111简谐运动
- 格式:pptx
- 大小:12.82 MB
- 文档页数:55
第十一章机械振动11.1 简谐运动三维教学目标1、知识与技能(1)了解什么是机械振动、简谐运动;(2)掌握简谐运动的位移图象。
2、过程与方法:正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线;3、情感、态度与价值观:通过观察演示实验,概括出机械振动的特征,培养学生的观察、概括能力。
教学重点:使学生掌握简谐运动的回复力特征及相关物理量的变化规律。
教学难点:偏离平衡位置的位移与位移的概念容易混淆;在一次全振动中速度的变化。
教学教具:钢板尺、铁架台、单摆、竖直弹簧振子、皮筋球、气垫弹簧振子、微型气源。
教学过程:第一节简谐运动(一)教学引入我们学习机械运动的规律,是从简单到复杂:匀速运动、匀变速直线运动、平抛运动、匀速圆周运动,今天学习一种更复杂的运动——简谐运动。
(二)新课教学1、机械振动振动是自然界中普遍存在的一种运动形式,请举例说明什么样的运动就是振动?(微风中树枝的颤动、心脏的跳动、钟摆的摆动、声带的振动……这些物体的运动都是振动。
)请同学们观察几个振动的实验,注意边看边想:物体振动时有什么特征?演示实验(1)一端固定的钢板尺,图1(a)(2)单摆,图1(b)(3)弹簧振子,图1(c)(d)(4)穿在橡皮绳上的塑料球,图1(e)提问:这些物体的运动各不相同:运动轨迹是直线的、曲线的,运动方向水平的、竖直的,物体各部分运动情况相同的、不同的……它们的运动有什么共同特征?归纳:物体振动时有一中心位置,物体(或物体的一部分)在中心位置两侧做往复运动,振动是机械振动的简称。
2、简谐运动简谐运动是一种最简单、最基本的振动,我们以弹簧振子为例学习简谐运动。
(1)弹簧振子演示实验:气垫弹簧振子的振动讨论:第一、滑块的运动是平动,可以看作质点。
第二、弹簧的质量远远小于滑动的质量,可以忽略不计,一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子。
第三、没有气垫时,阻力太大,振子不振动;有了气垫时,阻力很小,振子振动。
高中物理知识点总结-简谐运动
简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.。
11.1简谐运动教学目标与任务1.弹簧振子2.知道简谐运动。
新课导入1.什么使机械运动?答:物体的位置随着时间发生变化的运动叫机械运动2.如果一个物体一直绕着一个平衡位置往复运动那么它是机械运动么?答:不是。
3.这种围绕着一个平衡位置的往复运动叫什么?答:叫机械振动新课教学知识点一、机械振动机械振动:定义:物体(或物体的一部分)在静止时的位置附近所做的往复运动,叫做机械振动.要点诠释:振动的轨迹可以是直线(系在直线弹簧一段的小球的震动)也可以是曲线(摆动的小球).弹簧振子(研究机械振动的实验装置):弹簧振子是小球和弹簧所组成的系统,这是一种理想化模型.如图所示装置,如果球与杆之间的摩擦可以忽略,且弹簧的质量与小球的质量相比也可以忽略,则该装置为弹簧振子.实际物体看做理想振子的条件:(1)弹簧的质量比小球的质量小得多,可以认为质量集中于振子(小球);(2)当与弹簧相接的小球体积足够小时,可以认为小球是一个质点;(3)当水平杆足够光滑时,可以忽略弹簧以及小球与水平杆之间的摩擦力;(4)小球从平衡位置拉开的位移在弹簧的弹性限度内.回复力:使物体指向平衡位置的力叫做回复力。
平衡位置:平衡位置是指物体所受回复力为零的位置。
振动位移:以平衡为作为位移的初始位置,由初始位置指向末位置的有向线段表示振动的位移。
振动速度:表示振子运动的的瞬时速度。
机械运动的过程:O→的过程中:位移正向增大,回复力反向增大,速度正向减小在由AA→的过程中:位移正向减小,回复力反向减小,速度反向增大在由OO→的过程中:位移反向增大,回复力正向增大,速度反向减小在由BB→的过程中:位移反向减小,回复力正向减小,速度正向增大在由O振子的位移随时间的变化图像:图像的建立:用横坐标表示振动物体运动的时间t,纵坐标表示振动物体运动过程中对平衡位置的位移x,建立坐标系,如图所示.图像意义:反映了振动物体相对于平衡位置的位移x随时间t变化的规律.图像的斜率:反映了物体的速度的变化规律例题1.关于机械振动的位移和平衡位置,以下说法中正确的是()A.平衡位置就是物体振动范围的中心位置B.机械振动的位移总是以平衡位置为起点的位移C.机械振动的物体运动的路程越大,发生的位移也越大D.机械振动的位移是指振动物体偏离平衡位置最远时的位移答案:B解析:平衡位置是物体可以静止时的位置,所以应与受力有关,与是否为振动范围的中心位置无关.如乒乓球竖直落在台面上的运动是一个机械振动,显然其运动过程的中心位置应在台面上,所以A项不正确;振动位移是以平衡位置为初始点,到质点所在位置的有向线段,振动位移随时间而变,振子偏离平衡位置最远时,振动物体振动位移最大,所以只有选项B正确.【总结升华】位移和平衡位置是机械振动问题中非常重要的概念.位移的正负方向应该作出规定,平衡位置则是物体所受回复力为零时所在的位置.课堂练习一:一质点做简谐运动,其振动图象如图所示,则()A.振幅是2cmB.振幅是4cmt=时,质点速度为正且最大C.3st=时,质点速度为正且最大D.4s答案:AC课堂练习二:一质点作简谐运动,图象如图所示,在0.2s到0.3s这段时间内,质点的运动情况是()A.沿负方向运动,且速度不断增大B.沿负方向运动的位移不断增大C.沿正方向运动,且速度不断增大D.沿正方向的加速度不断减小答案:CD知识点二、简谐运动简谐运动:如果质点的位移与时间的关系遵从正弦函数规律,即它的振动图像是一条正弦曲线,这样的振动叫做简谐运动.简谐运动是最简单、最基本的振动.简谐运动的对称性:如图所示,物体在A与B间运动,O点为平衡位置,C和D两点关于O点对称,则有:(1)时间的对称:4OB BO OA AO T t t t t ====, OD DO OC CD t t t t ===,DB BD AC CA t t t t ===.(2)速度的对称关系:设D 点的速度为D v在O 点时,速度v 最大在由B O →的运动过程中:D 点速度的大小为D v ,方向向右在B 点时,速度为零在由O B →的运动过程中:D 点速度的大小为D v ,方向向左在由A O →的运动过程中:C 点速度的大小为D v ,方向向左在A 点时,速度为零在由O A →的运动过程中:C 点速度的大小为D v ,方向向右(4)位移的对称关系:在由B O →的运动过程中:位移方向为由O 点指向B 点,方向向右在由O B →的运动过程中:位移方向为由O 点指向B 点,方向向右在由A O →的运动过程中:位移方向为由O 点指向A 点,方向向左在由O A →的运动过程中:位移方向为由O 点指向A 点,方向向左(4)回复力的对称关系:在由B O →的运动过程中:回复力方向为由B 点指向O 点,方向向左在由O B →的运动过程中:回复力方向为由B 点指向O 点,方向向左在由A O →的运动过程中:回复力方向为由O 点指向A 点,方向向右在由O A →的运动过程中:回复力方向为由O 点指向A 点,方向向右例题2.如图甲所示,弹簧的一端与一个带孔小球连接,小球穿在光滑水平杆上,弹簧的另一端固定在竖直墙壁上。
简谐运动的知识点总结下面是简谐运动的几个重要知识点总结:1. 简谐运动的定义简谐运动是指一个物体在恢复力的作用下,沿着直线或围绕固定轴线做周期性往复运动的一种特殊形式。
在简谐运动中,物体的加速度与位移呈线性关系,且恢复力与位移成正比。
2. 简谐运动的特征简谐运动有两个主要特征:周期性和振幅。
周期性指的是物体完成一次往复运动所需的时间,而振幅则是指往复运动的最大位移。
3. 简谐运动的数学描述简谐运动可以用正弦函数或余弦函数进行数学描述。
如果物体的位移沿着x轴方向变化,则其数学描述可以写为:x(t) = A * cos(ωt + φ),其中A是振幅,ω是角频率,t是时间,φ是初相位。
4. 弹簧振子的简谐运动弹簧振子是最典型的简谐运动系统之一。
当物体沿着弹簧的轴线上下振动时,其运动符合简谐运动的规律。
弹簧振子的周期T和角频率ω与弹簧的劲度系数k和质量m有密切关系。
5. 摆动的简谐运动摆动是另一个常见的简谐运动系统。
在重力的作用下,摆锤沿着一定的轨迹做周期性摆动,其运动也符合简谐运动的规律。
摆动的周期T和角频率ω与摆锤的长度l有密切关系。
6. 简谐运动的能量在简谐运动过程中,物体具有动能和势能,并且二者之和保持不变。
当物体位于最大位移处时,动能最大,势能最小;当位于最大位移的相反方向时,势能最大,动能最小。
7. 简谐运动的受力分析在简谐运动中,物体所受的恢复力与位移成正比,且与速度成反比。
这种受力形式被称为胡克定律,可以用F = -kx来描述,其中F是恢复力,k是弹簧或系统的劲度系数,x是位移。
8. 简谐运动的阻尼和受迫振动在实际情况下,简谐运动可能会受到阻尼和外力的影响,这时的简谐运动被称为阻尼振动和受迫振动。
阻尼振动是指系统中存在摩擦力或阻尼元件的情况,会使振动逐渐减弱直至停止;受迫振动是指系统受到外力驱动振动,外力的频率与系统的固有频率相近时,会出现共振现象。
9. 简谐运动的应用简谐运动在物理学和工程学中有广泛的应用,例如弹簧减震器、机械振动系统、音叉和声波振动等。
知识点:一、简谐运动定义1.机械振动物体在平衡位置附近所做的往复运动叫机械振动。
机械振动的条件是:(1)物体受到回复力的作用;(2)阻力足够小。
2.回复力使振动物体返回平衡位置的力叫回复力。
回复力时刻指向平衡位置。
回复力是以效果命名的力,它是振动物体在振动方向上的合外力,可能是几个力的合力,也可能是某个力或某个力的分力,可能是重力、弹力、摩擦力、电场力、磁场力等。
3.简谐运动物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力作用下的振动,叫简谐运动。
表达式为:F=-kx。
4.描述简谐运动的物理量(1)位移x:由平衡位置指向振子所在处的有向线段,最大值等于振幅;(2)振幅A:是描述振动强弱的物理量。
(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的,而位移是时刻在改变的)(3)周期T:是描述振动快慢的物理量。
频率f=1/T二、理解简谐运动重难点1.平衡位置的理解平衡位置是做机械振动物体最终停止振动后振子所在的位置,也是振动过程中回复力为零的位置。
(1)平衡位置是回复力为零的位置;(2)平衡位置不一定是合力为零的位置;(3)不同振动系统平衡位置不同:竖直方向的弹簧振子,平衡位置是其弹力等于重力的位置;水平匀强电场和重力场共同作用的单摆,平衡位置在电场力与重力的合力方向上。
2.回复力的理解(1)回复力是指振动物体所受的总是指向平衡位置的合外力,但不一定是物体受到的合外力。
(2)性质上,回复力可以是重力、弹力、摩擦力、电场力、磁场力等。
(3)回复力的方向总是“指向平衡位置”。
(4)回复力的作用是使振动物体回到平衡位置。
3.简谐运动(1)简谐运动的判定在简谐运动中,回复力的特点是大小和位移成正比,方向与位移的方向相反,即满足公式F=-kx。
所示对简谐运动的判定,首先要正确分析出回复力的来源,再根据简谐运动中回复力的特点进行判定。
(2)简谐运动的特点周期性:简谐运动的物体经过一个周期或n个周期后,能回复到原来的运动状态,因此处理实际问题时,要注意多解的可能性或需定出结果的通式。
简谐运动1、简谐运动定义:∑F = -k x① 凡是所受合力和位移满足①式的质点,均可称之为谐振子,如弹簧振子、小角度单摆等。
谐振子的加速度:a= -mk x 2、简谐运动的方程回避高等数学工具,我们可以将简谐运动看成匀速圆周运动在某一条直线上的投影运动(以下均看在x 方向的投影),圆周运动的半径即为简谐运动的振幅A 。
依据:∑F x = -m ω2Acos θ= -m ω2x对于一个给定的匀速圆周运动,m 、ω是恒定不变的,可以令:m ω2 = k这样,以上两式就符合了简谐运动的定义式①。
所以,x方向的位移、速度、加速度就是简谐运动的相关规律。
从图1不难得出——位移方程:x= Acos(ωt + φ) ②速度方程:v= -ωAsin(ωt +φ) ③加速度方程:a= -ω2A cos(ωt +φ) ④ 相关名词:(ωt +φ)称相位,φ称初相。
运动学参量的相互关系:a = -ω2xA =2020)(ωv x +tg φ= -x v ω 3、简谐运动的合成a 、同方向、同频率振动合成。
两个振动x 1 = A 1cos(ωt +φ1)和x 2 = A 2cos(ωt +φ2) 合成,可令合振动x = Acos(ωt +φ) ,由于x = x 1 + x 2 ,解得A =)cos(212212221φφ-++A A A A ,φ= arctg22112211cos cos sin sin φφφφA A A A ++显然,当φ2-φ1 = 2k π时(k = 0,±1,±2,…),合振幅A 最大,当φ2-φ1 = (2k + 1)π时(k = 0,±1,±2,…),合振幅最小。
b 、方向垂直、同频率振动合成。
当质点同时参与两个垂直的振动x = A 1cos(ωt + φ1)和y = A 2cos(ωt + φ2)时,这两个振动方程事实上已经构成了质点在二维空间运动的轨迹参数方程,消去参数t 后,得一般形式的轨迹方程为212A x +222A y -221A A xy cos(φ2-φ1) = sin 2(φ2-φ1) 显然,当φ2-φ1 = 2k π时(k = 0,±1,±2,…),有y =2A A x,轨迹为直线,合运动仍为简谐运动;当φ2-φ1 = (2k + 1)π时(k = 0,±1,±2,…),有212A x +222A y = 1 ,轨迹为椭圆,合运动不再是简谐运动;当φ2-φ1取其它值,轨迹将更为复杂,称“李萨如图形”,不是简谐运动。