浙江省衢州市高三数学《数系的扩充与复数的引入(第一课时)》说课稿.doc
- 格式:doc
- 大小:173.00 KB
- 文档页数:3
3.1.1《数系的扩充和复数的概念》说课稿一:学习目标分析学习目标是教学中最先要考虑的因素,明晰学习目标,做到有的放矢,是课堂教学的第一要素。
我从以下几个方面考虑来制定本节课的学习目标:(1)明确《课程标准》要求;(2)分析教材;(3)分析学情。
1、本节课的《课程标准》要求:(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及与现实世界的联系。
(2)理解复数的基本概念以及复数相等的充要条件。
2、分析教材复数的引入实现了中学阶段数系的最后一次扩充.本节课的学习,一方面让学生回忆数系扩充的过程,体会虚数引入的必要性和合理性.另一方面,让学生理解复数的有关概念,掌握复数相等的充要条件,为今后的学习奠定基础.因此,本节课具有承前启后的作用,是本章的重点内容.3、分析学情在学习本节之前,学生对数的概念已经扩充到实数,也已清楚各种数集之间的包含关系等内容,但知识是零碎、分散的,对数的生成发展的历史和规律缺乏整体认识与理性思考,知识体系还未形成。
另一方面学生对方程解的问题会默认为在实数集中进行,缺乏严谨的思维习惯。
4、考情分析从近几年的高考试题来看,复数部分是高考必考内容之一,主要考查复数的有关概念和运算.复数在高考中题型多为选择题和填空题,均为容易题基于以上分析,本节课的学习目标如下:(1)通过回忆数系的扩充过程,观察所列举的复数能简述复数的定义,并能说出复数的实部与虚部。
(2)通过比较给出的两个复数能归纳出复数相等的充要条件,并能解决与例题相似的题目。
(3)通过小组讨论能将复数归类,并能用语言或图形表达复数的分类,会解决含有字母的复数的分类问题。
二:重点、难点分析:本节课是人教版《选修1-2》第三章第一课时,复数的概念为学生学习复数的表示、复数的运算及后继知识奠定了坚实的基础,因此,复数的概念是本节课学习的重点。
象x2=-1这样的方程没有实数解在学生心目中已成定论,负数不能开平方是学生固有的思维模式,而虚数单位i的引入会引起学生认知上的冲突、心理上的排斥。
目标定位:数的概念的发展与数系扩充是数学发展的一条重要线索.数系扩充的过程体现了数学的发现和创造过程,也体现了数学发生、发展的客观需要.复数作为数系扩充的结果引入,体现了实际需求与数学内部的矛盾在数系扩充过程中的作用,以及数系扩充过程中数系结构与运算性质的变化.《标准》在选修1-2与选修2-2中设计了数系的扩充与复数的引入的内容,突出数系的扩充过程,实现了基础教育数学课程中数系从实数到复数的又一次扩充.《标准》强调复数的代数表示法及代数形式的加减运算的几何意义,淡化烦琐的计算和技巧性训练,从而体会数学体系的建构过程、数形结合思想以及人类理性思维在数学发展中的作用,有助于发展学生的创新意识.引进虚数,把实数集扩充到复数集,这是中学课程里数的概念的最后一次扩充.虚数的引入,虽然最先是由于数学本身的需要,但也只有当复数表示平面上的点这一几何解释出现之后,在解决实际问题中才得到广泛的应用,复数才被人们承认并且巩固了下来.复数与平面向量有着密切的联系.复数的向量形式是它的几何意义之一;借助向量,我们可以得到复数的加法法则,并赋予其几何意义;复数减法的几何意义与向量减法也是一致的.这种数形结合的思想丰富了我们研究问题和解决问题的范围和手段.同时,复数作为一种新的“数学语言”也为我们今后用代数方法解决几何问题提供了可能.数系的扩充与复数的引入与2002年颁布的《全日制普通高级中学数学教学大纲》相比,删去了复数的三角形式以及复数三角形式的乘法、除法、乘方、开方等内容,突出了数系的扩充过程、复数的代数表示法、代数形式的四则运算以及加减运算的几何意义.教材解读:复数的内容是高中数学课程中的传统内容.对于复数,《标准》要求在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系;理解复数的基本概念以及复数相等的充要条件;了解复数的代数表示法及其几何意义;能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义.注重提高学生的数学思维能力是高中数学课程的基本理念之一,也是高中数学教育的基本目标之一.人们在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程.它们是数学思维能力的具体体现.数系的扩充与复数的引入具体地综合体现了上述数学思维过程.这些使得学生可以在以往具体经历各种数学思维方式的基础上,在更高层次上加以理解.本章教学内容虽然不多,但中学阶段重要的数学思想方法都有所体现.时,常用到待定系数法建立相应的方程组来解决.这充分体现了转化化归思想和方程思想.复数包括实数和虚数两部分,虚数还分纯虚数和非纯虚数.解决与复数概念有关的问题时,对虚部b的讨论十分关键.要合理地加以分类讨论,要注意不重复且不遗漏.复数的四则运算可类比实数运算来学习,但它不是实数运算合情推理的结果,而是一种“规定”,是新的定义.复数的四则运算本身也是一个建构的过程,其前提是对虚数单位i的两个规定,从而形成了一个具有公理化结构特点的小系统.公理化思想的有机渗透,对学生体会数学精神,感悟数学本质很有教育价值.。
数系的扩充与复数的引入教学目标【知识目标】使学生了解数的发展史,以及数集扩充到复数集的必要性;理解复数的相关概念和复数相等的充要条件。
【能力目标】通过师生共同探索、发现数集扩充的原因,培养学生(通过查阅资料)独立获取数学知识的能力,以及类比思考问题的能力;通过对复数相关概念的自学,培养学生的自学能力和对概念的认知能力。
【情感目标】通过了解数系的扩充过程,使学生感受到人类理性思维在数系扩充过程中的作用,以及数和现实世界的联系,从而激发学生对数学研究的热情。
教学重点和难点【教学重点】复数的相关概念,复数的分类以及复数相等的充要条件。
【教学难点】虚数单位i的引入以及复数的概念的理解。
教学策略教师始终在学生知识的“最近发展区”设置问题,启发、引导学生自主探究和交流,让学生在师生互动、生生互动的过程中,完成对知识的探索。
学法指导学生通过动手、动口、动脑等活动,主动探索、发现问题;互动合作,解决问题;归纳概括,形成能力。
教学过程一、设置问题情景,导入新课复习回顾:到目前为止,我们都学习过哪些数的集合?它们之间有着怎样的关系?(学生回答)设置问题:数的集合是如何由自然数集扩充为实数集的呢?实数集是否是最大的数集呢?师:带着这两个问题,今天,我们就一起来学习《数系的扩充与复数的引入》二、探究、发现数系扩充的过程和原因问题1:目前,我们所学习的最大数集是什么?实数是如何分类的?(学生回答,教师借助多媒体展示实数的分类过程。
)(教师以实数的分类“逆过程”为主线,引导学生发现数集的扩充过程) 问题2:如果我们逆过来看实数的分类过程,是一个数集的什么过程?(学生回答)问题3:观察实数的分类(图),能否说出哪些数的产生推动了数系的一次次扩充呢?(学生回答)问题4:在数的产生和发展过程中,自然数、分数、负数以及无理数产生的原因是什么?同学们能否根据课下所查找的相关资料,用简练的语言来概述一下呢?(同学之间可以相互交流)活动1:学生之间互动交流活动2:师生之间互动交流通过活动1,活动2,师生共同探讨得出数的产生和发展的原因(多媒体展示):师:通过了解自然数、分数、负数以及无理数的产生原因,我们不难看出,数系的每一次扩充都是人们生产和生活的需要,而对数学学 而言,数系的每一次扩充,也是数学自身发展和完善的需要。
3.1数系的扩充和复数的引入【教材分析】教材地位和作用:数系扩充的过程体现了数学的发现和创造过程,体现了数学发生发展的客观需求.通过学习,学生在问题情景中了解数系扩充的过程以及引入虚数的必要性,体会人类理性思维在数系扩充中的作用,有助于提高学生的数学素养.复数的引入是中学阶段数系的最后一次扩充.学习复数的一些基本知识,为学习复数的四则运算和几何意义做好知识储备.教材处理办法:精心设计制作教学课件,直观形象地展示数系扩充的过程.化抽象为具体,使学生真实体验数系扩充的必要性及数系扩充要遵循的法则.在这个过程中了解复数、虚数、纯虚数、复数的实部、虚部等相关概念就水到渠成了.重点:数系扩充的过程和方法,复数的相关概念.难点:数系扩充的过程和方法,虚数的引入.【教学目标】知识目标:了解数系的扩充过程,感受人类理性思维的作用以及数与现实世界的联系;了解复数的相关概念.能力目标:发展学生独立获取数学知识的能力和创新意识.情感目标:初步认识数学的应用价值、科学价值和人文价值,崇尚数学具有的理性精神和科学态度,树立辩证唯物主义世界观.【教学方法】教学模式:“4+1”教学模式教学方法:开放式探究,启发式引导,互动式讨论,反馈式评价.学习方法:自主探究,观察发现,合作交流,归纳总结。
教学手段:结合多媒体网络教学环境,构建学生自主探究的教学平台【教学程序】以问题为载体,以学生活动为主线.自主学习合作探究成果展示精讲点拨巩固提高小结与作业1、【自主学习】(课前完成)阅读教材《§3.1.1 数系的扩充与复数的概念》内容,思考:(1) 你对数的发展的了解(2) 由得你有,何困惑?(3)方根2-=0无实根的原因是什么?如果扩充数系,使之有解,如何扩充?(4)虚数单位i的性质?i与实数的运算性质?(5)复数的有关概念?(6)实数集R与复数C的关系?2、【合作探究】探究任务一:数系的扩充过程。
问题1:回顾归纳从小学到昨天为止数系的扩充过程。
《数系的扩充与复数的引入(一)》教学设计执教者学情分析数系的扩充与复数的引入是选修1-2与选修2-2的内容,是高中生的共同数学基础之一。
学生在小学、初中分别学习了自然数、整数、有理数、实数等不同类型的数,并对这些数的关系有了初步的认识。
在这个基础上能初步的概括出:自然数集N →整数集Z →有理数集Q →实数集R ,数集的每一次扩充解决了某些代数方程在原有数集中不可以解决的矛盾,通过数系扩充过程的概括体现了数学的发现和创造过程,同时了解了数学产生、发展的客观需求,为复数的引入做好了铺垫。
这部分的学习,有助于学生体会理论产生与发展的过程,认识到数学产生和发展既有来自外部的动力,又有来自数学内部的动力,从而形成正确的数学观,有助于发展学生的全新意识和创新能力。
效果分析通过课前准备环节,有理数到实数集扩充的引入,体现数系扩充的过程的特征,通过问题让学生感受的更加的明显,为复数自然而然的引入铺垫好了基础,在本节中,学生在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用。
在思考与讨论环节中,通过学生的讨论充分挖掘学生的思维,发挥集体智慧,加强学生的认识,效果比较突出,突破本节的复数的分类这个难点内容。
在学生的展现环节,通过学生的上台板演,充分发挥学生的积极主动意思,有助于学生学习积极主动性的提高。
教材分析本节的主要内容是数系的扩充和复数的概念。
教学目标:(1) 在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充中的作用,感受人类理性思维的作用以及数与现实世界的联系。
(2) 理解复数的基本概念。
(3) 了解复数的代数表示法。
(4) 理解复数相等的充要条件。
教学重点:(3) 数系的扩充过程。
(4) 复数的概念、复数的分类和复数相等的充要条件。
教学难点:(2) 虚数单位i 的引入。
(3) 复数与实数、虚数的关系。
数系的扩充和复数的概念(1)实数系经过扩充后得到的新数集是什么?复数集如何分类?(2)复数能否比较大小?复数相等的充要条件是什么?纯虚数、虚数、实数、复数关系如何?1.复数的有关概念(1)复数①定义:形如a+b i(a,b∈R)的数叫做复数,其中i叫做虚数单位,满足i2=-1,实部是a,虚部是b.②表示方法:复数通常用字母z表示,代数形式为z=a+b i(a,b∈R).(2)复数集①定义:全体复数所成的集合.②表示:通常用大写字母C表示.[点睛]复数概念的三点说明(1)复数集是最大的数集,任何一个数都可以写成a+b i(a,b∈R)的形式,其中0=0+0i.(2)复数的虚部是实数b而非b i.(3)复数z =a +b i 只有在a ,b ∈R 时才是复数的代数形式,否则不是代数形式.2.复数相等在复数集C ={}a +b i|a ,b ∈R 中任取两个数a +b i ,c +d i(a ,b ,c ,d ∈R),我们规定:a +b i 与c +d i 相等的充要条件是a =c 且b =d .3.复数的分类对于复数a +b i ,当且仅当b =0时,它是实数;当且仅当a =b =0时,它是实数0;当b ≠0时,叫做虚数;当a =0且b ≠0时,叫做纯虚数.这样,复数z =a +b i 可以分类如下:复数z ⎩⎪⎨⎪⎧实数(b =0),虚数(b ≠0)(当a =0时为纯虚数). [点睛] 复数集、实数集、虚数集、纯虚数集之间的关系复数的概念及分类[典例] (1)给出下列三个命题:①若z ∈C ,则z 2≥0;②2i -1的虚部是2i ;③2i 的实部是0.其中真命题的个数为( )A .0B .1C .2D .3(2)当m 为何实数时,复数z =m 2-m -6m +3+(m 2-2m -15)i.①是虚数;②是纯虚数.[解析] (1)对于①,当z ∈R 时,z 2≥0成立,否则不成立,如z =i ,z 2=-1<0,所以①为假命题;对于②,2i -1=-1+2i ,其虚部是2,不是2i ,②为假命题;对于③,2i =0+2i ,其实部是0,③为真命题.故选B.[答案] B(2)①当⎩⎪⎨⎪⎧m +3≠0,m 2-2m -15≠0, 即m ≠5且m ≠-3时,z 是虚数. ②当⎩⎪⎨⎪⎧m 2-m -6m +3=0,m 2-2m -15≠0, 即m =3或m =-2时,z 是纯虚数.[一题多变]1.[变设问]本例(2)中条件不变,当m 为何值时,z 为实数?解:当⎩⎪⎨⎪⎧m +3≠0,m 2-2m -15=0,即m =5时,z 是实数. 2.[变设问]本例(2)中条件不变,当m 为何值时,z >0.解:因为z >0,所以z 为实数,需满足⎩⎪⎨⎪⎧ m 2-m -6m +3>0,m 2-2m -15=0,解得m =5.3.[变条件]已知z =log 2(1+m )+ilog 12(3-m )(m ∈R),若z 是虚数,求m 的取值范围.解:∵z 是虚数,∴log 12(3-m )≠0,且1+m >0,即⎩⎪⎨⎪⎧ 3-m >0,3-m ≠1,1+m >0,∴-1<m <2或2<m <3.∴m 的取值范围为(-1,2)∪(2,3).复数分类的关键(1)利用复数的代数形式,对复数进行分类,关键是根据分类标准列出实部、虚部应满足的关系式.求解参数时,注意考虑问题要全面,当条件不满足代数形式z =a +b i(a ,b ∈R)时应先转化形式.(2)注意分清复数分类中的条件设复数z =a +b i(a ,b ∈R),则①z 为实数⇔b =0,②z 为虚数⇔b ≠0,③z 为纯虚数⇔a =0,b ≠0.④z =0⇔a =0,且b =0. 复数相等[典例] (1)已知x 2-y 2+2xy i =2i ,求实数x ,y 的值;(2)关于x 的方程3x 2-a 2x -1=(10-x -2x 2)i 有实根,求实数a 的值.[解] (1)∵x 2-y 2+2xy i =2i ,∴⎩⎪⎨⎪⎧x 2-y 2=0,2xy =2, 解得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1. (2)设方程的实数根为x =m ,则3m 2-a 2m -1=(10-m -2m 2)i ,∴⎩⎨⎧ 3m 2-a 2m -1=0,10-m -2m 2=0,解得a =11或a =-715. 复数相等问题的解题技巧(1)必须是复数的代数形式才可以根据实部与实部相等,虚部与虚部相等列方程组求解.(2)根据复数相等的条件,将复数问题转化为实数问题,为应用方程思想提供了条件,同时这也是复数问题实数化思想的体现.(3)如果两个复数都是实数,可以比较大小,否则是不能比较大小的.。
3.1《数系的扩充和复数的引入》说课稿今天我说课的内容是《数系的扩充与复数的引入》。
下面我将从教材分析、学情分析、教学目标、教学模式、教学方法、教学设计、板书设计和教学反思八个方面进行陈述。
一.教材分析教材的地位与作用复数的引入实现了中学阶段数系的最后一次扩充。
引入复数以后,这不仅可以使学生对于数的概念有一个初步的、完整的认识,也为进一步学习数学打下了基础。
通过本节课学习,要使学生在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用。
本节课的内容主要包括数系的扩充的发展简介,复数的代数形式,复数的分类以及复数的相等条件。
二.学情分析在学习本节之前,学生对数的概念已经扩充到了实数,也已清楚各数集之间的包含关系等内容。
但知识是零碎的、分散的,对数的生成发展的历史和规律缺乏整体认识与理性思考,知识体系还未形成。
另一方面学生对方程解的问题会默认为在实数集中进行,缺乏严谨的思维习惯。
三.教学目标1.我能说出复数的概念以及代数表示方法(重点)2.我能说出复数的分类,判断复数相等的充要条件(难点)四.教学模式以问题导入为起点,结合实际生活探究数系的产生和发展,设置有效可行的活动方式,让学生独立思考,提高学生的探究能力。
培养学生的问题意识,提高分析、解决问题的能力。
通过同桌合作学习,促进学生的独学和群学,共同达成教学目标的教学活动。
五.教学方法本节课运用引导探究法,在教师引导下学生进行自主探究的教学方法。
在教学过程中,让学生在自主探究、独立思考、小组交流、全班展示的过程中,逐步得出猜想并证明它,使学生达到理解和掌握数学知识、培养能力、获得学习方法,最后形成学生能积极主动的学习态度。
学法上采用了:推理法、讨论法等方法是解决问题的关键方法.六.教学设计我将依次按照课堂结构设计的六个环节进行说明1.学习目标(1)我能说出复数的概念以及代数表示方法(重点)(2)我能说出复数的分类,判断复数相等的充要条件(难点)设计意图:了解本节知识要点,明确学习最终目的2.预习、检查与导入问题导入:引导学生回顾过去所学知识结合实际问题探究数系的产生与发展,引发学生进行独立自主的思考,结合实际问题,使学生对新内容的学习变得生动有趣,自发地总结数系每次扩充的基本原则。
3.1.1 数系的扩充与复数的概念教学要求: 理解数系的扩充是与生活密切相关的,明白复数及其相关概念。
教学重点:复数及其相关概念,能区分虚数与纯虚数,明白各数系的关系。
教学难点:复数及其相关概念的理解教学过程:一、复习准备:1. 提问:N 、Z 、Q 、R 分别代表什么?它们的如何发展得来的?(让学生感受数系的发展与生活是密切相关的)2.判断下列方程在实数集中的解的个数(引导学生回顾根的个数与∆的关系):(1)2340x x --= (2)2450x x ++= (3)2210x x ++= (4)210x +=3. 人类总是想使自己遇到的一切都能有合理的解释,不想得到“无解”的答案。
讨论:若给方程210x +=一个解i ,则这个解i 要满足什么条件?i 是否在实数集中?实数a 与i 相乘、相加的结果应如何?二、讲授新课:1. 教学复数的概念:①定义复数:形如a bi +的数叫做复数,通常记为z a bi =+(复数的代数形式),其中i 叫虚数单位,a 叫实部,b 叫虚部,数集{}|,C a bi a b R =+∈叫做复数集。
出示例1:下列数是否是复数,试找出它们各自的实部和虚部。
23,84,83,6,,29,7,0i i i i i i +-+--规定:a bi c di a c +=+⇔=且b=d ,强调:两复数不能比较大小,只有等与不等。
②讨论:复数的代数形式中规定,a b R ∈,,a b 取何值时,它为实数?数集与实数集有何关系?③定义虚数:,(0)a bi b +≠叫做虚数,,(0)bi b ≠叫做纯虚数。
④ 数集的关系:0,0)0)0,0)Z a a ⎧⎪≠≠⎧⎨≠⎨⎪≠=⎩⎩实数 (b=0)复数一般虚数(b 虚数 (b 纯虚数(b 上述例1中,根据定义判断哪些是实数、虚数、纯虚数?2.出示例题2:(引导学生根据实数、虚数、纯虚数的定义去分析讨论)练习:已知复数a bi +与3(4)k i +-相等,且a bi +的实部、虚部分别是方程2430x x --=的两根,试求:,,a b k 的值。
浙江省衢州市仲尼中学高三数学《数系的扩充与复数的引入(第一课
时)》说课稿
教材分析:从近两年的高考试题来看,复数的基本概念、复数相等的充要条件以及复数的代数运算是高考的热点,主要考查对复数概念的理解以及复数的加减乘除四则运算。
学情分析:学生对复数的基本概念、复数相等的充要条件以及复数的代数运算比较好,只是容易遗忘,运算能力还需要加强。
教学目标:
1. 知识与技能:了解引进复数的必要性;理解并掌握虚数的单位i
2. 过程与方法:理解并掌握虚数单位与实数进行四则运算的规律
3. 情感、态度与价值观:理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部) 理解并掌握复数相等的有关概念
教学重点:复数的基本概念、复数相等的充要条件以及复数的代数运算 教学难点:复数的基本概念、复数相等的充要条件以及复数的代数运算 教学过程: 一、知识梳理: 1、复数的有关概念 ①虚数单位: 12
-=i
②复数的定义:形如),(R b a bi a Z ∈+=的数叫复数,a 叫复数的实部,b 叫复数的虚部,全体复数所成的集合叫做复数集,用字母C 表示.对于复数,当且仅当b=0时,复数a+bi(a 、b ∈R)是实数a ;当b≠0时,复数z=a+bi 叫做虚数;当a=0且b≠0时,z=bi 叫做纯虚数;当且仅当a=b=0时,z 就是实数0.
③ 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,这就是说,如果a ,b ,c ,d ∈R ,那么a+bi=c+di ⇔a=c ,b=d ④共轭复数:a+bi 与c+di 共轭⇔a=b 且c=-d (a ,b ,c ,d ∈R ) ⑤复数的模:22b a bi a Z +=
+=
2.复数的几何意义:复数),(R b a bi a Z ∈+=与复平面内点(a,b)与平面向量→
oz 是一一对应的关系。
3.复数的运算
①运算法则:21Z Z +;21Z Z -;
2
1
Z Z ②几何意义:复数的加减法可按向量的平行四边形或三角形法则进行。
二、讲练结合
C 例1、命题:“任何两个复数都不能比较大小”对吗?
解:不对 如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小
C 例2 、复数-2i+3.14的实部和虚部是什么?
答:实部是3.14,虚部是-2.
易错为:实部是-2,虚部是3.14!
B 例3、实数m 取什么数值时,复数z=m+1+(m -1)i 是:(1)实数;(2)虚数;(3)纯虚数; B 例4、设i 为虚数单位,求
i
i
+-15的值。
C 练习1、若复数i a a a )1()23(2
-++-是纯虚数,求a 的值。
C 练习2、设i 为虚数单位,计算=++3
2
i i i 。
B 练习3、在复平面内,复数6+5i,-2+3i 对应的点分别为A ,B 。
若
C 为线段AB 的中点,则点C 对应的复数是( )
A .4+8i B. 8+2i C. 2+4i D.4+i 三、归纳小结
1、复数的有关概念 2.复数的几何意义 3.复数的运算 四、布置作业
C/B1、已知复数i z 21-=,那么z
1
= 。
C/B2、设i 为虚数单位,求i
i
-+13的值。
B3、已知
i b i
i
a +=+2),(R
b a ∈,其中i 为虚数单位,则a+b=( ) A .-1 B.1 C. 2 D.3 A4、已知
i b i
i
a +=+2),(R
b a ∈,其中i 为虚数单位, 则复数z=a+bi 对应的点位于第 象限。
五、板书设计。