +c ),即ac =a +c ,因为b =b 2=12=a 2+c 2﹣2ac cos120°=a 2+c 2+ac ,因为()()22222a c a c ac ac +=++=,所以ac=a +c =4或ac =﹣3(舍),故ABC 的周长为4+8.(2022·江苏南通·高一期中)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b = ,(sin )n B A =,且.m n ⊥ (1)求A ;(2)若a =ABCABC 的周长.【答案】(1)23π;(2)3+.(1)由m n ⊥,则sin cos 0a B A +=,由正弦定理得:sin sin cos 0A B B A =,在ABC 中sin 0B >,故sin A A =,即tan A =因为0A π<<,所以23A π=;(2)由余弦定理得2222cos a b c bc A =+-,即227b c bc ++=,可得()27b c bc +=+,又1sin 2ABC S bc A ==2bc =,则()29b c +=,即3b c +=,所以ABC 的周长为3高频考点二:周长(边长)最值一、解答题1.(2022·山西·高一阶段练习)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,△ABC 的面积为S ,且满足4tan tan tan S B C bc B ⋅⋅=⋅+tan 4bc C S ⋅+.(1)求角A 的大小;(2)若4a =,求△ABC 周长的最大值.【答案】(1)π3(2)12(1)∵πA B C ++=,4tan tan tan tan 4S B C bc B bc C S =++,∴()()tan tan tan tan 4tan tan tan tan 11tan tan bc B C B CS bc bc B C bc A B C B C++==-⋅=-⋅+=⋅--⋅,即sin 2sin cos Abc A bc A=⋅,∵(0,π)sin 0A A ∈≠,∴1cos 2A =,∴π3A =;(2)∵4a =,π3A =,∴由余弦定理得2221cos 22b c a A bc +-==,2216b c bc +-=,()2163b c bc+=+()()2216334b c b c bc ++-=≤⨯(当且仅当4b c ==时取“=”),即()21164b c +≤,8b c +≤,∴b c +的最大值为8,a b c ++的最大值为12,∴△ABC 周长的最大值为12.2.(2022·宁夏·平罗中学三模(文))已知函数()f x m n =⋅,向量()sin cos ,n x x x =+ ,()cos sin ,2sin m x x x =-,在锐角ABC 中内角,,A B C 的对边分别为,,a b c ,(1)若()1f A =,求角A 的大小;(2)在(1)的条件下,a =cb +的最大值.【答案】(1)3A π=(2)(1)由题()22cos sin cos 2sin 26f x m n x x x x x π⎛⎫=⋅=-+=+ ⎪⎝⎭所以()2sin 216f A A π⎛⎫=+= ⎪⎝⎭,即1sin 262A π⎛⎫+=⎪⎝⎭又因为0,2A π⎛⎫∈ ⎪⎝⎭,所以5266A ππ+=,3A π=.(2)由余弦定理2222cos a b c bc A =+-,代入数据得:223b c bc =+-,整理得到()()()2222133324b cb c bc b c b c +=+-³+-´=+解得b c +≤b c ==.故c b +的最大值为3.(2022·山西运城·高一阶段练习)已知ABC 的内角,,A B C 所对的边分别为,,cos sin a b c B a B =+.(1)若8,a ABC = 的面积为D 为边BC 的中点,求中线AD 的长度;(2)若E 为边BC 上一点,且1,:2:AE BE EC c b ==,求2b c +的最小值.【答案】(1)(2)7(1)cos sin sin C A B A B +,()cos sin cos sin sin A B A B A B A B A B ++,sin sin sin A B A B =,(),0,π,sin 0,A B B ∈∴≠ tan A ∴,即π3A =.ABC 的面积为1sin 162bc A bc ∴=∴=.D Q 为边BC 的中点,()()222222111()216444AD AB AC AB AB AC AC c b ∴=+=+⋅+=++ ,又222,16,8b c a bc bc a +-===,222641680b c a bc ∴+=+=+=,()()222112880162444AD c b ∴=+⨯+=+= ,即AD = ,∴中线AD 的长度为(2)E 为边BC 上一点,:2:BE EC c b =,()22,22c c BE BC AE AB AC AB c b c b∴=∴-=-++,222c b AE AC AB c b c b ∴=+++,即()22c b AE cAC bAB +=+ ,222(2)(2)c b AE c AC b AB ∴+=+ ,又1AE =,2222222222(2)(2)427c b c AC b AB c b b c b c b c ∴+=+=++=,2c b ∴+=,即21b c+=)2148224427c b b c b c b c b c ⎛⎛⎫⎫∴+=++=++≥+=⎪⎪⎝⎭⎭,当且仅当4c b b c =,即2b c ==故2b c +4.(2022·湖南·模拟预测)在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,已知222a c ac b +-=.(1)求角B ;(2)若2b =,求2a c +的最大值.【答案】(1)π3B =(1)由222a c ac b +-=,得222a c b ac +-=,由余弦定理可得2221cos 22a cb B ac +-==,因为0πB <<,所以π3B =.(2)在ABC 中,由(1)及2b =,由正弦定理1sin sin sin ac b A C B ===,所以sin a A =,sin c C =,所以2sin 2sin sin 2sin 3a c A C A A π⎛⎫+=+=++ ⎪⎝⎭2sin )A A A ϕ==+,其中0,2πϕ⎛⎫∈ ⎪⎝⎭,tan 2ϕ=,因为2π03A <<,π02ϕ<<,所以存在角A 使得π2A ϕ+=,所以2a c +.5.(2022·浙江·模拟预测)向量1,2m x ⎫=⎪⎭,3cos ,22x n ⎛⎫=- ⎪ ⎪⎝⎭,函数()()2f x m m n =⋅+ .(1)求函数()f x 的对称中心;(2)若函数1()()4g x f x =+在π,4a ⎡⎤-⎢⎥⎣⎦上有5个零点,求a 的取值范围;(3)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,ACB ∠的角平分线交AB 于点D ,且()f C 恰好为函数()f x 的最大值.若此时()CD f C =,求43a b +的最小值.【答案】(1)ππ1,1224k ⎛⎫+- ⎪⎝⎭(k ∈Z )(2)25π31π,1212⎡⎫⎪⎢⎣⎭(3)7+(1)∵1,2m x ⎫=⎪⎭,3,22x n ⎛⎫=- ⎪ ⎪⎝⎭,∴5,22m n x x ⎫=+-⎪⎭+ ,∴()25π12sin cos 2sin 24624()f x m m x x x n x ⎛⎫=+-=-- ⎪⎝⎭=⋅+ .令π2π6x k -=得ππ(Z)122k x k =+∈,∴()f x 的对称中心为ππ1,1224k ⎛⎫+- ⎝⎭(k ∈Z ).(2)当π4x =-时,π2π263x -=-,又()sin 26g x x π⎛⎫=- ⎪⎝⎭在π,4a ⎡⎤-⎢⎥⎣⎦上有5个零点,∴π4π25π6a ≤-<,∴a 的取值范围为25π31π,1212⎡⎫⎪⎢⎣⎭.(3)由()f C 恰好为函数()f x 的最大值可得17()2sin 2644f C C π⎛⎫=--= ⎪⎝⎭,即sin 216C π⎛⎫-= ⎪⎝⎭,∵0C π<<,则可解3C π=,则()74CD f C ==,在ACD △中,由1sin sin 2CD ADA C =,可得78sin AD A =,在BCD △中,由1sin sin 2CD BDB C =,可得78sin BD B =,∴778sin 8sin c A B=+,在ABC 中,sin sin sin a b cA B C==,则可得sin 1sin A a B ⎫=+⎪⎝⎭,sin 1sin B b A ⎫=+⎪⎝⎭,则sin sin 43113sin 4sin A B a b B A ⎫⎫+=+++⎪⎪⎝⎭⎝⎭sin sin sin sin A BB A=⋅⋅,∵sin 0A >,sin 0B >,∴4371212a b +≥=+,当且仅当2sin A B =等号成立,故43a b +的最小值为712+.6.(2022·广东东莞·高一期中)已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且222b c a bc+=+(1)若8a =,8AB AC ⋅=,D 为边BC 上的中点,求AD ;(2)若E 为边BC 上一点,且1AE =,:2:BE EC c b =,求2b c +的最小值.【答案】(1)AD =7(1)依题意得:2221cos 22b c a A bc +-==,由1cos 82AB AC bc A bc ⋅=== ,得:16bc =∴222641680b c a bc +=+=+=∵D 为边BC 的中点,∴()12AD AB AC =+ ∴()()222211244AD AB AC AB AB AC AC =+=+⋅+()()22112880162444c b =+⨯+=+=即AD =(2)∵E 为边BC 上一点,:2:BE EC c b =,∴222c b AE AC c b c b =+++,即()22c b AE cAC bAB +=+,∴()()22222c b AE c AC bAB +=+ ,又1AE =,∴()()222222222222427c b c AC bAB c b b c b c b c +=+=++= ,∴2c b +,即21b c+=∴)212222415b c b c b c b c c b ⎛⎫⎛⎫⎛⎫+++++++⎪⎪ ⎪⎪⎝⎭⎝⎭⎭当且仅当22b c c b =,即7b c ==取等号,故2b c +的最小值为7.7.(2022·吉林·东北师大附中高一期中)在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,且cos cos 2cos a C c A b B +=.(1)当12AC =时,求ABC 面积的最大值;(2)当ABC 的面积为ABC 周长的最小值.【答案】(1)(2)12(1)解:由cos cos 2cos a C c A b B +=及正弦定理可得()2sin cos sin cos cos sin sin sin B B A C A C A C B =+=+=,因为()0,B π∈,则sin 0B >,所以,1cos 2B =,故3B π=.因为12b AC ==,由余弦定理可得222221442cos 2b a c ac B a c ac ac ac ac ==+-=+-≥-=,当且仅当12a c ==时,等号成立,故1sin 24ABC S ac B ac ==≤△故ABC 面积的最大值为.(2)解:因为1sin 24ABC S ac B ac ===△16ac =,所以,b =所以,812a b c a c ++=+++,当且仅当4a c ==时,等号成立,故ABC 周长的最小值为12.8.(2022·全国·高三专题练习)在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且()()2sin 2sin 2sin a A b c B c b C =+++.(1)求A 的大小;(2)若sin sin 1B C +=,试判断ABC 的形状;(3)若2a =,求ABC 周长的最大值.【答案】(1)23A π=(2)等腰钝角三角形(3)最大值为23+(1)因为()()2sin 2sin 2sin a A b c B c b C =+++,根据正弦定理得()()2222a b c b c b c =+++,整理得222b c a bc+-=-由余弦定理可得2221cos 22b c a A bc +-==-又()0,A π∈,所以23A π=(2)由(1)知23A π=,又sin sin 1BC +=得sin sin 13B B π⎛⎫+-= ⎪⎝⎭,即11sin sin sin sin 1223B B B B B B π⎛⎫-=+=+= ⎪⎝⎭,因为0,3B π⎛⎫∈ ⎪⎝⎭,则2333B πππ<+<,23B ππ∴+=,即6B π=,6C π=,则ABC 为等腰钝角三角形;(3)由2a =,23A π=及余弦定理知()()()()222222232cos 44b c b c a b c bc A b c bc b c ++=+-=+-≥+-=则()2163b c +≤,知()max 3b c +=,当且仅当3b c ==时等号成立所以2a b c ++≤+因此ABC 周长的最大值为2+.高频考点三:周长(边长)取值范围1.(2022·河南·南阳中学高一阶段练习)已知函数()2cos 22sin f x x x x =-+.(1)求函数()f x 的单调递减区间;(2)当0,2x π⎛⎫∈ ⎪⎝⎭时,求函数()f x 的值域;(3)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且()1f A =,a =2b c +的取值范围.【答案】(1)5,()36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)(2,1]-(3)(1)解:依题意,()2cos 212sin(2)16f x x x x π--=--,由3222,Z 262k x k k πππππ+≤-≤+∈,解得5,Z 36k x k k ππππ+≤≤+∈,所以函数()f x 的单调递减区间是5[,](Z)36k k k ππππ++∈;(2)解:由(1)知,当(0,2x π∈时,52(,666x πππ-∈-,则1sin(2)126x π-<-≤,2()1f x -<≤,所以函数()f x 的值域是(2,1]-;(3)解:由(1)知,()2sin(2)116f A A π=--=,即sin(2)16A π-=,而0A π<<,则112(,666A πππ-∈-,因此,262A ππ-=,解得3A π=,由正弦定理得:2sin sin sin sin 3b c a B C A π====,即2sin ,2sin b B c C ==,且23C B π=-,则224sin 2sin()35sin )B b c B B B B πϕ==+-++=,sin tan ,0,52πϕϕϕϕ⎛⎫===∈⎪⎝⎭其中,tan 06πϕϕ=∴<<,221,sin sin()220,333B B ππϕϕϕϕπϕ<+<+=<+=⨯<∴,sin())22(,1B B b c ϕϕ<≤≤+++∈,所以b c +的取值范围是.2.(2022·辽宁·抚顺市第二中学三模)在①()()222sin 2sin Bc a C b c a b-=+-,②23coscos cos 24A C A C --=,tan tan A B =+这三个条件中,任选一个,补充在下面问题中,问题:在ABC 中,a ,b ,c 分别为角A ,B ,C所对的边,b =_______.(1)求角B ﹔(2)求2a c -的范围.【答案】(1)任选一条件,都有3B π=(2)(-(1)选择①:∵()()222sin 2sin Bc a C b c a b-=+-,∴由正弦定理可得:()22222cos c a c b c a bc A -=+-=,∴可得:22cos c a b A -=,可得:2c s 2o c A ab=-,∴由余弦定理可得:222222cos c a b c a b bcA -+-==,整理可得:222c a b ac +-=,∴2221cos 222c a b ac B ac ac +-===,∵()0,B π∈,可得:3B π=选择②:,因为()21cos cos cos cos cos cos 22A C A CA C A C +---=-()1cos 1cos cos sin sin 3224A C A C A C -+-+===,所以()()11cos ,cos cos 22A CB AC +=-=-+=,又因为()0,B π∈,所以3B π=;选择③:因为tan tan cos A B b A=+,由正弦定理可得cos sin cos Cb A B A=,又sin sin sin cos cos sin sin tan tan cos cos cos cos cos cos A B A B A B CA B A B A B A B++=+==tan tan A B =+sin cos cos CA B =,因为sin 0C >,所以tan B =0B π<<,所以3B π=.(2)在ABC 中,由(1)及4sin sin sin 2b ac b B A C ====,故4sin ,4sin a A c C ==,28sin 4sin 8sin 28sin 2si 4si n 3n a c A A A A A AC π⎛⎫-=---=-=- ⎪⎝⎭所以6sin 6A A A π⎛⎫=-=- ⎪⎝⎭因为203A π<<,则662A πππ-<-<1sin 1,266A A ππ⎛⎫⎛⎫-<-<-<-< ⎪ ⎪⎝⎭⎝⎭所以2a c -的范围为(-3.(2022·辽宁沈阳·三模)在①2sin cos cos 0a B b C c B --=,②222sin sin sin sin 0A B C A C -+-=,③sin sin sin cos cos 0A C B A C -=三个条件中任选一个,补充到下面问题中,并解答.已知锐角ABC 的内角A ,B ,C ,的对边分别为a ,b ,c 满足_______(填写序号即可)(1)求B ﹔(2)若1a =,求b c +的取值范围.【答案】(1)6B π=(2)12⎛+ ⎝(1)解:选①,因为2sin cos cos 0a B b C c B --=,所以2sin sin sin cos sin cos 0A B B C C B --=,即()2sin sin sin cos sin cos sin sin A B B C C B B C A =+=+=,又sin 0A ≠,所以1sin 2B =,因为0,2B π⎛⎫∈ ⎪⎝⎭,所以6B π=;选②,因为222sin sin sin sin 0A B C A C -+-=,所以2220a b c -+-=,即222222cos b a c a c ac B =+-=+-,所以cos 2B =,因为0,2B π⎛⎫∈ ⎪⎝⎭,所以6B π=;选③,因为sin sin sin cos cos 0A C B A C -=,所以sin sin cos cos sin A C A C B -,()sin sin cos cos cos cos B A C A C A C B =-=-+=,所以tan B =因为0,2B π⎛⎫∈ ⎪⎝⎭,所以6B π=;(2)解:由正弦定理sin sin sin a b cA B C==,得sin 1sin 2sin B b A A==,()sin sin cos sin sin 2sin A B C Ac A A A+===+,则22cos 1cos 122sin 4sin cos 2tan 222AA b c A A A A ++===,由锐角ABC 得025062A C A πππ⎧<<⎪⎪⎨⎪<=-<⎪⎩,得32A ππ<<,则64A ππ<<,所以tan2A ⎫∈⎪⎪⎝⎭,从而(1tan A ∈,所以b c +的取值范围为12⎛ ⎝.4.(2022·四川成都·高一期中(文))已知向量()sin ,cos a x x ωω=,)(),cos 0b x x ωωω=> ,函数()12f x a b =⋅- 的最小正周期为π.(1)求函数()f x 的最大值;(2)已知ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,满足a =()12f A =,求ABC 周长的取值范围.【答案】(1)1(2)((1)()211cos cos 22f x a b x x x ωωω=⋅-=+-1π2cos 2sin 226x x x ωωω⎛⎫=+=+ ⎪⎝⎭.因为()f x 的最小正周期为π,所以2ππ2ω=.所以1ω=.所以()πsin 26f x x ⎛⎫=+ ⎪⎝⎭.所以()f x 的最大值为1.(2)()π1sin 262f A A ⎛⎫=+= ⎪⎝⎭.因为()0,πA ∈,ππ13π2,666A ⎛⎫+∈ ⎪⎝⎭,所以π5π266A +=,π3A =.由正弦定理可得2sin sin sin a b c A B C ===,所以2sin b B =,2sin c C =.因为πA B C ++=,所以2π3C B =-,2π0,3B ⎛⎫∈ ⎪⎝⎭.所以2sin 2sin b c a B C ++=+2π2sin 2sin 3B B ⎛⎫=+-+ ⎪⎝⎭3sin B B =++π6B ⎛⎫=++ ⎪⎝⎭.因为2π0,3B ⎛⎫∈ ⎪⎝⎭,所以ππ5π,666B ⎛⎫+∈ ⎪⎝⎭.所以π1sin ,162B ⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦.所以(π6B ⎛⎫+∈ ⎪⎝⎭.所以ABC周长的取值范围为(.5.(2022·四川成都·高一期中(理))已知向量())()sin ,cos ,,cos 0a x x b x x ωωωωω==>,函数()12f x a b =⋅-(1)求函数()f x 的最大值;(2)ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c,满足a =()12f A =,求ABC 周长的取值范围.【答案】(1)1;(2)(.(1)依题意,()21cos cos 2f x x x x ωωω=+-12cos 222x x ωω=+sin 26x πω⎛⎫=+ ⎪⎝⎭,所以函数()f x 的最大值为1.(2)因函数()f x 与x 轴的三个连续交点的横坐标构成以2π为公差的等差数列,则()f x 的最小正周期为π,即22ππω=,解得1ω=,()sin 26f x x π⎛⎫+ ⎝=⎪⎭,有()1sin 262f A A π⎛⎫=+= ⎪⎝⎭,而()130,,2,666A A ππππ⎛⎫∈+∈ ⎪⎝⎭,因此,52,663A A πππ+==,在ABC中,由正弦定理得:2sin sin sin a b cA B C ===,即2sin ,2sin b B c C ==,而22,0,33C B B ππ⎛⎫=-∈ ⎪⎝⎭,则2sin 2sin a b c B C ++=++22sin 2sin 3B B π⎛⎫=+-+ ⎪⎝⎭3sin B B =++6B π⎛⎫=+ ⎪⎝⎭因20,3B π⎛⎫∈ ⎪⎝⎭,则5,666B πππ⎛⎫+∈ ⎪⎝⎭,有1sin ,162B π⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦,于是有(6B π⎛⎫+ ⎪⎝⎭,所以ABC周长的取值范围为(.6.(2022·河北·高一期中)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,向量()cos ,sin a B B =,()2cos cos ,2sin sin b A B A B =--- ,且a b ⊥ .(1)求C ;(2)若6c =,求ABC 周长的取值范围.【答案】(1)2π3C =(2)(12,6+(1)解:因为向量()cos ,sin a B B = ,()2cos cos ,2sin sin b A B A B =--- ,且a b ⊥,所以()()cos 2cos cos sin 2sin sin 0B A B B A B -+--=,即()222cos cos sin sin sin cos B A B A B B -=+,即()2cos 2cos 1A B C +=-=,即1cos 2C =-,因为()0,C π∈,所以2π3C =.(2)由余弦定理得()22222361cos 222a b ab a b c C ab ab +--+-===-,所以()22362a b ab a b +⎛⎫=+-≤ ⎪⎝⎭,当且仅当a b ==所以a b +≤又三角形的两边之和大于第三边,所以6a b +>,所以ABC 周长的取值范围为(12,6+.7.(2022·全国·高三专题练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足条件;4a =,222sin sin sin sin sin A B C B C +=+.(I )求角A 的值;(Ⅱ)求2b c -的范围.【答案】(I )3π;(Ⅱ)()4,8-.(I )由222sin sin sin sin sin A B C B C +=+,利用正弦定理可得222a bc b c +=+,即222bc b c a =+-故2221cos 222b c a bc A bc bc +-===,又(0,)A π∈,3A π∴=(Ⅱ)4a = ,3A π=,利用正弦定理sin sin sin 3a b c A B C===故3b B =,)3c C B π==168122sin()sin cos +sin 3333322b c B B B B B π⎫∴-=⨯-+=-⎪⎪⎝⎭4cos sin 44cos 8sin 336B B B B B B π⎛⎫=--=-=- ⎪⎝⎭在ABC 中,3A π=,故203B π<<662B πππ∴-<-<,1sin 126B π⎛⎫∴-<-< ⎪⎝⎭,48sin 86B π⎛⎫∴-<-< ⎪⎝⎭所以2b c -的范围是()4,8-8.(2022·全国·高三专题练习)已知向量1(sin ,1),,2m x n x ⎫==-⎪⎭ .令函数()()f x m n m =+⋅.(1)求函数()f x 的最小正周期和单调递增区间;(2)ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,ACB ∠的角平分线交AB 于D .其中,函数()f C 恰好为函数()f x 的最大值,且此时()CD f C =,求3a b +的最小值.【答案】(1)()f x 的最小正周期为π,单调递增区间为,,63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)43+【详解】(1)1(sin ,1),,2m x n x ⎫==-⎪⎭,1sin ,2m n x x ⎛⎫+=+ ⎪⎝⎭∴ ()()1sin sin 2f x x x x ∴=++21sin cos 2x x x =+1cos 21sin 2222x x -=+sin 216x π⎛⎫=-+ ⎪⎝⎭,则()f x 的最小正周期为22ππ=,令222,262k x k k Z πππππ-+≤-≤+∈,解得,63k x k k Z ππππ-+≤≤+∈,故()f x 的单调递增区间为,,63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)由()f C 恰好为函数()f x 的最大值可得()sin 2126f C C π⎛⎫=-+= ⎪⎝⎭,即sin 216C π⎛⎫-= ⎪⎝⎭,0C π<< ,则可解得3C π=,则()2CD f C ==,在ACD △中,由1sin sin 2CD AD A C =,可得1sin AD A =,在BCD △中,由1sin sin 2CD BD B C =,可得1sin BD B =,11sin sin c A B∴=+,在ABC中,1111sin sin sin sin sin 3sin sin a b c A B A B C A B +⎛⎫===+ ⎪⎝⎭,则可得sin 13sin A a B ⎫=+⎪⎝⎭,sin 13sin B b A ⎛⎫=+ ⎪⎝⎭,则sin sin sin sin 311sin sin sin sin A B A B a b B A B A ⎫⎛⎫+=++=⋅⋅⎪ ⎪⎭⎝⎭sin 0,sin 0A B >>,83433a b ∴+≥=+,当且仅当sin sin A B =等号成立,故3a b +的最小值为43+.第三部分:高考真题感悟一、解答题1.(2020·全国·高考真题(理))ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=.(2)[方法一]【最优解】:余弦+不等式由余弦定理得:2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=,即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+[方法二]:正弦化角(通性通法)设,66ππαα=+=-B C ,则66ππα-<<,根据正弦定理可知sin sin sin a b c A B C ===,所以sin )b c B C +=+sin sin 66ππαα⎤⎛⎫⎛⎫=++- ⎪ ⎪⎥⎝⎭⎝⎭⎦α=≤0α=,即6B C π==时,等号成立.此时ABC周长的最大值为3+[方法三]:余弦与三角换元结合在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .由余弦定理得229b c bc =++,即2213924⎛⎫++= ⎪⎝⎭b c.令13sin ,20,2b c c θπθθ⎧+=⎪⎛⎫∈⎨ ⎪⎝⎭⎪=⎩,得3sin b c θθ+=+6πθ⎛⎫+≤ ⎪⎝⎭,易知当6C π=时,max ()b c +=所以ABC周长的最大值为3+2.(2017·全国·高考真题(理))△ABC 的内角、、A B C 的对边分别为a b c 、、,已知△ABC 的面积为23sin a A(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长.【答案】(1)2sin sin 3B C =(2)3.解析:(1)由题设得21sin 23sin a ac B A=,即1sin 23sin a c B A =.由正弦定理得1sin sin sin 23sin A C B A=.故2sin sin 3B C =.(2)由题设及(1)得1cos cos sin sin ,2B C B C -=-,即()1cos 2B C +=-.所以23B C π+=,故3A π=.由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即()239b c bc +-=,得b c +=.故ABC 的周长为33.(2016·全国·高考真题(理))ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(1)求角C ;(2)若c =ABC S ∆=ABC ∆的周长.【答案】(1)3C π=(2)5解析:(1)由已知可得2cos (sin cos sin cos )sin C A B B A C+=12cos sin()sin cos 23π∴+=⇒=⇒=C A B C C C(2)11sin 622∆=⇒==ABC S ab C ab ab 又2222cos +-= a b ab C c 2213a b ∴+=,2()255∴+=⇒+=a b a b ABC ∆∴的周长为。
14、解三角形中周长最大值及取值范围问题【考点分析】考点一:解三角形中角的最值及范围问题①利用锐角三角形,⎪⎩⎪⎨⎧<<<<<<πππC B A 000,求出角的范围②利用余弦定理及基本不等式求角的最值:bca bc bc a cb A 222cos 2222-≥-+=考点一:解三角形中周长的最值及范围问题①利用基本不等式:()bca bc cb bc a c b A 222cos 22222--+=-+=,再利用bc c b 2≥+及a c b >+,求出c b +的取值范围②利用三角函数思想:()B A R B R C R B R c b ++=+=+sin 2sin 2sin 2sin 2,结合辅助角公式及三角函数求最值 【题型目录】题型一:三角形角的最值及范围问题 题型二:三角形边周长的最值问题题型三:三角形边周长的最值范围问题 【典型例题】题型一:三角形角的最值问题【例1】在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且sin sin 2sin B C A +=,则A 的最大值为( ) A .2π3B .π6C .π2 D .π3值是( )A .1 BCDA .2C A =B .A 的取值范围是(,)64ππC .2A C =D .2ca的取值范围是 因为ABC 是锐角三角形,所以2sin 2sin sin C A =【例4】已知在锐角ABC 中,tan 1cos A B=+.(1)证明:2B A =; (2)求tan tan 1tan tan B AA B-+⋅的取值范围.,从而根据ABC 是锐角三角形,得到,再逆用正切的差角公式,结合第一问的结论得到因为ABC 是锐角三角形,π0,2A ⎛⎫∈ ⎪⎝⎭sin x 在π2⎛- 由锐角ABC 知:ππ,64A ⎛⎫∈ ⎪⎝⎭tan B A-1.在锐角三角形ABC 中,角,,A B C 所对的边分别为,,a b c ,若cos cos b b A a B +=,则( ) A .2A B = B .64B ππ<<C .(ab∈D .22a b bc =+【答案】ABD【分析】由正弦定理将条件转化为角的关系,判断A ,结合内角和定理和条件及余弦函数的又ABC 为锐角三角形,所以所以2πA -<所以A B -=因为ABC 为锐角三角形,所以022B π<<B ππ<<2.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为S ,若22sin()A C b a +=-,则1tan 3tan()A B A +-的取值范围为( )A .⎫+∞⎪⎣⎭B .43⎤⎥⎣⎦ C .43⎫⎪⎪⎝⎭D .43⎫⎪⎪⎣⎭【详解】在ABC 中,故题干条件可化为2bABC为锐角三角形,故tan A+题型二:三角形边周长的最值问题【例1】已知ABC的内角,,A B C的对应边分别为,,a b c,6c=,60B=︒,则b的最小值为()A.3 B.C.D.6)0,120求解即可sin33B),120,sin3c B=论中正确的是()A.b aa b+取不到最小值2B.b aa b+的最大值为4C.角C的最大值为2π3D.23b a ca b ab+-的最小值为-ABCS=2cos +-b a()()()2sin sin 2sin sin a A B c b B C -=-+,若2AD DB =,1CD =,求: (1)求()cos A B +的值; (2)求2b a +的最大值.32CD CA CB =+,利用平面向量数量积的运算可得出)解:法一:ADC ∠+∠cos 0BDC ∠=22492c b c -=又ABC 中cos 从而(2322a +()22b a +=5法二:由()2232B A D CA CB CD C B D C D A C C D -=-⇒==⇒+ 2222294444cos CD CA CB CB CA b a ab ACB =++⋅=++∠, 24a ab ++, )()2339392922a ab a b ⎛=+=+⋅≤+ ⎝1+cos2C .(1)求角C ;(2)设D 为边AB 的中点,△ABC 的面积为CD 的最小值. 又()12CD CA CB =+,故2211222CD CA CB CA CB a =++⋅=22113322CD a b ab ab =++≥⨯=,当且仅当23a b ==时取得等号例5】ABC (1)求C ∠;(2)已知6c =,求ABC 周长的最大值. 故ABC 周长【题型专练】1.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,满足sin 2sin sin A B C =,则c bb c+的最大值为______,此时内角A 的值为______。