第十七届华杯赛决赛试题
- 格式:doc
- 大小:72.00 KB
- 文档页数:2
第十七届华罗庚金杯少年数学邀请赛决赛笔试试题A 参考答案(初一组)一、填空(每题 10 分, 共80分)一、填空题(每小题 10分, 共80分)1. 计算:=-⨯-+⎪⎭⎫⎝⎛-⨯-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--÷---⨯-)]21(31[81221|10|)1()2(22334 . 原式=43210219122--⨯++=31226-⨯=4216-=-2. 一串有规律排列的数, 从第二项起每一项都等于1加前一项的倒数之和.当第五项是0时, 第一项是 .分析:设这列数从第一项起依次为12345,,,,a a a a a 根据题意4101a =+,可以得出41a =-。
倒推可以得到135a =-3. 如图, AB=BC=CA=AD , 则∠BDC= .解:设AC 与BD 的交点是E∵AB=BC=CA=AD∴△ABC 是正三角形,每个内角为600,△ABD 和△ACD 是等腰三角形。
∴∠ABD =∠ADB ,∠ACD =∠ADC∵∠ABE +∠BAE +∠BEA =∠EDC +∠DCE+∠CED 。
∵∠BEA=∠CED∴∠ABE +∠BAE =∠EDC +∠DCE 。
∵∠DCE=∠EDC+∠ADB∴∠ABE +∠BAE=∠EDC+∠EDC+∠ADB 。
∴∠BAE=∠EDC+∠EDC ,即600=2∠EDC ∴∠EDC =3004. 已知c b a 2+=, c b 3=, 207--=a b c , 那么b =_______. 解:∵c b a 2+=, c b 3=∴5a c =把a ,b 的值代入207--=a b c ,得21520c c c =--,得解方程得c =43把解方程得c =43带入c b 3=,得4b =分析:根据c b a 2+=, c b 3=,得到5a c =。
把a ,b 的值代入207--=a b c ,得到关于c 的一元一次方程。
21520c c c =--,解方程得c =43,4b =。
第十七届“华杯赛”决赛赛前强化训练(四年级)目录:一行程问题 (1)二智巧趣题、图形面积 (9)三较复杂的鸡兔和盈亏问题 (12)四排列、组合、抽屉 (16)五牛吃草问题 (19)一行程问题【例题精讲】例1.火车通过长为82米的铁桥用了22秒,如果火车的速度加快1倍,它通过162米铁桥就用16秒。
求火车原来的速度和它的长度?解:假设用原来的速度通过162米的铁桥,那么火车要用16×2=32(秒)火车原来的速度为:(162-82)÷(32-22)=8(米/秒)火车长为:8×22-82=94(米)答:火车的速度是8米/秒,长度是94米。
例2.一条轮船往返于甲、乙两地之间,由甲至乙是顺水航行;由乙至甲是逆水航行。
已知船速是15千米/小时,逆水航行所用时间是顺水航行所用时间的2倍。
求水速?解:由题意可知,船行驶的路程相等。
而船顺水速度=船速+水速,逆水速度=船速-水速。
方法一:因为逆水航行时间是顺水航行时间的2倍,但路程相同,说明顺水速度是逆水速度的2倍,而顺水速度+逆水速度=船速×2。
故顺水速度+逆水速度=15×2=30(千米/时)。
根据和倍问题可知:逆水速度:30÷(2+1)=10(千米/时),水速:15-10=5(千米/时) 方法一:设水速为每小时x千米,由甲到乙顺水航行所用时间为a小时,由题意可列方程:(15+x)×a=(15-x)×2a解得:x=5答:水流速度为每小时5千米。
例3.一只轮船从甲地开往乙地顺水而行,每小时行28千米,到乙地后,又逆水而行,回到甲地,逆水比顺水多行2小时,已知水速每小时4千米。
求甲乙两地相距多少千米?解:(1)逆水速度:28-4×2=20(千米);(2)逆水比顺水多用2小时航行的路程:20×2=40(千米);(3)顺水从甲地到乙地所用的时间:40÷(4×2)=5(小时);(4)甲乙两地相距多少千米:28×5=140 (千米)。
第十七届华罗庚金杯少年数学邀请赛决赛笔试试题C(小学高年级组)一、填空题(每小题10 分, 共80 分)2. 箱子里已有若干个红球和黑球, 放入一些黑球后, 红球占全部球数的四分之一;再放入一些红球后, 红球的数量是黑球的二分之一. 若放入的黑球和红球数量相同, 则原来箱子里的红球与黑球数量之比为.3. 设某圆锥的侧面积是10π, 表面积是19π, 则它的侧面展开图的圆心角是.4. 设a∆b 和a∇b分别表示取a 和b 两个数的最小值和最大值, 如, 3∆4 = 3, 3∇4= 4. 那么对于不同的数x, 6∇(4∇(x∆5)) 的取值共有个.5. 某水池有A,B两个水龙头.如果A,B同时打开需要30分钟可将水池注满.现在A和B同时打开10分钟后,将A关闭,由B继续注水80分钟,也可将水池注满. 那么单独打开B龙头注水, 需要分钟才可将水池注满.6. 右图是一个五棱柱的平面展开图, 图中的正方形边长都为4.按图所示数据, 这个五棱柱的体积等于.7. 一条路上有A, O, B三个地点, O在A与B之间, A与O相距1620米. 甲、乙两人同时分别从A和O点出发向B点行进. 出发后第12分钟, 甲、乙两人离O点的距离相等;第36分钟甲与乙两人在B点相遇. 那么O与B两点的距离是米.8. 从1到1000中最多可以选出个数,使得这些数中任意两个数的差都不整除它们的和.二、解答下列各题(每题10分, 共40分, 要求写出简要过程)9. 一个四位数与它的反序数之差可否为1008? 请说明理由.10.N被3除的余数是多少?11. 能否用500个右图所示的1×2的小长方形拼成一个5×200的大长方形, 使得5×200的长方形每一行都有偶数个星、每一列都有奇数个星? 请说明理由.12. 小明拿着100元人民币去商店买文具,回来后数了数找回来的人民币有4张不同面值的纸币,4枚不同的硬币. 纸币面值大于等于一元,硬币的面值小于一元, 并且所有纸币的面值和以“元”为单位可以被3整除,所有硬币的面值的和以“分”为单位可以被7整除,问小明最多用了多少钱?(注: 商店有面值为100元、50元、20元、10元、5元和1元纸币, 面值为5角、1角、5分、2分和1分的硬币找零)三、解答下列各题(每小题15 分,共30 分,要求写出详细过程)13. 下图中,ABCD是平行四边形,E在AB边上, F在DC边上, G为AF与DE的交点, H 为CE与BF的交点. 已知,平行四边形ABCD的面积是1,, 三角形BHC的面积是,求三角形ADG的面积.41 EB AE 81。
华杯赛决赛试题及答案一、选择题1. 下列哪个选项是正确的?A. 地球是平的B. 地球是圆的C. 地球是三角形的D. 地球是正方形的答案:B2. 以下哪个数字是最小的质数?A. 2B. 3C. 4D. 5答案:A3. 以下哪个选项是正确的?A. 2 + 2 = 5B. 3 - 1 = 1C. 4 * 2 = 6D. 5 / 2 = 2答案:C二、填空题1. 请写出圆的面积公式:__________。
答案:πr²2. 请写出勾股定理的公式:__________。
答案:a² + b² = c²3. 请写出牛顿第二定律的公式:__________。
答案:F = ma三、解答题1. 已知一个直角三角形,两条直角边的长度分别为3和4,求斜边的长度。
答案:斜边长度为5,因为根据勾股定理,3² + 4² = 5²。
2. 一个数列的前三项为2, 4, 6,每一项都是前一项加上2,求第10项的值。
答案:第10项的值为20,因为每一项都是前一项加上2,所以第10项的计算方式为2 + (10-1)*2 = 20。
3. 一个水池,打开水龙头后,每分钟流入水池的水量是固定的,如果单独打开一个水龙头,需要1小时才能将水池填满,如果同时打开两个水龙头,需要40分钟才能将水池填满。
请问,如果同时打开三个水龙头,需要多少时间才能将水池填满?答案:需要24分钟。
设水池的容量为C,单个水龙头每分钟的进水量为x,则有C = 60x。
两个水龙头同时打开时,每分钟的进水量为2x,所以C = 40 * 2x。
由此可得,x = C / 60。
三个水龙头同时打开时,每分钟的进水量为3x,所以需要的时间t = C / (3x) = 60 / 3 = 20分钟。
第十七屆華羅庚金杯少年數學邀請賽決賽筆試試題A 參考答案(小學高年級組)一、填空(每題 10 分, 共120分)二、 解答下列各題(每題 10 分, 共40分, 要求寫出簡要過程)13. 答案:是. 解答. 連接AC . 則ECKB CEB BCK S S S ∆∆=+CEB BCA S S ∆∆=+ACE S ∆=EAD S ∆=所以ECKB OBE EAD OBE S S S S ∆∆∆-=-.因此.ECKO ABOD S S = 即四邊形ABOD 的面積=四邊形ECKO 的面積.14. 答案:能解答. 首先構造45⨯的長方形如下:然後用50個45⨯的即可拼成2005⨯的長方形. 15. 答案:2025, 3025, 9801.解答. 設一個四位卡布列克怪數為 100x y +, 其中1099,09x y ≤≤≤≤. 則由題意知2100()x y x y +=+, 兩邊模99得2()(mod99)x y x y +=+,因此 99|()(1)x y x y ++-, 故x y +與1x y +-中有一個能被9整除, 也有一個能被11整除(可能是同一個數), 且有22210()100100x y x y ≤+=+<,即10100x y ≤+<. (*)若x y +能被99整除,由(*)知x y +只能是99,滿足條件的四位數是9801;若x y +-1能被99整除,由(*), 顯然沒有滿足條件的四位數;此外,可設x y +=9m ,x y +-1=11n ,則有9m -11n =1, 由(*), m 和n 均為小於12的正整數,故得到m =5,n =4, x y +只能是45,滿足條件的四位數是2025;反之,可設x y +-1=9m ,x y +=11n ,滿足條件的四位數是3025.故四位數中有三個卡布列克怪數, 它們分別為2025, 3025和9801. 16. 答案:1或2解答. 對於質數3, 23 被3整除. 其餘的質數, 要麼是31k +型的數, 要麼是32k +型的數. 由於22(31)9613(32)1,k k k k k +=++=++被3除餘1, 且222(32)91243(341)1k k k k k +=++=+++,被3除也餘1. 因此有(1)若這98個質數包含3時, N 被3除的餘數等於97被3除的餘數, 等於1. (2)若這98個質數不包含3時, N 被3除的餘數等於98被3除的餘數, 等於2.三、 解答下列各題(每題 15 分, 共30分, 要求寫出詳細過程)17. 答案:18,11,9,3解答. 設起跑時間為0秒時刻, 則小李和小張在劃定區間跑的時間段分別為]9,0[, ]972,972[+-k k , ,3,2,1=k ,和]10,0[, ]1080,1080[+-m m , ,3,2,1=m .其中 [a , b ] 表示第a 秒時刻至第b 秒時刻. 顯然 ]9,0[ 即前9秒裡兩類時間段的公共部分. 此外, 考慮]972,972[+-k k 和]1080,1080[+-m m 的公共區間, m k ,為正整數, 分兩種情況:1) m k 8072=, 即小李和小張分別跑了k 圈和m 圈同時回到起點, 他們二人同時在劃定區域跑了18秒.2) m k 8072≠, 例如10809721080972+≤+≤-≤-m k m k ⇔1972801≤-≤k m ①.兩人同時在劃定區域內跑了)1080(972--+m k )7280(19k m --=. 由①知87280=-k m , 16. 於是兩人同時在劃定區域內跑持續時間為11秒或3秒. 其它情況類似可得同樣結果.綜上, 答案為18,11,9,3. 18. 答案: 150解答. 設立方體的長, 寬, 高分別為x y z ,,, 其中z y x ≤≤, 且為整數. 注意, 兩面有紅色的小立方塊只能在長方體的棱上出現.如果1,1==y x , 則沒有兩面為紅色的立方塊, 不符合題意. 如果1,1>=y x , 則沒有只有一面為紅色的立方塊, 不符合題意.因此2≥x . 此時兩面出現紅色的方塊只能與長方體的棱共棱. 一面出現紅色的方塊只與立方體的面共面. 有下面的式子成立40)]2()2()2[(4=-+-+-⨯z y x , (1)66)]2)(2()2)(2()2)(2[(2=--+--+--⨯z y z x y x . (2)由(1)得到16=++z y x , (3)由(2)得到85=++yz xz xy . (4)由(3)和(4)可得,86222=++z y x ,這樣 9,,1≤≤z y x . 由(4)得到285))((x z x y x +=++. (5)若2=x , 則由(5)得到89189485)2)(2(⨯==+=++z y , z y ,的取值不能滿足(3). 若3=x , 則由(5)得到47294985)3)(3(⨯==+=++z y , z y ,的取值不能滿足(3). 若4=x , 則由(5)得到10111011685)4)(4(⨯==+=++z y , z y ,的取值不能滿足(3).當5x時, 由(5)得到11=+==+,5=y滿足條件.=z=y, 此時6+z2511025⨯855(⨯))(5如果6x, 則18≥x, 與(3)矛盾.y+≥+z綜上, 6yx是問題的解, 這是長方體的體積為150.=z=,5=,5。
第十七届华罗庚金杯少年数学邀请赛决赛笔试试题A (初一组)(时间:2012年4月21日10:00~11:30)一、填空题(每小题10分,共80分)1.计算:()()343221-2-1--10--2=11-2-+1-3-82⎡⎤⎛⎫⨯÷⎢⎥⎪⎝⎭⎢⎥⎣⎦⎡⎤⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦-16解析:原式166962912181016)]21(31[81221|10|)1()2(22334-=-=++⨯--=-⨯-+⎪⎭⎫ ⎝⎛-⨯-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--÷---⨯-=2.一串有规律排列的数,从第二项起每一项都等于1加前一项的倒数之和,当第五项是0时,第一项是35⎛⎫- ⎪⎝⎭解析:设第一项是a , 根据题意, 第二项是1+,aa a 11+=第三项是1+,a a a a 1121++=+第四项是1+1213121++=++a a a a ,第五项是1+.a a a a 23352312++=++因为 ,02335=++a a 所以5a +3=0, a = 53-.3.如图,AB=BC=CA=AD,则∠BDC=(30°)解析:设∠CAD=2α, 则∠CDA=90°-α, ∠ADB = 60°-α,故 ∠BDC=30°.4.已知a=b+2c,b=3c,c=7b-a-20.那么b=(4)解析:由 c b a 2+=, c b 3=可得c a 5=, 由207--=a b c 可得20537--⨯=c c c ,因此有34=c , 4=b5.求使n 3+3与n-4不互质的大于4的最小整数n 的值为(71)解析:令 1,4≥=-k k n , 则1,6748123)4(32333≥+++=++=+k k k k k n ,则67481223+++k k k 和 k 的公约数就是67和k 公约数, 而67是质数, 所以它们的公约数除了1以外, 最小的只能是67, 于是最小的,67=k 所以 71=n .6.一个学校选出5个年级共8个班,从每个班至少选出一名学生,则在这些选出的学生中,至少有(4)名学生,他们的同班同学比他们的同年级同学少。
第十七届华杯赛决赛试题
(小学高年级组)
一、填空题(每题10分,共80分)
1、 等式46
5
11
17
()75121555÷+-的值为_______。
2、 设a △b 和a ▽b 分别表示取a 和b 两个数的最小值和最大值,如3△4=3,3▽4=4,那么对于不同的数列,5▽(4▽(x △4))的最大值有_____个。
3、 黑山镇有省城的高速路全长189千米,途经县城,黑山镇到县城544米,早上8:30,一辆客车从黑山镇开经县城,9:15到达,停留15分钟后开往省城,11:00到达,另有一辆客车于同天早上8:50从省城径直开往黑山镇,每小时行驶60千米,那么两车相遇的时间为______。
4、 有高度相同的一段方木和一段圆木,体积之比是1:1,如果将方木加工成尽可能大圆柱,将圆木加工成尽可能大的长方体,则得到的圆柱体积和长方体的体积的比值为______。
5、 用[x]表示不超过
x 的最大整数,记[x]=x-{x},则算式201212012220123555+++⎧⎫⎧⎫⎧⎫+++⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭…201220125+⎧⎫+⎨⎬⎩⎭
的值为______。
6、 某个水池存有其容量的118的水,两条注水管同时向水池注水,当水池的水量达到2
9时,第
一条注水管开始单独向水池注水,用时81分钟,所注入的水量等于第二条注水管已注入水池的水量,然后第二条注水管单独向水池注水49分钟,此时,两条注水管注入水池的总水量相同,之后,两条注水管都继续向水池注水,那么两条注水管还需要一起注水______分钟,方能将水流注满。
7、 有16位选手参加象棋晋级赛,每两人都只赛一盘,每盘胜者积1分,败者积0分,如果和棋,每人各积0.5分,比赛全部结束后,积分不少于10分者晋级,那么本次比赛后最多有______位选手晋级。
8、 平面内有5个点,其中挖土机个点均不在同一条直线上,以这些点为端点连接线段,则除这5个点外,这些线段至少还有______个交点。
二、解答下列各题(每题10分,共40分,要求写出简要过程)
9、 能否用540个右图所示的1×2的小长方形拼成一个6×180
使得6×180的长方形的每一行、每一列都有奇数个星?请说明理由。
10、 已知100个互不相同的质数1P ,2P ,…,100P ,记N =1P +2P +…+100P ,问:N
被3除的余数是多少?
11、王大妈拿了一袋硬币去银行兑换纸币,袋中的一分、二分、五分和一角四种硬币,二分
硬币的枚数是一分的3
5,五分硬币的枚数是二分的3
5
,一分硬币的枚数是五分的3
5
少7枚,
王大妈兑换到的纸币恰好是大于50小于100的整元数。
问:这四种硬币各有多少枚?
12、右图是一个三角形网格,由16个小的等边三角形构成,将风格中由3个相邻小三角形
构成的图形称为“3-梯形”,如果在每个小三角形内填上数字1-9中的一个,那么能否给出一种填法,使得任意两个“3-梯形”中的3个数之和均不相同?如果能,请举出一例;
如果不能,请说明理由。
三、解答下列各题(每题15分,共30分,要求写出详细过程)
13、请写出所有满足下面三个条件的正整数a和b:①a≤b;②a+b是一个三位数,且三个
数字从小到大排列等差;③a×b是一个五位数,且五个数字相同。
14、记一百个自然数x、x+1、x+2、…x+99的和为a,如果a的数字和等于50,则x最
小为多少?。