动态时间序列分析
- 格式:ppt
- 大小:1.11 MB
- 文档页数:68
第五讲传统时间序列分析与动态时间序列模型传统时间序列分析和动态时间序列模型是时间序列分析中的两个重要领域,本文将分别介绍这两个领域的基本概念和主要方法。
传统时间序列分析是指对时间序列数据进行统计建模和分析的方法。
时间序列数据是按照时间顺序排列的一连串观测值,常见的时间序列数据包括自然灾害的发生次数、股票价格的变动、销售额的波动等。
传统时间序列分析主要通过观察数据的规律和趋势,构建数学模型,预测未来的发展趋势。
在传统时间序列分析中,常见的方法包括平稳性检验、自相关函数和偏自相关函数分析、移动平均和自回归模型、季节性调整和趋势分析等。
首先,平稳性检验是检验时间序列数据是否具有平稳性的重要步骤。
平稳性是指时间序列数据在任意时刻的统计特性都是稳定的,即均值和方差不随时间变化。
如果时间序列数据不具备平稳性,就需要进行差分变换等处理使其满足平稳性要求。
然后,自相关函数和偏自相关函数分析可以帮助判断时间序列数据是否存在自相关性,即观测值之间的相关性。
移动平均和自回归模型是传统时间序列分析中常用的模型。
移动平均模型是通过对时间序列数据进行滑动平均计算,来得到预测值。
自回归模型则是根据时间序列数据的过去值来预测未来值。
季节性调整和趋势分析可以帮助分析时间序列数据中的季节性和长期趋势。
与传统时间序列分析不同,动态时间序列模型是一类建立在时间序列数据上的动态系统模型。
它基于时间序列数据的动态性质,考虑了时间序列数据的变化趋势和波动性,并能够利用过去的观测值来预测未来的观测值。
动态时间序列模型可以通过参数估计和模型检验来选择最优的模型。
常见的动态时间序列模型包括ARIMA模型、GARCH模型和VAR模型等。
ARIMA模型是自回归移动平均自回归模型的简称,它是一种以时间序列数据的自相关和移动平均为基础的模型。
GARCH模型是广义自回归条件异方差模型,它主要用于对时间序列数据的波动性进行建模。
VAR模型是向量自回归模型,它可以用来同时预测多个相关联的时间序列数据。
第5章时间序列分析5.1时间序列的基本问题5.1.1时间序列的概念时间序列是指反映客观现象的同一指标在不同时间上的数值,按时间先后顺序排列而形成的序列,它由两个基本要素组成:一个是现象的所属时间;另一个是反映该现象的同一指标在不同时间条件下的具体数值。
也称为时间数列,或动态数列。
时间序列的一般形式是:例如,表5.1是一个国内生产总值及其部分构成统计表。
表时间序列可以描述客观现象发展变化的状况、过程和规律,利用时间序列资料可以计算一系列动态分析指标,通过时间序列分析,可以揭示客观现象发展变化的趋势,为预测、决策提供依据。
5.1.2时间序列的分类时间序列可以分为绝对数时间序列、相对数时间序列和平均数时间序列三种。
其中绝对数时间序列是最基本的时间序列,其余两种是在其基础上派生的。
1、绝对数时间序列,简称绝对序列:它是把同一总量指标在不同时间上的数值按时间先后顺序排列而形成的时间序列。
绝对序列反映现象在不同时间上所达到的总量及其增减变化的过程。
绝对序列有时期序列和时点序列两种。
时期序列是由时期绝对数数据所构成的时间序列,其中的每个数值反映现象在一段时间内发展过程的总量。
时点序列是由时点绝对数数据所构成的时间序列,其中的每个数值反映现象在某一时点上所达到的水平。
时期序列中的各个数数值可以相加,各个数数值的和表示了在所对应的时期之内事物及其现象的发展总量。
而时点序列中各个数数值相加通常没有明确的意义;时期序列中各项数值的大小与所包括的时期长短有直接关系,时点序列中各数数值与其时点间隔长短没有直接关系。
2、相对数时间序列:它是把一系列同类的统计相对数按照时间先后顺序排列起来而形成的时间序列,反映事物之间对比关系的变化情况。
3、平均数时间序列:它是把一系列同类的统计平均数按照时间先后顺序排列起来而形成的时间序列,表现事物一般水平的变化过程的发展趋势。
参看上表格。
5.1.3编制时间序列的原则编制时间序列的目的是要通过对序列中各个时期指标值进行比较,以达到研究客观现象的发展变化状况、过程及其规律。
时间序列分析⼀、定义时间序列(或称动态数列)是指将同⼀统计指标的数值按其发⽣的时间先后顺序排列⽽成的数列。
时间序列分析的主要⽬的是根据已有的历史数据对未来进⾏预测。
经济数据中⼤多数以时间序列的形式给出。
根据观察时间的不同,时间序列中的时间可以是年份、季度、⽉份或其他任何时间形式。
时间序列简单的说就是各时间点上形成的数值序列。
时间序列分析并不是关于时间的回归,它主要是研究⾃⾝的变化规律的(这⾥不考虑含外⽣变量的时间序列)。
对时间序列进⾏观察,研究,寻找它变化发展的规律,预测它将来的⾛势,就是时间序列分析。
⼆、构成要素:长期趋势,季节变动,循环变动,不规则变动。
1)长期趋势( T )现象在较长时期内受某种根本性因素作⽤⽽形成的总的变动趋势。
2)季节变动( S )现象在⼀年内随着季节的变化⽽发⽣的有规律的周期性变动。
3)循环变动( C )现象以若⼲年为周期所呈现出的波浪起伏形态的有规律的变动。
4)不规则变动(I )是⼀种⽆规律可循的变动,包括严格的随机变动和不规则的突发性影响很⼤的变动两种类型。
三、作⽤1. 反映社会经济现象的发展变化过程,描述现象的发展状态和结果。
2. 研究社会经济现象的发展趋势和发展速度。
3. 探索现象发展变化的规律,对某些社会经济现象进⾏预测。
4. 利⽤时间序列可以在不同地区或国家之间进⾏对⽐分析,这也是统计分析的重要⽅法之⼀。
四、变量特征⾮平稳性(nonstationarity,也译作不平稳性,⾮稳定性):即时间序列变量⽆法呈现出⼀个长期趋势并最终趋于⼀个常数或是⼀个线性函数。
波动幅度随时间变化(Time-varying Volatility):即⼀个时间序列变量的⽅差随时间的变化⽽变化。
这两个特征使得有效分析时间序列变量⼗分困难。
平稳型时间数列(Stationary Time Series)系指⼀个时间数列其统计特性将不随时间之变化⽽改变。
五、时域分析的经典步骤1.考察序列的特征,检验是否具有平稳性2.根据序列特征选择拟合的模型3.确定模型的⼝径4.检验、优化模型5.利⽤拟合的模型进⾏预测以下为转载————————————————版权声明:本⽂为CSDN博主「Python⾦融量化」的原创⽂章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原⽂出处链接及本声明。
第五讲 传统时间序列分析一、趋势模型与分析1、趋势模型确定型时间序列分析是根据时间序列自身发展变化的基本规律和特点即趋势,选取适当的趋势模型进行分析和预测。
趋势模型的一般形式是:ˆ()t yf t = 式中,t 是时间变量,一般取值为,0,1,2, 或2,1,0,1,2,-- 。
趋势模型的具体形式多种多样,例如经济领域不少现象近似指数增长ˆt y= 0(1)t y r +,0y 其中为增长初期水平,r 为增长率。
常用的其他趋势模型还有:(1)直线模型ˆt ya bt =+ (2)指数模型ˆt t yab = (3)幂函数模型ˆb t yat =或ˆbt t y ae = (4)对数模型ˆln()t ya b t =+ (5)多项式模型01ˆk t k y b bt b t =+++(6)修正指数曲线ˆt t yL ab =+或ˆbt t y L ae =+ (7)双曲线模型ˆt yL b =+ (8)Compertz 曲线ˆtb t yLa = (9)Logistic 曲线ˆ(1)bt t yL ae =+ 2、模型的选择趋势模型形式的选择是定性分析和定量分析相结合的过程。
定性分析要求:在选取模型之前,要弄清的条件和预测对象的性质、特点。
例如,指数曲线模型成立的条件是后一期与前一期之比为常数,即发展速度为常数。
实际现象的逐期增长率不可能严格等于某一常数,但常会围绕某一常数上下波动。
如果分析对象具备上述特点,可以考虑采用指数模型。
有些模型是从其他领域特别是生物学领域移植过来的。
比如Logistic曲线最初用于研究生物种群发展规律,假定物种的增长取决于两个因素:种群的现有规模和环境(生存空间、光照、水和食物等),其中环境是限制性因素,在有限的环境中物种不可能无限增长,而是存在增长极限L。
如果用Logistic曲线分析某种现象,必须首先确认:该现象是否发展到一定规模后增长速度会逐步下降,该现象是否存在增长的极限等。