二元柯西不等式的八种证法
- 格式:pdf
- 大小:52.49 KB
- 文档页数:2
柯西不等式证明⽅法⼤全定义对于任意实数a i,b i(i=1,2,⋯,n),有n ∑i=1a2in∑j=1b2j≥n∑i=1a i b i2,(n∈N+)(∗)当且仅当b i=0(i=1,2,⋯,n) 或∃k∈R,a i=kb i(i=1,2,⋯,n) 时,等号成⽴.法⼀、构造⼆次函数分析可通过⼆次函数的判别式证明.证明当a1=a2=⋯=a n或b1=b2=⋯=b n时,(∗) 式显然成⽴.设a1,a2,⋯,a n中⾄少有⼀个不为 0,令A=n∑i=1a2i,B=n∑i=1a i b i,C=n∑i=1b2i,则A>0.设⼆次函数f(x)=Ax2+2Bx+C=n∑i=1(a2i x2+2a i b i x+b2i)=n∑i=1(a i x+b)2≥0,∴Δ=(2B)2−4AC≤0⟺AC≥B2,则 (∗) 式成⽴.要使 (∗) 式取等号,即Δ=0,则f(x) 有唯⼀零点,即有唯⼀实数x使a i x+b i=0(i=1,2,⋯,n).若x=0,则b i=0(i=1,2,⋯,n),若x≠0,则a i=−1x bi(i=1,2,⋯,n).综上,(∗) 式成⽴,当且仅当b i=0(i=1,2,⋯,n) 或∃k∈R,a i=kb i(i=1,2,⋯,n) 时取等号.法⼆、向量内积分析⽤向量内积与向量模的积的⼤⼩关系即可证明.证明设n维空间直⾓坐标系中有向量\boldsymbol \alpha=(a_1,a_2,\cdots,a_n),\boldsymbol \beta=(b_1,b_2,\cdots,b_n),且\boldsymbol \alpha与\boldsymbol \beta之间的夹⾓为\theta(0\le\theta\le\pi),则有\begin{aligned} &\boldsymbol \alpha \cdot \boldsymbol \beta =|\boldsymbol \alpha| |\boldsymbol \beta| \cos\theta\\\Longleftrightarrow &|\boldsymbol \alpha \cdot \boldsymbol \beta| =|\boldsymbol \alpha| |\boldsymbol \beta| |\cos\theta|, \end{aligned}⼜|\cos\theta|\le 1,则\begin{aligned} &|\boldsymbol \alpha \cdot \boldsymbol \beta| \le|\boldsymbol \alpha| |\boldsymbol \beta|\\\Longleftrightarrow &\left| \sum\limits_{i=1}^n a_ib_i \right| \le\sqrt{ \sum\limits_{i=1}^n a_i^2 } \sqrt{ \sum\limits_{j=1}^nb_j^2 }\\ \Longleftrightarrow &\left( \sum\limits_{i=1}^n a_ib_i \right)^2 \le \sum\limits_{i=1}^n a_i^2 \sum\limits_{j=1}^nb_j^2, \end{aligned}可得(*)式成⽴.易知当且仅当\boldsymbol \alpha与\boldsymbol \beta同线时,即\boldsymbol \beta=\boldsymbol 0或\exist~k\in\mathbb R,\boldsymbol \alpha=k\boldsymbol \beta时,|\boldsymbol \alpha\cdot\boldsymbol \beta|=|\boldsymbol \alpha||\boldsymbol \beta|,即()当且仅当b_i=0(i=1,2,\cdots,n)或\exist~k\in\mathbb R,a_i=kb_i(i=1,2,\cdots,n)时,(*)式取等号.法三、作差法分析作差,然后配平⽅即可.证明易得\begin{aligned} \sum\limits_{i=1}^n a_i^2 \sum\limits_{j=1}^n b_j^2 -\left( \sum\limits_{i=1}^n a_ib_i \right)^2 &=\sum\limits_{i=1}^n \sum\limits_{j=1}^n a_i^2b_j^2 -\sum\limits_{i=1}^n \sum\limits_{j=1}^n a_ib_ia_jb_j\\ &= \frac 12\sum\limits_{i=1}^n \sum\limits_{j=1}^n (a_i^2b_j^2+a_j^2b_i^2) -\frac 12 \sum\limits_{i=1}^n \sum\limits_{j=1}^n2a_ib_ia_jb_j\\ &= \frac 12 \sum\limits_{i=1}^n \sum\limits_{j=1}^n (a_i^2b_j^2+a_j^2b_i^2-2a_ib_ja_jb_i)\\ &= \frac 12\sum\limits_{i=1}^n \sum\limits_{j=1}^n (a_ib_j-a_jb_i)^2\ge 0, \end{aligned}当且仅当a_ib_j=a_jb_i(i,j=1,2.\cdots,n),即b_i=0(i=1,2,\cdots,n)或\exist~k\in\mathbb R,a_i=kb_i(i=1,2,\cdots,n)时,等号成⽴,即证.法四、排序不等式分析通过排序不等式的形式来表⽰柯西不等式.证明易知(*)式等价于\sum\limits_{i=1}^n \sum\limits_{j=1}^n a_ib_ja_ib_j \ge\sum\limits_{i=1}^n \sum\limits_{j=1}^n a_ib_ja_ib_j,由排序不等式可知上式成⽴,当且仅当a_ib_j=a_jb_i(i,j=1,2,\cdots,n),即b_i=0(i=1,2,\cdots,n)或\exist~k\in\mathbbR,a_i=kb_i(i=1,2,\cdots,n)时,等号成⽴.法五、数学归纳法分析与n相关的不等式⼀般都能⽤数学归纳法,这⾥就不多说了.证明设n=k.当k=1时,(*)式显然成⽴.当k\ge 2时,不妨设当n=k-1时(*)式成⽴,则\begin{aligned} \left( \sum\limits_{i=1}^k a_i^2 \right) \left( \sum\limits_{i=1}^k b_i^2 \right) =&\left( \sum\limits_{i=1}^{k-1} a_i^2 +a_k^2 \right) \left( \sum\limits_{i=1}^{k-1} b_i^2 +b_k^2 \right)\\ =&\sum\limits_{i=1}^{k-1} a_i^2 \sum\limits_{i=1}^{k-1} b_i^2 +\sum\limits_{i=1}^{k-1} a_i^2b_k^2 +\sum\limits_{i=1}^{k-1} a_k^2b_i^2 +a_k^2b_k^2\\ =&\sum\limits_{i=1}^{k-1} a_i^2 \sum\limits_{i=1}^{k-1} b_i^2 +\sum\limits_{i=1}^{k-1} a_i^2b_k^2 -\sum\limits_{i=1}^{k-1} 2a_ib_ka_kb_i+\sum\limits_{i=1}^{k-1} a_k^2b_i^2 +a_k^2b_k^2 +\sum\limits_{i=1}^{k-1} 2a_ib_ka_kb_i\\ =&\sum\limits_{i=1}^{k-1} a_i^2 \sum\limits_{i=1}^{k-1} b_i^2 +\sum\limits_{i=1}^{k-1} (a_ib_k-a_kb_i)^2 +(a_kb_k)^2 +2\sum\limits_{i=1}^{k-1}a_ib_ia_kb_k\\ \ge&\left( \sum\limits_{i=1}^{k-1} a_ib_i \right)^2 +2\sum\limits_{i=1}^{k-1} a_ib_ia_kb_k +(a_kb_k)^2\\=&\left( \sum\limits_{i=1}^{k-1} a_ib_i +a_kb_k \right)^2\\ =&\left( \sum\limits_{i=1}^k a_ib_i \right)^2, \end{aligned}当且仅当\sum\limits_{i=1}^{k-1}(a_ib_k-a_kb_i)^2=0,即a_ib_k=a_kb_i(i=1,2,\cdots,n),且\sum\limits_{i=1}^na_i^2\sum\limits_{j=1}^nb_j^2=\left(\sum\limits_{i=1}^na_ib_i\right)^2时,等号成⽴.综上,(*)式成⽴,当且仅当b_i=0(i=1,2,\cdots,n)或\exist~k\in\mathbb R,a_i=kb_i时,等号成⽴.Loading [MathJax]/extensions/TeX/boldsymbol.js。
归纳柯西不等式的典型应用1.柯西不等式的一般形式为:对任意的实数 n n b b b a a a ,,,,,,2121⋅⋅⋅⋅⋅⋅()()222112222122221)(n n n n b a b a b a b b b a a a⋅⋅⋅⋅⋅⋅++≥+⋅⋅⋅⋅⋅⋅+++⋅⋅⋅⋅⋅⋅++其中等号当且仅当λ===nnb a b a b a 2211时成立,其中R ∈λ 变式:()()222112121)(n n n n y x y x y x y y y x x x ⋅⋅⋅⋅⋅⋅++≥+⋅⋅⋅⋅⋅⋅+++⋅⋅⋅⋅⋅⋅++2. 柯西不等式的证明:证明柯西不等式的方法总共有6 种,下面我们将给出常用的2种证明柯西不等式的方法: 1)配方法:作差:因为222111()()()nnniji i i j i a b a b ===-∑∑∑221111()()()()nnnniji i j j i j i j a b a b a b =====-∑∑∑∑221111nnnni ji i j j i j i j a b a b a b =====-∑∑∑∑22221111111(2)2n n n n n ni j j i i j j i i j i j i j a b a b a b a b =======+-∑∑∑∑∑∑2222111(2)2n n i j i j j i j i i j a b a b a b a b ===-+∑∑2111()02n n i j j i i j a b a b ===-≥∑∑ 所以222111()()()n n n iji i i j i a b a b ===-∑∑∑0≥,即222111()()()n n niji i i j i a b a b ===≥∑∑∑即222222211221212()()()n n n n a b a b a b a a a b b b +++≤++++++………………当且仅当0(,1,2,,)i j j i a b a b i j n -==……即(1,2,,;1,2,,;0)ji j i ja a i n j nb b b ===≠…………时等号成立。
柯西不等式各种形式的证明及其应用柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。
但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。
柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。
柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。
一、柯西不等式的各种形式及其证明 二维形式在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式()()()22222bd ac d c b a+≥++等号成立条件:()d c b a bc ad //== 扩展:()()()222222222123123112233nn n n a a a a b b b b a b a b a b a b +++⋅⋅⋅++++⋅⋅⋅+≥+++⋅⋅⋅+等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==⎛⎫==⋅⋅⋅= ⎪=⋅⋅⋅⎝⎭当或时,和都等于,不考虑二维形式的证明:()()()()()()22222222222222222222222,,,220=ab c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立三角形式ad bc=等号成立条件:三角形式的证明:222111nn n k k k k k k k a b a b ===⎛⎫≥ ⎪⎝⎭∑∑∑()()22222222222222222-2a b c d a b c d ac bd a ac c b bd d a c b d =++++≥+++++≥-+++=-+-≥注:表示绝对值向量形式()()()()123123=,,,,,,,,2=n n a a a a b b b b n N n R αβαβαββαλβλ≥⋅⋅⋅⋅=⋅⋅⋅∈≥∈,等号成立条件:为零向量,或向量形式的证明:()()123123112233222222312322222222112233123123=,,,,,,,,,cos ,cos ,cos ,1n n n n n n n n n nm a a a a n b b b b m n a b a b a b a b m n m na a ab b b b m nm n a b a b a b a b a a a a b b b b =⋅=++++==++++++++≤∴++++≤++++++++令一般形式211212⎪⎭⎫ ⎝⎛≥∑∑∑===n k k k nk k nk k b a b a 1122:::n n i i a b a b a b a b ==⋅⋅⋅=等号成立条件:,或 、均为零。
柯西不等式与平均值不等式一、比较法1.求差比较法知道a >b ⇔a -b >0,a <b ⇔a -b <0,因此要证明a >b ,只要证明a -b >0即可,这种方法称为求差比较法.2.求商比较法由a >b >0⇔a b >1且a >0,b >0,因此当a >0,b >0时要证明a >b ,只要证明1a b即可,这种方法称为求商比较法.二、分析法从所要证明的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实,从而得出要证的命题成立,这种证明方法称为分析法,即“执果索因”的证明方法.三、综合法从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理,论证而得出命题成立,这种证明方法称为综合法即“由因寻果”的方法.四、放缩法在证明不等式时,有时我们要把所证不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.这种方法称为放缩法.五、反证法的步骤1.作出否定结论的假设;2.进行推理,导出 矛盾;3.否定假设,肯定结论.六、柯西不等式的二维形式1.柯西不等式的代数形式:设a ,b ,c ,d 都是实数,则(a 2+b 2).(c 2+d 2)≥(ac +bd)2,其中等号当且仅当a 1b 2=a 2b 1时成立.2.柯西不等式的向量形式:设α,β为平面上的两个向量,则|α||β|≥|α·β|,其中等号当且仅当两个向量方向相同或相反时成立.3.二维形式的三角不等式:设x 1,y 1,x 2,y 2∈R ,那么x 21+y 21+x 22+y 22≥(x 1-x 2)2+(y 1-y 2)2七、柯西不等式的一般形式柯西不等式的一般形式:设a 1,a 2,…,a n ,b 1,b 2,…b n 为实数,则(a 21+a 22+…+a 2n )·(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2.八、基本不等式的一般形式a 1+ a 2+…a n n≥n (a 1+ a 2+...a n ) 例3:设n 是正整数,求证:12≤1+1+ (12)<1.解:(1)由|2x -1|<1,得-1<2x -1<1,解得0<x <1,所以M ={x|0<x <1}.(2)由(1)和a ,b ∈M 可知0<a <1,0<b <1.所以(ab +1)-(a +b)=(a -1)(b -1)>0, 故ab +1>a +b. 本例条件不变,试比较logm(ab +1)与logm(a +b)(m >0且m≠1)的大小.解:∵0<a <1,0<b <1,∴(ab +1)-(a +b)=(a -1)(b -1)>0.故ab +1>a +b.当m >1时,y =logmX 在(0,+∞)上递增,∴logm(ab +1)>logm(a +b)当0<m <1时logmX 在(0,+∞)上单调递减,∴logm(ab +1)<logm(a +b).例6:设a >b >0,求证:a2+b 2>a -b .例8:已知m >0,a ,b ∈R ,求证:a mb +⎛⎫ ⎪≤a 2+mb 21+m . 它的变形形式又有(a +b )2≥4ab ,a 2+b 22≥22a b +⎛⎫ ⎪⎝⎭等;(4)a +b 2≥ab (a ≥0,b ≥0),它的变形形式又有a +1a ≥2 (a >0),b a +a b ≥2(ab >0),b a +a b≤-2(ab <0)等. 2.分析法证明不等式的注意事项:用分析法证明不等式时,不要把“逆求”错误地作为“逆推”,分析法的过程仅需要寻求充分条件即可,而不是充要条件,也就是说,分析法的思维是逆向思维,因此在证题时,应正确使用“要证”、“只需证”这样的连接“关键词”.例10:设m 是|a |,|b |和1中最大的一个,当|x |>m 时,求证:⎪⎪⎪⎪a x +b x 2<2. [证明]由已知m ≥|a |,m ≥|b |,m ≥1.又|x |>m ,∴|x |>|a |,|x |>|b |,|x |>1.∴⎪⎪⎪⎪a x +b x 2≤⎪⎪⎪⎪a x +⎪⎪⎪⎪b x 2=|a ||x |+|b ||x |2<|x ||x |+|x ||x |2=1+1|x |<1+|x ||x |=2.∴|a x +b x2|<2成立. 例11:已知a >0,b >0,c >0,a +b >c .求证:a 1+a +b 1+b >c 1+c. 证明:∵a >0,b >0,∴a 1+a >a 1+a +b ,b 1+b >b 1+a +b .∴a 1+a +b 1+b >a +b 1+a +b. 而函数f (x )=x 1+x =1-11+x 在(0,+∞)上递增,且a +b >c ,∴f (a +b )>f (c ),则a +b 1+a +b >c 1+c, 所以a 1+a +b 1+b >c 1+c,则原不等式成立. 例12:求证:32-1n +1<1+122+132+…+1n 2<2-1n(n ≥2,n ∈N +). 证明:∵k (k +1)>k 2>k (k -1),k ≥2,∴1k (k +1)<1k 2<1k (k -1),即1k -1k +1<1k 2<1k -1-1k ,分别令k =2,3,…,n 得12-13<122<1-12;13-14<132<12-13;…1n -1n +1<1n 2<1n -1-1n; 将上述不等式相加得:12-13+13-14+…+1n -1n +1<122+132+…+1n 2<1-12+12-13+…+1n -1-1n, 即12-1n +1<122+132+…+1n 2<1-1n ,∴32-1n +1<1+122+132+…+1n 2<2-1n. (1)在不等式的证明中,“放”和“缩”是常用的推证技巧.“放”和“缩”的方向与“放”和“缩”的量的大小是由题目分析得出的.常见的放缩变换有变换分式的分子和分母,如1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1.上面不等式中k ∈N +,k >1.利用函数的单调性,真分数性质“若0<a <b ,m >0,则a b <a +m b +m ”,添加或减少项,利用有界性等. (2)在用放缩法证明不等式时,“放”和“缩”均有一个度.例13:已知x ,y 均为正数,且x >y,2x +1x 2-2xy +y 2≥2y +3. 解:因为x >0,y >0,x -y >0,2x +1x 2-2xy +y 2-2y =2(x -y )+1x -y 2=(x -y )+(x -y )+1x -y 2≥33x -y 21x -y 2=3,所以2x +1x 2-2xy +y 2≥2y +3. 例14:设a ,b ,c 为正实数,求证:1a 3+1b 3+1c3+abc ≥2 3. 证明:因为a ,b ,c 为正实数,由平均不等式可得1a 3+1b 3+1c 3≥331a 3·1b 3·1c 3,即1a 3+1b 3+1c 3≥3abc. 所以1a 3+1b 3+1c 3+abc ≥3abc +abc .而3abc +abc ≥2 3abc ·abc =2 3.所以1a 3+1b 3+1c3+abc ≥2 3. 例15:若n 为大于1的自然数,求证:n n n +1<n +1+12+13+ (1). 证明:由柯西不等式右边=1+1+1+12+1+13+…+1+1n =2+32+43+54+…+n +1n ≥n ·n 2·32·43·…·n +1n=n .n n +1=左边.∵2≠32≠43,故不取等号.∴不等式n n n +1<n +1+12+13+ (1)成立. 例16:已知f (x )=x 2+px +q ,求证|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.证明:假设|f (1)|,|f (2)|,|f (3)|都小于12,则|f (1)|+2|f (2)|+|f (3)|<2.而|f (1)|+2|f (2)|+|f (3)|≥|f (1)+f (3)-2f (2)|=|(1+p +q )+(9+3p +q )-(8+4p +2q )|=2,与|f (1)|+2|f (2)|+|f (3)|<2矛盾,∴|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12. 例17:设a 、b 、c 均为正数,求证:12a +12b +12c ≥1b +c +1c +a +1a +b. 证明:∵a 、b 、c 均为正数,∴121122a b ⎛⎫+ ⎪⎝⎭≥12ab ≥1a +b,当a =b 时等号成立;12(12b +12c )≥12bc ≥1b +c ,当b =c 时等号成立;12(12c +12a )≥12ca ≥1c +a ,当a =c 时等号成立.三个不等式相加即得12a +12b +12c ≥1b +c +1c +a+1a +b,当且仅当a =b =c 时等号成立. 例18:已知:a n =1×2+2×3+3×4+…+n n +1(n ∈N +),求证:n n +12<a n <n n +22. 证明:∵n n +1=n 2+n ,∴n n +1>n ,∴a n =1×2+2×3+…+n n +1>1+2+3+…+n =n n +12.∵n n +1<n +n +12,∴a n <1+22+2+32+3+42+…+n +n +12=12+(2+3+…+n )+n +12=n n +22.综上得:n n +12<a n <n n +22. 例19:设a ,b ,c 为正数且a +b +c =1,求证:21a a ⎛⎫+ ⎪⎝⎭+21b b ⎛⎫+ ⎪⎝⎭+21c c ⎛⎫+ ⎪⎝⎭≥1003. 证明:21a a ⎛⎫+ ⎪⎝⎭+21b b ⎛⎫+ ⎪⎝⎭+21c c ⎛⎫+ ⎪⎝⎭=13(12+12+12)[21a a ⎛⎫+ ⎪⎝⎭+21b b ⎛⎫+ ⎪⎝⎭+21c c ⎛⎫+ ⎪⎝⎭] ≥132111111a b c a b c ⎡⎤⎛⎫⎛⎫⎛⎫⨯++⨯++⨯+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=2111113a b c ⎡⎤⎛⎫+++ ⎪⎢⎥⎝⎭⎣⎦=()2111113a b c a b c ⎡⎤⎛⎫+++++ ⎪⎢⎥⎝⎭⎣⎦≥13(1+9)2=1003. 例20:已知a ,b 为正实数.(1)求证:a 2b +b 2a ≥a +b ;(2)利用(1)的结论求函数y =1-x 2x+x 21-x(0<x <1)的最小值. 解:(1)证明:法一:∵a >0,b >0,∴(a +b )22a b b a ⎛⎫+ ⎪⎝⎭=a 2+b 2+a 3b +b 3a ≥a 2+b 2+2ab =(a +b )2. ∴a 2b +b 2a≥a +b ,当且仅当a =b 时等号成立。
柯西不等式【摘要】本文将给出柯西不等式及其应用时需注意的几点说明、柯西不等式的几种形式和证明以及关于柯西不等式的几种题型。
我们知道,柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。
柯西不等式在证明不等式、解三角形、求函数最值、解方程组等问题上得到应用。
【关键词】柯西(Cauchy )不等式;函数最值;解三角形问题;不等式的证明;不等式的应用。
【正文】一、柯西不等式及其证明。
定理: 设i a ,i b ∈R (i=1,2,3........,n ),则2112n 1i 2⎪⎭⎫ ⎝⎛≥⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∑===ni i i n i i i b a b a ,当且仅当i a =λi b ,即11a b =22a b =nn b a =λ等号成立。
此不等式称为柯西不等式。
说明1:由于“∑==ni i a 120,∑==ni i b 120,∑==ni i i b a 10”情况之一出现时,不等式显然成立,因此,在下面的讨论中不妨设∑=≠ni i a 120,∑=≠ni i b 120,∑=≠ni i i b a 10都成立。
说明2:柯西不等式取等号的条件常常写成比例形式11a b =22a b =nn b a ,并约定:分母为0时,相应的分子也为0。
“等号成立”是柯西不等式应用的一个重要组成部分。
说明3:使用柯西不等式的方便之处在于,对任意的两组实数都成立,这个不等式告诉我们,任意两组数 1a ,2a , n a , 1b ,2b , n b ,其对应项“相乘”之后、“求和”、再“平方”这三种运算不满足交换律,先各自平方,然后求和,最后相乘,运算的结果不会变小。
现将它的证明介绍如下:证明1:构造二次函数()()()2222211)(nn b x a b x a b x a x f ++++++= =222221......x a a a n )(+++x b a b a b a n n )(++++......22211)(22221......n b b b ++++0 (2)2221>++n a a a ,0)(≥x f 恒成立,∴)......()......(4 (42)22212222122211n n n n b b b a a a b a b a b a +++∙+++-+++=∆)(0≤即22211......)(n n b a b a b a +++≤)......( (2)222122221n n b b b a a a ++++++)( 当且仅当 0=+i i b x a ),....,2,1(n i =即1212n na a ab b b ===时等号成立证明2 数学归纳法(1)当1n =时 ,右式=()211a b ,左式=2121b a ,显然 ,左式=右式。
柯西不等式各种形式的证明及其应用柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。
但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。
柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。
柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。
一、柯西不等式的各种形式及其证明二维形式在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式()()()22222bd ac d c b a+≥++等号成立条件:()d c b a bc ad //==扩展:()()()222222222123123112233nn n n a a a a b b b b a b a b a b a b +++⋅⋅⋅++++⋅⋅⋅+≥+++⋅⋅⋅+等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==⎛⎫==⋅⋅⋅= ⎪=⋅⋅⋅⎝⎭当或时,和都等于,不考虑二维形式的证明:()()()()()()22222222222222222222222,,,220=ab c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立三角形式ad bc≥=等号成立条件:三角形式的证明:222111nn n k k k k k k k a b a b ===⎛⎫≥ ⎪⎝⎭∑∑∑()()22222222222222222-2a b c d a b c d ac bd a ac c b bd d a c b d =++++≥+++++≥-+++=-+-≥注:表示绝对值向量形式()()()()123123=,,,,,,,,2=n n a a a a b b b b n N n R αβαβαββαλβλ≥⋅⋅⋅⋅=⋅⋅⋅∈≥∈,等号成立条件:为零向量,或向量形式的证明:()()123123112233112233=,,,,,,,,,cos ,,cos ,1n n n n n n m a a a a n b b b b m n a b a b a b a b m n m nm nm n a b a b a b a b =⋅=++++==≤∴++++≤令一般形式211212⎪⎭⎫ ⎝⎛≥∑∑∑===n k k k nk k n k k b a b a 1122:::n n i i a b a b a b a b ==⋅⋅⋅=等号成立条件:,或、均为零。
柯西不等式的推广及其应用1 柯西不等式的定义 定义1[1](1)P 如果1212,,,,,,n n a a a b b b 为两组实数,则21122()n n a b a b a b +++ ≤ 2222221212()()n n a a a b b b ++++++并且仅当1221133111n n n n a b a b a b a b a b a b ---=-==-时,等式成立.2 柯西不等式的证明证法一 (利用均值不等式)[2](12)P P -A=21ni i a =∑,B=21ni i b =∑,C=1ni i i a b =∑,只需证明A ≥2C B由均值不等式有222111122C C a b a b B B +≥, 222222222C C a b a b B B+≥22222n n n n C C a b a b B B+≥n 个式子相加得222C CA B C B B+≥,即2C A B≥.当且仅当(1,2,,)i i a kb i n ==,等号成立.证法二 (比值证明法)[2](12)P P -要证222111()n n ni i i i i i i a b a b ===≤∑∑∑只需证明2ni i a b ⎛⎫⎪∑1≤ (2.1)2ni ia b⎛⎫⎪∑=21ni=⎛⎫⎪⎝2222211112ni in nii ii ia ba b===⎡⎤⎛⎫⎢⎥⎪⎢⎥⎪≤+⎢⎥⎪⎪⎢⎥⎝⎭⎣⎦∑∑∑=21(11)2⎡⎤+⎢⎥⎣⎦=1(2.1)式得证,故结论成立.证法三(差值法)[2](12)P P-222111()n n ni i i ii i ia b a b===-∑∑∑221111n n n ni j i j j ii j i ja b a b a b=====-∑∑∑∑22221111111(2)2n n n n n ni j j i i j j ii j i j i ja b a b a b a b=======+-∑∑∑∑∑∑2222111(2)2n ni j i j j i j ii ja b a b a b a b===-+∑∑2111()2n ni j j ii ja b a b===-∑∑≥.当且仅当i j j ia b a b=,即(1,2,)jii jaai nb b==时等式成立.证法四(利用Cauchy-schwarz不等式)[2](12)P P-在nR里,对任意两个向量1212(,,,),(,,,)n nx x x y y yξη==,ξη1122n nx y x y x y+++,因而n R对于上述定义的内积来说作成一个欧氏空间,则有不等式2,,,ηξηη≤令1212(,,),(,,)n na a ab b bξη==从而就有222222*********()()()n n n n a b a b a b a a a b b b +++≤++++++当且仅当ξ与η线性相关时等式成立.即(1,2,,)i i a kb i n ==等号成立.3 柯西不等式的几种变形变形一[3](1)P设,0(1,2,,)i i a R b i n ∈>=,则22111n i ni i ni iii a a b b===⎛⎫⎪⎝⎭≥∑∑∑,当且仅当i i b a λ=时取等号.变形二[3](1)P设,i i a b ,同号且不为零(1,2,,i n =),则2111ni n i i ni ii ii a a b a b===⎛⎫⎪⎝⎭≥∑∑∑,当且仅当12n b b b ===时取等号.变形三[3](1)P对任意数12,(1,2,,)i i a a R i n ∈=,有不等式2221212111n n n i i i i i i i a a a a ===⎡⎤⎡⎤⎡⎤≤⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∑∑∑成立,当且仅当12(1,2,)i i a a i n λ==时等号成立.变形四[3](1)P对任意1212,,,;,,,n n a a a R b b b R ∈∈,则有112222111nnn i i i i i i i a b a b ===⎡⎤⎡⎤≥⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑.变形五[4](2)P对于任意两个正实数组i a ,(1,2,,)i b i n =,有不等式1122111()()nn ni i i i i i i a b a b ===≤∑∑∑成立,当且仅当i a 与i b 成比例时等号成立.4 柯西不等式的推广推广一[4](2)P设对于由任意正实数构成的m 个数组,12,,(1,2,,)i i mi a a a i n =,有不等式1112121111()()nnnnmmii mi i i mi i i i i aa a a a a ====⋅⋅⋅≤⋅⋅⋅∑∑∑∑ (4.1)成立,当且仅当1i a :2i a ::mi a =1i b :2i b ::mi b 时等号成立.证明 根据算术-几何平均不等式,有下述几个不等式成立1112112111m nnniimii i i a a a aaa===+++∑∑∑11112112111mm n n ni imi i i i a a a m aa a ===⎛⎫⎪⎪≥⋅⋅⋅ ⎪ ⎪⎝⎭∑∑∑; 2122212111m nnniimii i i a a a aaa===+++∑∑∑12122212111mm n n ni imi i i i a a a m aa a ===⎛⎫ ⎪⎪≥⋅⋅⋅ ⎪ ⎪⎝⎭∑∑∑;1212111nnmnnnniimii i i a a a aaa===+++∑∑∑11212111mn n mn n n ni imi i i i a a a m aa a ===⎛⎫⎪⎪≥⋅⋅⋅ ⎪ ⎪⎝⎭∑∑∑. 将上述n 个不等式相加,整理后即得(4.1)式. 当上述n 个不等式等号成立时,(4.1)式等号才成立. 当且仅当各组数对应成比例时,(4.1)式等号成立.推广二[5](2)P 柯西不等式另一个很好的推广,即著名的Hölder 不等式设110,0(1,2,,),0,0,1,i i a b i n p q p q>>=>>+=则 11111nnnpqpq i i ii i i i a b a b ===⎛⎫⎛⎫≤ ⎪⎪⎝⎭⎝⎭∑∑∑, 当且仅当p qi i a b λ=时等号成立.证明 令11npp i i a M =⎛⎫= ⎪⎝⎭∑,11nqq i i b N =⎛⎫= ⎪⎝⎭∑则有11,nnppq q ii i i aM b N ====∑∑.由于函数()ln (0)f x x x =>为凹函数 因此有1111ln ln ln ,(1,2,,)p qp q i i i i a b a b i n p M q N p M q N ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+≤+=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.从而有11ln ln p q i ii i a b a b MN p M q N ⎡⎤⎛⎫⎛⎫≤+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦因此11p qi i i i a b a b MN p M q N ⎛⎫⎛⎫≤+ ⎪ ⎪⎝⎭⎝⎭,(1,2,,)i n =所以11111p qnn n i i i i i i i a b a b MNp M q N ===⎛⎫⎛⎫≤+ ⎪ ⎪⎝⎭⎝⎭∑∑∑ =1111nnp qiii i Pqab p Mq N ==+∑∑=11p q+ =1.即1ni i i a b MN =≤∑当且仅当p i a 与qi b 成比例时等号成立.推广三[4](3)P已知,(1,2,,,1,2,,)ji j a R i n j m α+∈==,且11mj j α==∑则有12121mni i mi i a a a ααα=⋅⋅⋅∑1212111mn n n i i mi i i i a a a ααα===⎛⎫⎛⎫⎛⎫≤⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑. 证明 对m 用数学归纳法 1) 当2m =时,命题成立. 2) 假设当m k =时,命题成立. 则当1m k =+时,因111k jj α+==∑,记12k j j s α+==∑,则11s α+=注意()23111k sααα++++=,有112121,1k ni i k i i a a a ααα++=⋅⋅⋅∑121121,1k sns si i k ii a a a ααα++=⎛⎫=⋅⋅ ⎪⎝⎭∑ 121121,111sk n nns si i k ii i i a a a αα++===⎛⎫⎛⎫≤⋅⋅ ⎪ ⎪⎝⎭⎝⎭∑∑∑ 121121,111k snn n s si i k i i i i a a a ααα++===⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥≤⋅⋅ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦∑∑∑ 121121,111k n n n i i k i i i i a a a ααα++===⎛⎫⎛⎫⎛⎫=⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑综上所述命题得证.5 柯西不等式的应用应用柯西不等式解一般题目的关键是将原问题变形使之适合柯西不等式的形式,而能否成功运 用柯西不等式的关键在于可否根据问题自身固有的特点对照柯西不等式的标准形式,构造出两组适当的数据演12,,,n a a a ;12,,,n b b b 的角色.例1 已知,x y R +∈,且44sin cos 1x y x y αα+=+,证明88333sin cos 1()x yx y αα+=+ 证明 由柯西不等式可得4422sin cos ()()1x y x y αα⎫++≥= 即44sin cos 1x y x yαα+≥+且当且仅当2α=时等号成立,即22sin cos x yαα= (5.1) 由已知44sin cos 1x y x yαα+=+ (5.2) 由(5.1)和(5.2)式解得22sin ,cos x yx y x yαα==++ 所以有8833sin cos x yαα+443311()()x y x x y y x y =+++ 31()x y =+. 例2 已知正数,,x y z 满足1x y z ++=,证明2223333x y z x y z ++++≥.证明 利用柯西不等式2222()x y z ++3131312222222()x x y y z z =++()333222222()()()x y z x y z ⎡⎤≤++++⎢⎥⎣⎦=3332()()x y z x y z ++++(1x y z ++=),又因为222x y z xy yz zx ++≥++在此不等式两边同乘以2, 再加上222x y z ++得2222()3()x y z x y z ++≤++,因为2222333()()x y z x y z ++≤++⨯2223()x y z ++故2223333x y z x y z ++++≥.例3 求函数11sin cos (,0,,(0,)2n ny a b a b n N πααα=+>∈∈的最大值.解 由[6](2)12121122()()()()n n n n n n n P n n n n a a a b b b a b a b a b +≤+++可得112(sin cos )nnna b αα+111111112212121212121(sin cos )n n n n nn n n naaabbbαα------=+(21n -)个 (21n -)个2221222121()(sin cos )n nn n n abαα---≤++=22212121()n nn n n ab---+所以11222121212sin cos ()n n n n n n n na b abαα---+≤+当且仅当11112121:sin :cos n n n na bαα--=,即21arc ()n n a tg bα-=时等号成立.所以222121212max ()n n n n n ny ab---=+.例4 已知2221,,,x y z x y z ++=是实数,求证:112xy yz zx -≤++≤. 证明 因为22()(111)x y z x y z ++=⨯+⨯+⨯所以由柯西不等式2222222()(111)()3x y z x y z ++≤++++=又由于22220()2()12()3x y z x y z xy yz zx xy yz zx ≤++=+++++=+++≤所以012()3xy yz zx ≤+++≤即112xy yz zx -≤++≤.例5 求证三角形三边上正方形的面积之和不小于该三角形面积的222a b c ++≥,其中,,,a b c 为三角形三边的长,∆为三角形的面积.证明 由三角形面积公式可得2()()()s s a s b s c ∆=---其中2a b cs ++=,于是 216()()()()a b c b c a c a b a b c ∆=+++-+-+-2222224442()b c c a a b a b c =++---由柯西不等式,有22222224444444442()()()()b c c a a b b c a c a b a b c ++≤++++=++即222222444b c c a a b a b c ++≤++当且仅当222222b c a c a b==,即a b c ==时等号成立.于是4442222224()4()a b c b c c a a b ++≥++变形为444222222222a b c b c c a a b +++++2222224443(222)b c c a a b a b c ≥++---即22222()316a b c ++≥⨯∆所以222a b c ++≥,当且仅当a b c ==时等式成立.例6 设P 为ABC ∆内的一点,M ,N ,H ,分别为P 到各边所引垂线的垂足,求所有BC CA AB PM PN PH++为最小值的点P . AB MC图1解 如图1,设ABC ∆的面积为S ,则S 111222BC PM CA PN AB PH =⨯+⨯+⨯(5.3) 由柯西不等式可知222222⎡⎤⎡⎤++++⎢⎥⎣⎦⎣⎦2≥ (5.4) 将(5.3)代入(5.4)得2()2BC CA AB BC CA AB PM PN PH S++++≥== 时等号成立, 即PM PN PH ==又S 和()AB BC CA ++分别是ABC ∆的面积和周长,故为定值, 即P 为ABC ∆内心时BC CA ABPM PN PH++为最小值.参考文献:[1] 鞠建恩.柯西不等式在初等数学中的应用[J].南平师专学报,2002,02[2] 赵朋军.柯西不等式的多种证法推广及其应用[J].商洛师范专科学校学报,2004,03 [3] 王晓凤.对柯西不等式探讨[J].通化师范学院学报,2006,03 [4] 黄 毅.柯西不等式的一个变形及其推广[J].数学教学通讯,2003,1 [5] 林银河.关于Minkowshi 不等式的讨论[J].丽水师范专科学校学报,2003,10 [6] 徐幼明.柯西不等式的推广及其应用[J].数学通讯,1996,12[7] T .Damm .A unified version of Cauchy-Schwarz and Wielandt inequality [J] .School of Information and Mathematics ,2007,1111。
柯西不等式高中总结1. 什么是柯西不等式?柯西不等式是数学中一种常用的不等式,由法国数学家柯西(Augustin-Louis Cauchy)所提出。
它是向量空间中的一种基本不等式,也可以用于数列、积分等的证明过程。
2. 柯西不等式表达形式柯西不等式有两种常见的表达形式: - 点积形式:对于两个向量(或者可以看作是序列)A和B,其点积(内积)满足如下不等式:(a1b1+a2b2+...+a n b n)2≤(a12+a22+...+a n2)(b12+b22+...+b n2)- 积分形式:对于两个函数f(x)和g(x),定义在[a, b]上,其乘积的积分满足如下不等式:(∫fba (x)g(x)dx)2≤∫f2ba(x)dx⋅∫g2ba(x)dx3. 柯西不等式的证明与应用柯西不等式可以通过多种方式进行证明,常见的证明方法有几何法、代数法和积分法等。
3.1 几何法证明几何法证明柯西不等式可以通过利用向量的内积和几何意义进行推导。
可以将向量视为平面上的两条有向线段,然后通过几何分析来证明不等式的成立。
3.2 代数法证明代数法证明柯西不等式可以通过代数运算和推导来完成。
常见的代数证明方法包括完全平方展开、二次函数的性质等。
3.3 积分法证明积分法证明柯西不等式是一种常见的证明方法,适用于证明函数乘积积分形式的不等式。
可以通过对乘积函数进行适当的变形和积分运算,来证明不等式的成立。
柯西不等式在数学中具有广泛的应用,下面列举了一些常见的应用场景:•绝对值不等式的证明:通过构造合适的向量或者函数,可以证明一些绝对值不等式,如:|ab|≤√a2+b2•向量投影的性质:利用柯西不等式可以证明向量的投影满足一些特定的性质,如:|a·b|b||≤|a|•函数平方可积性:可以利用柯西不等式证明一些函数平方可积的性质,如:∫f2ba(x)dx<∞•等式成立性的判定:柯西不等式的等式成立条件为两个向量(或函数)之间存在线性关系,可以通过柯西不等式来判定等式的成立性。