2016-2017学年上海市闵行区九校联考八年级(上)期末数学试卷
- 格式:pdf
- 大小:785.99 KB
- 文档页数:21
上海2017学年第一学期八年级数学期末卷(满分100分 时间 90 分钟)1.化简:a b a (32<)0 .2.如果x +2在实数范围内有意义,那么x 的取值范围是______ ____. 3.分母有理化:=-154 . 4.方程x x 22=的根是 __.5.在实数范围内分解因式:=+-2622x x .6.如果x x x f 3)(2-=,那么=)32(f _______ __.7.如果正比例函数中,y 的值随自变量x 的增大而减小,请你写出一个符合这个要求的正比例函数__ ________.8.已知直线4)2(2+--=m x m y 过原点,则=m __ __.9.命题“等腰三角形两腰上的高相等”的逆命题是:_ __.10.等腰三角形周长20,腰长为x ,底边为y ,写出y 关于x 的函数解析式 _,定义域_____ .11.在△ABC 中,∠C=900,AB=6, BC=3, 那么∠B = 度 .12.到定点O 的距离等于2cm 的点的轨迹是: .13.如图,等腰△ABC 中,AB=AC=10, AB 的垂直平分线MN 分别交AB 于点M, AC 于点N,△BCN 的周长为16,那么BC=____ .14.如图,PA ⊥OA , PB ⊥OB , 垂足分别为点D 、E , AP =BP ,则△AOP ≌△BOP 的理由是 .15.如图,在△ABC 中,∠ACB=900,∠A =200,CD 于CE 分别是斜边AB 上的高和中线,那么 ∠DCE=______ ___度.(13) (14) (15)BA B D E二、选择题:(共4题,每题3分)16.下列二次根式是最简二次根式的是 ( )A .21; B .6; C .8; D .9. 17.下列一元二次方程中,有一个根为2的方程是 ( )A .0232=-+x x ; B .0232=++x x ; C .0322=+-x x ; D .0232=+-x x . 18.某印刷厂十月份印书10万册,十二月份印书30万册,求平均每月的增长率,若设平均每月的增长率为x ,那么根据题意,可列出的方程是 ( )A .30)1(10=+x ;B .30)1(102=+x ;C .30)1(103=+x ;D .30)1(10)1(10102=++++x x . 19.下列说法中正确的是 ( )A .每个命题都有逆命题;B .每个定理都有逆定理;C .真命题的逆命题都是真命题;D .假命题的逆命题都是假命题.三、计算题、简答题:(共5题,每题5分)20.计算:)1224(231423+--⨯÷21.以A (-1,1),B (0,3),C (3,-1)三点为顶点,能否构成一个三角形?若能,请判断这个三角形的形状,若不能,请说明原因.22.用配方法解方程: y y 5322=+23.关于x 的方程02)2(2=--+m x m x (其中m 是实数)一定有实数根吗?为什么?24.如图,在直角坐标平面内,射线a 和b 分别表示A 、B 两种型号的货船在匀速行驶中的路程S (单位:百米)与行驶时 间t (单位:分钟)之间的关系.根据图中的信息填空: (1)A 型货船行驶400米需要 分钟,B 型货船行驶200米需要 分钟; (2)A 型货船行驶400米时,B 型货船行驶 米; (3)B 型货船行驶4分钟时,A 型货船行驶 米; (4)A 型货船行驶的速度是 米/分钟,B 型货船行驶的速度是 米/分钟.四、解答题:(共4题,6’+6’+6’+8’)25.已知:如图,点C 在线段AB 上,CD ⊥AB , CD=CA , 点E 在CD 上,点F 、G 分别是BD 、AE 的中点,CG=CF . 求证:CE=CB26.某商品每件的成本价为400元,零售价比成本价高出50%。
2016-2017学年第一学期期末考试八年级数学试题参考答案一、选择题(本题共36分,每小题3分)二、填空题(本题共24分,每小题3分)x;12. 6<x<12;13.4,0),(4,4),(0,4);14.-6;15.①11.②④三、解答题(本题共16分,每小题4分)16.(1))解:方程两边乘以,得------------------------1分解得.--------------------------2分检验:当时,.---------------------------------3分所以,原分式方程的解为.---------------------------4分(2))a2(x﹣y)+4b2(y﹣x)=a2(x﹣y)﹣4b2(x﹣y)------------------------1分=(x﹣y)(a2﹣4b2)---------------------------------------2分=(x﹣y)(a+2b)(a﹣2b).---------------------------------4分17. 解:原式=[﹣]×,=×,-----------------2分=×,-------------------------------------------3分=,--------------------------------------------4分2x+5>1,2x>﹣4,x>﹣2,-------------------------------------------5分∵x是不等式2x+5>1的负整数解,∴x=﹣1,--------------------------------------------6分把x=﹣1代入中得:=3.--------------------------------------------8分18. 解:(1)如图,A′(﹣2,4),B′(3,﹣2),C′(﹣3,1);-----------------3分-- ------6分(2)S△ABC=6×6﹣×5×6﹣×6×3﹣×1×3,=36﹣15﹣9﹣1,=10.--------------------------------------10分19. (1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.--------------------------------2分又∵AE=BD,∴△AEC≌△BDA(SAS).--------------------------------2分∴AD=CE;--------------------------------5分(2)解:∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,--------------------------------7分∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.--------------------------------10分20. 解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x 元,…………1分由题意,得=2×+500,解得x=3,经检验x=3是方程的解. (3)分答:该种干果的第一次进价是每千克3元…………5分(2)30009000+-5006+500660%-3000+9000 331+20%⨯⨯⨯⨯()()()…………7分=(1000+2500﹣500)×6+1800﹣12000=3000×6+1800﹣12000=18000+1800﹣12000=7800(元).…………9分答:超市销售这种干果共盈利7800元.…………10分21. 1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,------------1分由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-------------------------------3分∴∠ABC=∠ACB,∴AB=AC;------------------------------4分(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,--------------------------5分由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-----------6分∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;--------------------------9分(3)解:不一定成立,-------------------------10分当∠A 的平分线所在直线与边BC 的垂直平分线重合时AB=AC ,否则AB ≠AC .(如示例图)--------------------------12分22. 解:(1)第一个图形中阴影部分的面积是a 2﹣b 2,第二个图形的面积是(a+b )(a ﹣b ),则a 2﹣b 2=(a+b )(a ﹣b ).故答案是B ; ------------------3分(2)①∵x 2﹣9y 2=(x+3y )(x ﹣3y ),------------------------5分∴12=4(x ﹣3y )------------------------6分得:x ﹣3y=3;------------------------8分 ②111111111+11+-1+1-+1-2233999910010031421009810199=223399991001001101=2100101=200⨯⨯⨯⨯⨯⨯⨯()(﹣)()(1)......()()(1)()......9分............10分......11分......12分。
八年级(初二)上册数学期末试卷及答案一、细心填一填(本题共10小题;每小题4分,共40分.) 1.若x 2+kx +9是一个完全平方式,则k =.2.点M (-2,k )在直线y =2x +1上,则点M 到x 轴的距离是.3.已知一次函数的图象经过(-1,2),且函数y 的值随自变量x 的增大而减小,请写出一个符合上述条件的函数解析式.4.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,BC=10cm ,BD=7cm ,则点D 到AB 的距离是.5.在△ABC 中,∠B=70°,DE 是AC 的垂直平分线,且∠BAD:∠BAC=1:3,则∠C=.6.一等腰三角形的周长为20,一腰的中线分周长为两部分,其中一部分比另一部分长2,则这个三角形的腰长为.7.某市为鼓励居民节约用水,对自来水用户收费办法调整为:若每户/月不超过12吨则每吨收取a 元;若每户/月超过12吨,超出部分按每吨2a 元收取.若小亮家5月份缴纳水费20a 元,则小亮家这个月实际用水4题 5题图AD CAEB D C8. 如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.一定成立的结论有____________(把你认为正确的序号都填上).9.对于数a,b,c,d,规定一种运算a bc d=ad-bc,如102(2)-=1³(-2)-0³2=-2,那么当(1)(2)(3)(1)x xx x++--=27时,则x=10、已知,3,5==+xyyx则22yx+=二、精心选一选(本题共10小题;每小题4分,共40分)11、下列四个图案中,是轴对称图形的是()12、等腰三角形的一个内角是50°,则另外两个角的度数分别是()A、65°,65°B、50°,80°C、65°,65°或50°,80°D、50°,5013、下列命题:(1)绝对值最小的的实数不存在;(2)无理数在数轴上对应点不存在;(3)与本身的平方根相等的实数存在;(4)带根号的数都是无理数;(5)在数轴上与原点距离等于2的点之间有无数多个点表示无理数,其中错误的命题的个数是( )A、2B、3C、4D、514.对于任意的整数n,能整除代数式(n+3)(n-3)-(n+2)(n-2)的整数是ABC EDOP Q( )A.4B.3C.5D.215.已知点(-4,y1),(2,y2)都在直线y=-12x+2上,则y1、y2大小关系是()A. y1> y2B. y1= y2C.y1< y2D.不能比较16.下列运算正确的是 ( )A.x2+x2=2x4B.a2²a3= a5C.(-2x2)4=16x6D.(x+3y)(x-3y)=x2-3y2 17.如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么,下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC一定是全等三角形18.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC•的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm,)ABD20.一名学生骑自行车出行的图象如图,其中正确的信息是( ) A.整个过程的平均速度是760千米/时B.前20分钟的速度比后半小时慢C.该同学途中休息了10分钟D.从起点到终点共用了50分钟三.用心做一做21.计算(10分,每小题5分)(1)分解因式6xy 2-9x 2y -y 3 (2)223(2)()()a b ab b b a b a b --÷-+-22. (10分) 如图,(1)画出△ABC 关于Y 轴的对称图形△A 1B 1C 1 (2)请计算△ABC 的面积 (3)直接写出△ABC 关于X 轴对称的三角形△A 2B 2C 2的各点坐标。
2016-2017年秋期八年级上期末教学质量检测数学试卷出题人:曾琴一、选择题〔本大题共10个小题,每小题3分,共30分〕1.若分式有意义,则x满足的条件是A.x≠0B.x≠3C.x≠-3D.x≠±32.计算:(-x)3·(-2x)的结果是A.-2x4B.-2x3C.2x4D.2x33.在平面直角坐标系中,点A(7,-2)关于x轴对称的点A′的坐标是A.(7,2)B.(7,-2)C.(-7,2) D.(-7,-2)4.若△ABC≌△A′B′C′,且AB=AC=9,△ABC的周长为26cm,则B′C′的长为A.10cmB.9cmC.4cmD.8cm5.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P为:A.90°﹣α B. 90°+αC. C. 360°﹣α6.分式方程1226x x=+的解为第5题图A.x=-2B.x=2 C.x=-3D.x=37.计算:201423⎛⎫⎪⎝⎭×(-1.5)2015的结果是A.-32B.32C.-23D.238. 下列各图形都是轴对称图形,其中对称轴最多的是A.等腰直角三角形B.直线C.等边三角形D.正方形9.已知△ABC的两边长分别为AB=9、AC=2,第三边BC的长为奇数,则BC的长是A.5B.7C.9D.1110.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为A. 5B. 5或6C. 5或7D. 5或6或7二、填空题(本大题共6个小题,每小题3分,共18分)请将答案直接填在答题卷对应的横线上.11.分解因式:4x2-1=.12.若分式2212xx x-+-=0,则x=.A )BCD 84° (第13题)13.如图,在△ABC 中,点D 是BC 上一点,∠BAD =84°,AB =AD =DC ,则∠CAD =.14.如图,在△ABC 中,EF 是AB 边的垂直平分线,AC =18cm ,BC =16cm 则△BCE 的周长为cm .15.等腰三角形的周长为24cm ,腰长为xcm ,则x 的取值X 围是________.16.已知b a b a +=+111 ,则ba ab +的值。
2016-2017学年八年级(上)期末数学试卷两套合集二附答案解析2016-2017学年八年级(上)期末数学试卷一、选择题:每题2分,共12分.1.要使分式成心义,那么x的取值应知足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣12.以下大学的校徽图案是轴对称图形的是()A.清华大学B.北京大学C.人民大学D.浙江大学3.以下计算正确的选项是()A.3a﹣a=2 B.a2•a3=a6C.a2+2a2=3a2D.(a+b)2=a2+b24.假设三角形两边长别离为6cm,2cm,第三边长为偶数,那么第三边长为()A.2cm B.4cm C.6cm D.8cm5.如下图,亮亮书上的三角形被墨迹污染了一部份,专门快他就依照所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA6.化简的结果是()A.B.C.a﹣b D.b﹣a二、填空题:每题3分,共24分.7.写出一个运算结果是a6的算式.8.计算:(2016)0+()2﹣(﹣1)2016= .9.分解因式:a3﹣a= .10.假设3x=15,3y=5,那么3x﹣2y= .11.一个多边形内角和是一个四边形内角和的4倍,那么那个多边形的边数是.12.在平面直角坐标系中,点P(﹣2,3)关于x轴对称的点P1的坐标是.13.假设分式的值为0,那么x的值为.14.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,那么AC= .三、解答题:每题5分,共20分.15.因式分解:2a2﹣4a+2.16.化简:x(4x+3y)﹣(2x+y)(2x﹣y)17.解分式方程:.18.先化简,再求值:(﹣)÷,其中x=﹣3.四、解答题:每题7分,共28分.19.已知:图①、图②均为5×6的正方形网格,点A、B、C在格点(小正方形的极点)上.请你别离在图①、图②中确信格点D,画出一个以A、B、C、D为极点的四边形,使其为轴对称图形,并画出对称轴.20.如图是一个长为2a、宽为2b的长方形,沿图中虚线用剪子均匀分成四块小长方形,然后按图2形状拼成一个正方形.(1)请利用图2中的空白部份面积的不同表示方式,写出一个关于a、b的恒等式.(2)假设a+b=10,ab=6,依照你所取得的恒等式,求(a﹣b)的值.21.如图AB=AC,BD=CD,DE⊥BA,点E为垂足,DF⊥AC,点F为垂足,求证:DE=DF.22.已知,小敏、小聪两人在x=2,y=﹣1的条件下别离计算P和Q的值,小敏说P的值比Q大,小聪说Q的值比P大,请你判定谁的结论正确?并说明理由.五、解答题:每题8分,共16分.23. 2016年中秋节期间,某商城隆重开业,某商家有打算选购甲、乙两种礼盒作为开业期间给予买家的礼物,已知甲礼盒的单价是乙礼盒单价的1.5倍;用600元单独购买甲种礼盒比单独购买乙种礼盒要少10个.(1)求甲、乙两种礼盒的单价别离为多少元?(2)假设商家打算购买这两种礼盒共40个,且投入的经费不超过1050元,那么购买的甲种礼盒最多买多少个?24.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N.(1)假设∠ABC=70°,那么∠MNA的度数是.(2)连接NB,假设AB=8cm,△NBC的周长是14cm.①求BC的长;②在直线MN上是不是存在P,使由P、B、C组成的△PBC的周长值最小?假设存在,标出点P的位置并求△PBC的周长最小值;假设不存在,说明理由.六、解答题:每题10分,共20分.25.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(极点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是不是成立?假设不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.26.研究性学习:在平面直角坐标系中,等腰三角形ABC的极点A的坐标为(2,2).(1)假设底边BC在x轴上,请写出1组知足条件的点B、点C的坐标:;设点B、点C的坐标别离为(m,0)、(n,0),你以为m、n应知足如何的条件?答:.(2)假设底边BC的两头点别离在x轴、y轴上,请写出1组知足条件的点B、点C的坐标:;设点B、点C的坐标别离为(m,0)、(0,n),你以为m、n应知足如何的条件?答:.参考答案与试题解析一、选择题:每题2分,共12分.1.要使分式成心义,那么x的取值应知足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣1【考点】分式成心义的条件.【分析】依照分式成心义,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≠0,解得x≠2.应选:A.【点评】此题考查了分式成心义的条件,从以下三个方面透彻明白得分式的概念:(1)分式无心义⇔分母为零;(2)分式成心义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.以下大学的校徽图案是轴对称图形的是()A.清华大学B.北京大学C.人民大学D.浙江大学【考点】轴对称图形.【分析】依照轴对称图形的概念对各选项分析判定即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.应选B.【点评】此题考查了轴对称图形的概念,轴对称图形的关键是寻觅对称轴,图形两部份折叠后可重合.3.以下计算正确的选项是()A.3a﹣a=2 B.a2•a3=a6C.a2+2a2=3a2D.(a+b)2=a2+b2【考点】同底数幂的乘法;归并同类项;完全平方公式.【分析】依照同底数幂的乘法、归并同类项、完全平方公式的运算法那么结合选项求解.【解答】解:A、3a﹣a=2a,计算错误,故本选项错误;B、a2•a3=a5,计算错误,故本选项错误;C、a2+2a2=3a2,计算正确,故本选项正确;D、(a+b)2=a2+2ab+b2,计算错误,故本选项错误.应选C.【点评】此题考查了同底数幂的乘法、归并同类项、完全平方公式等知识,把握各知识点的运算法那么是解答此题的关键.4.假设三角形两边长别离为6cm,2cm,第三边长为偶数,那么第三边长为()A.2cm B.4cm C.6cm D.8cm【考点】三角形三边关系.【分析】依照三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,求得第三边的取值范围,再进一步进行分析.【解答】解:依照三角形的三边关系,得第三边大于4cm,而小于8cm.又第三边是偶数,那么应是6cm.应选C.【点评】此题考查了三角形的三边关系,同时注意偶数这一条件.5.如下图,亮亮书上的三角形被墨迹污染了一部份,专门快他就依照所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【考点】全等三角形的判定.【分析】依照图象,三角形有两角和它们的夹边是完整的,因此能够依照“角边角”画出.【解答】解:依照题意,三角形的两角和它们的夹边是完整的,因此能够利用“角边角”定理作出完全一样的三角形.应选D.【点评】此题考查了三角形全等的判定的实际运用,熟练把握判定定理并灵活运用是解题的关键.6.化简的结果是()A.B.C.a﹣b D.b﹣a【考点】分式的混合运算.【分析】先算小括号里的,再把除法统一成乘法,约分化为最简.【解答】解:原式=()•==﹣,应选B.【点评】分式的四那么运算是整式四那么运算的进一步进展,在计算时,第一要弄清楚运算顺序,先去括号,再进行分式的乘除.二、填空题:每题3分,共24分.7.(2021•滨州)写出一个运算结果是a6的算式a2•a4(答案不唯一).【考点】幂的乘方与积的乘方;同底数幂的乘法;同底数幂的除法.【专题】开放型.【分析】依照同底数幂的乘法法那么,底数不变,指数相加,可得答案.【解答】解:a2•a4=a6,故答案为:a2•a4(答案不唯一).【点评】此题考查了同底数幂的乘法,同底数幂相乘,底数不变,指数相加.8.计算:(2016)0+()2﹣(﹣1)2016= .【考点】零指数幂.【分析】依照非零的零次幂等于1,负数的偶数次幂是正数,可得答案.【解答】解:原式=1+﹣1=,故答案为:.【点评】此题考查了零次幂,利用非零的零次幂等于1,负数的偶数次幂是正数是解题关键.9.分解因式:a3﹣a= a(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【点评】此题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解完全.10.假设3x=15,3y=5,那么3x﹣2y= .【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】直接利用同底数幂的除法运算法那么将原式变形进而得出答案.【解答】解:∵3x=15,3y=5,∴3x﹣2y=3x÷(3y)2=15÷25=.故答案为:.【点评】此题要紧考查了同底数幂的除法运算法那么,正确将原式变形是解题关键.11.一个多边形内角和是一个四边形内角和的4倍,那么那个多边形的边数是10 .【考点】多边形内角与外角.【分析】多边形的外角和是360度,多边形的外角和是内角和的4倍,那么多边形的内角和是360×4=1440度,再由多边形的内角和列方程解答即可.【解答】解:设那个多边形的边数是n,由题意得,(n﹣2)×180°=360°×4解得n=10.故答案为:10.【点评】此题要紧考查了多边形的内角和定理与外角和定理,熟练把握定理是解题的关键.12.在平面直角坐标系中,点P(﹣2,3)关于x轴对称的点P1的坐标是P1(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】依照关于x轴对称的点,横坐标相同,纵坐标互为相反数;那么P1的坐标为(﹣2,﹣3).【解答】解:∵P(﹣2,3)与P1关于x轴对称,∴横坐标相同,纵坐标互为相反数,∴P1的坐标为(﹣2,﹣3).故答案为(﹣2,﹣3).【点评】考查了关于x轴、y轴对称的点的坐标,解决此题的关键是把握好对称点的坐标规律,注意结合图象,进行经历和解题.13.假设分式的值为0,那么x的值为﹣3 .【考点】分式的值为零的条件.【分析】依照分式成心义的条件可得x2﹣9=0,且(x﹣1)(x﹣3)≠0,再解即可.【解答】解:由题意得:x2﹣9=0,且(x﹣1)(x﹣3)≠0,解得:x=﹣3,故答案为:﹣3.【点评】此题要紧考查了分式值为零的条件,关键是把握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”那个条件不能少.14.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,那么AC= 6 .【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】先作辅助线,然后利用垂直平分线的性质求出AD=BD,最后解直角三角形计算.【解答】解:连接BD∵DE垂直平分AB∴AD=BD∴∠DBA=∠A=30°∴∠CBD=30°∴BD=2CD=4∴AC=CD+AD=CD+BD=2+4=6.答案6.【点评】此题要紧考查线段的垂直平分线的性质和直角三角形的性质.三、解答题:每题5分,共20分.15.因式分解:2a2﹣4a+2.【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】原式提取2,利用完全平方公式分解即可.【解答】解:原式=2(a2﹣2a+1)=2(a﹣1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练把握因式分解的方式是解此题的关键.16.化简:x(4x+3y)﹣(2x+y)(2x﹣y)【考点】整式的混合运算.【专题】计算题.【分析】原式第一项利用单项式乘以多项式法那么计算,第二项利用平方差公式化简,去括号归并即可取得结果.【解答】解:原式=4x2+3xy﹣4x2+y2=3xy+y2.【点评】此题考查了整式的混合运算,熟练把握运算法那么是解此题的关键.17.解分式方程:.【考点】解分式方程.【专题】计算题;压轴题.【分析】观看可得2﹣x=﹣(x﹣2),因此方程的最简公分母为:(x﹣2),去分母将分式方程化为整式方程后再求解,注意查验.【解答】解:方程两边同乘(x﹣2),得:1=﹣(1﹣x)﹣3(x﹣2)整理得:1=x﹣1﹣3x+6,解得:x=2,经查验x=2是增根,∴原分式方程无解.【点评】(1)解分式方程的大体思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程必然注意要验根;(3)分式方程去分母时不要漏乘.18.先化简,再求值:(﹣)÷,其中x=﹣3.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分取得最简结果,将x的值代入计算即可求出值.【解答】解:原式=[﹣]•=﹣=﹣,当x=﹣3时,原式=.【点评】此题考查了分式的化简求值,熟练把握运算法那么是解此题的关键.四、解答题:每题7分,共28分.19.已知:图①、图②均为5×6的正方形网格,点A、B、C在格点(小正方形的极点)上.请你别离在图①、图②中确信格点D,画出一个以A、B、C、D为极点的四边形,使其为轴对称图形,并画出对称轴.【考点】利用轴对称设计图案.【分析】依照轴对称图形的性质设计出轴对称图形即可.【解答】解:如下图:.【点评】此题要紧考查了利用轴对称设计图案,正确把握轴对称图形概念是解题关键.20.如图是一个长为2a、宽为2b的长方形,沿图中虚线用剪子均匀分成四块小长方形,然后按图2形状拼成一个正方形.(1)请利用图2中的空白部份面积的不同表示方式,写出一个关于a、b的恒等式(a+b)2=(a ﹣b)2+4ab .(2)假设a+b=10,ab=6,依照你所取得的恒等式,求(a﹣b)的值.【考点】完全平方公式的几何背景.【分析】(1)阴影部份的面积能够看做是边长(a﹣b)的正方形的面积,也能够看做边长(a+b)的正方形的面积减去4个小长方形的面积;(2)利用(1)的结论,把(a﹣b)2=(a+b)2﹣4ab,把数值整体代入即可.【解答】解:(1)恒等式为:(a+b)2=(a﹣b)2+4ab.例如:当a=5,b=2时,(a+b)2=(5+2)2=49(a﹣b)2=(5﹣2)2=94ab=4×5×2=40因为49=40+9,因此(a+b)2=(a﹣b)2+4ab.故答案为::(a+b)2=(a﹣b)2+4ab.(2)∵a+b=10,(a+b)2=100,∵(a+b)2=(a﹣b)2+4ab,ab=6,∴(a﹣b)2=(a+b)2﹣4ab=100﹣4×6=76,∴a﹣b=2或a﹣b=﹣2,∵a>b,∴a﹣b=2.【点评】此题考查了列代数式,完全平方公式的实际应用,完全平方公式与正方形的面积公式和长方形的面积公式常常联系在一路.要学会观看.21.如图AB=AC,BD=CD,DE⊥BA,点E为垂足,DF⊥AC,点F为垂足,求证:DE=DF.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】利用“边边边”证明△ABD和△ACD全等,依照全等三角形对应角相等可得∠BAD=∠CAD,再依照角平分线上的点到角的两边的距离相等即可得证.【解答】证明:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,∵DE⊥BA,DF⊥AC,∴DE=DF.【点评】此题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,求出∠BAD=∠CAD是解题的关键.22.已知,小敏、小聪两人在x=2,y=﹣1的条件下别离计算P和Q的值,小敏说P的值比Q大,小聪说Q的值比P大,请你判定谁的结论正确?并说明理由.【考点】分式的化简求值;整式的混合运算—化简求值.【专题】探讨型.【分析】先依照分式及整式混合运算的法那么把原式进行化简,再把x=2,y=﹣1时期入求出P、Q 的值,比较出其大小即可.【解答】解:都不正确.∵P=﹣==x﹣y,∴当x=2,y=﹣1时,P=2+1=3;∵Q=(x+y)(x+y﹣2y)=(x+y)(x﹣y),∴当x=2,y=﹣1时,Q=(2﹣1)(2+1)=3,∴P=Q.【点评】此题考查的是分式的化简求值及整式的化简求值,熟知分式及整式混合运算的法那么是解答此题的关键.五、解答题:每题8分,共16分.23.2016年中秋节期间,某商城隆重开业,某商家有打算选购甲、乙两种礼盒作为开业期间给予买家的礼物,已知甲礼盒的单价是乙礼盒单价的1.5倍;用600元单独购买甲种礼盒比单独购买乙种礼盒要少10个.(1)求甲、乙两种礼盒的单价别离为多少元?(2)假设商家打算购买这两种礼盒共40个,且投入的经费不超过1050元,那么购买的甲种礼盒最多买多少个?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)依照题意能够取得相应的分式方程,从而能够解答此题;(2)依照题意能够取得相应的不等式,从而能够解答此题.【解答】解:(1)设乙种礼盒购买了x个,解得,x=20,经查验x=20是原分式方程的解,那么1.5x=30,即甲、乙两种礼盒的单价别离为30元、20元;(2)设购买甲种礼盒x个,30x+20(40﹣x)≤1050,解得,x≤25即购买的甲种礼盒最多买25个.【点评】此题考查分式方程的应用、一元一次不等式的应用,解题的关键是明确题意,找出所求问题需要的条件.24.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N.(1)假设∠ABC=70°,那么∠MNA的度数是50°.(2)连接NB,假设AB=8cm,△NBC的周长是14cm.①求BC的长;②在直线MN上是不是存在P,使由P、B、C组成的△PBC的周长值最小?假设存在,标出点P的位置并求△PBC的周长最小值;假设不存在,说明理由.【考点】轴对称-最短线路问题;线段垂直平分线的性质;等腰三角形的性质.【分析】(1)依照等腰三角形的性质得出∠ABC=∠ACB=70°,求得∠A=40°,依照线段的垂直平分线的性质得出AN=BN,进而得出∠ABN=∠A=40°,依照三角形内角和定理就可得出∠ANB=100°,依照等腰三角形三线合一就可求得∠MNA=50°;(2)①依照△NBC的周长=BN+CN+BC=AN+NC+BC=AC+BC就可求得.②依照轴对称的性质,即可判定P确实是N点,因此△PBC的周长最小值确实是△NBC的周长.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=40°,∵MN是AB的垂直平分线,∴AN=BN,∴∠ABN=∠A=40°,∴∠ANB=100°,∴∠MNA=50°;故答案为50°.(2)①∵AN=BN,∴BN+CN=AN+CN=AC,∵AB=AC=8cm,∴BN+CN=8cm,∵△NBC的周长是14cm.∴BC=14﹣8=6cm.②∵A、B关于直线MN对称,∴连接AC与MN的交点即为所求的P点,现在P和N重合,即△BNC的周长确实是△PBC的周长最小值,∴△PBC的周长最小值为14cm.【点评】此题考查了等腰三角形的性质,线段的垂直平分线的性质,三角形内角和定理和轴对称的性质,熟练把握性质和定理是解题的关键.六、解答题:每题10分,共20分.25.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(极点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是不是成立?假设不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)依照等边三角形的性质及等式的性质就能够够得出△ABD≌△ACE,从而得出结论;(2)依照等边三角形的性质及等式的性质就能够够得出△ABD≌△ACE,就能够够得出BD=CE,就能够够得出AC=CE﹣CD;(3)先依照条件画出图形,依照等边三角形的性质及等式的性质就能够够得出△ABD≌△ACE,就能够够得出BD=CE,就能够够得出AC=CD﹣CE.【解答】解:(1)∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE.∵BC=BD+CD,AC=BC,∴AC=CE+CD;(2)AC=CE+CD不成立,AC、CE、CD之间存在的数量关系是:AC=CE﹣CD.理由:∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE在△ABD和△ACE中,∴△ABD≌△ACE(SAS)∴BD=CE ∴CE﹣CD=BD﹣CD=BC=AC,∴AC=CE﹣CD;(3)补全图形(如图)AC、CE、CD之间存在的数量关系是:AC=CD﹣CE.理由:∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,∴∠BAD=∠CAE在△ABD和△ACE中,∴△ABD≌△ACE(SAS)∴BD=CE.∵BC=CD﹣BD,∴BC=CD﹣CE,∴AC=CD﹣CE.【点评】此题考查了等边三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.26.研究性学习:在平面直角坐标系中,等腰三角形ABC的极点A的坐标为(2,2).(1)假设底边BC在x轴上,请写出1组知足条件的点B、点C的坐标:(0,0)(4,0);设点B、点C的坐标别离为(m,0)、(n,0),你以为m、n应知足如何的条件?答:m+n=4 .(2)假设底边BC的两头点别离在x轴、y轴上,请写出1组知足条件的点B、点C的坐标:(2,0)(0,2);设点B、点C的坐标别离为(m,0)、(0,n),你以为m、n应知足如何的条件?答:m=n .【考点】等腰三角形的性质;坐标与图形性质.【分析】(1)假设底边BC在x轴上,那么B,C必然关于直线x=2对称.(2)假设底边BC的两头点别离在x轴、y轴上,那么B,C必然关于直线y=x对称.【解答】解:(1)假设底边BC在x轴上,那么点B、点C的坐标能够是:(0,0)(4,0);设点B、点C的坐标别离为(m,0)、(n,0),那么B、C关于点(2,0)对称,∴m+n=4.(2)假设底边BC的两头点别离在x轴、y轴上,点B、点C的坐标能够是:(2,0)(0,2);设点B、点C的坐标别离为(m,0)、(0,n),那么点B、C关于直线y=x对称,∴m=n.故别离填:(0,0)(4,0),m+n=4,(2,0)(0,2),m=n(m、n≠4、0).【点评】此题考查了的研究性的性质及坐标与图形的性质;解题要紧应用了等腰三角形的三线合必然理,等腰三角形的顶角极点必然在底边的垂直平分线上,结合图形做题是比较关键的.2016-2017学年八年级(上)期末数学试卷一、填空题1.如图,△ABC≌△DEF,EB=8,AE=2,那么DE= .2.分式无心义的条件是x= .3.化简:÷= .4.假设方程无解,那么m= .5.已知a+b=2,那么a2﹣b2+4b的值为.6.已知:如图,∠ACB=∠DBC,要使△ABC≌△DCB,只需增加的一个条件是(只需填写一个你以为适合的条件).7.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,那么AC= .8.如图,∠1=∠2=30°,∠3=∠4,∠A=80°,那么x= 度,y= 度.二、选择题9.以下长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.1,2,3 D.5,6,1010.以下计算正确的选项是()A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2D.3a+2a=5a211.在如图的网格中,在网格上找到点C,使△ABC为等腰三角形,如此的点有几个()A.8 B.9 C.10 D.1112.计算(18x4﹣48x3+6x)÷6x的结果为()A.3x3﹣13x2 B.3x3﹣8x2C.3x3﹣8x2+6x D.3x3﹣8x2+113.如图,在△ABC中,∠ACB=90°,∠A=20°,假设将△ABC沿CD折叠,使点B落在AC边上的点E处,那么∠CED的度数是()A.30° B.40° C.50° D.70°14.如下图,l是四边形ABCD的对称轴,AD∥BC,现给出以下结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有()A.1个B.2个C.3个D.4个三、计算与作图题(本大题共4小题,每题6分,共24分)15.分解因式:3x2y+12xy2+12y3.16.先化简,再求值:,其中m=9.17.解方程: =﹣1.18.请在以下三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形通过轴对称变换后取得的图形,且所画的三角形极点与方格中的小正方形极点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)四、(本大题共3小题,每题8分,共24分)19.如下图,点B、F、C、E在同一条直线上,AB∥DF,AC∥DE,AC=DE,FC与BE相等吗?请说明理由.20.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E,A在直线DC的同侧,连接AE.(1)求证:△ACE≌△BCD;(2)线段AE与BC有什么位置关系?请说明理由.21.千年古镇赵化开发的鑫城小区的内坝是一块长为(3a+b)米,宽为(2a+b)米的长方形地,物业部门打算将内坝进行绿化(如图阴影部份),中间部份将修建一仿古小景点(如图中间的正方形),那么绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.五、(本大题共2小题,每题9分,共18分)22.在△ABC中,∠BAC=90°,∠B=45°,D为BC上一点,BD=AB,DE⊥BC,交AC于点E.(1)求证:△ADE是等腰三角形;(2)图中除△ADE是等腰三角形外,还有无等腰三角形?假设有,请一一写出来(不要求证明);假设没有,请说明理由.23.为庆贺2021年元旦的到来,学校决定举行“庆元旦迎新年”文艺演出,依照演出需要,用700元购进甲、乙两种花束共260朵,其中甲种花束比乙种花束少用100元,已知甲种花束单价比乙种花束单价高20%,乙种花束的单价是多少元?甲、乙两种花束各购买了多少朵?六、(本大题共1小题,共12分)24.小敏与同桌小颖在课下学习中碰到如此一道数学题:“如图(1),在等边三角形ABC中,点E 在AB上,点D在CB的延长线上,且ED=EC,试确信线段AE与DB的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:(1)取特殊情形,探讨讨论:当点E为AB的中点时,如图(2),确信线段AE与DB的大小关系,请你写出结论:AE DB(填“>”,“<”或“=”),并说明理由.(2)特例启发,解答题目:解:题目中,AE与DB的大小关系是:AE=DB(填“>”,“<”或“=”).理由如下:如图(3),过点E作EF∥BC,交AC于点F.(请你将剩余的解答进程完成)(3)拓展结论,设计新题:在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,假设△ABC的边长为1,AE=2,求CD的长(请你画出图形,并直接写出结果).参考答案与试题解析一、填空题1.如图,△ABC≌△DEF,EB=8,AE=2,那么DE= 10 .【考点】全等三角形的性质.【分析】结合图形和已知条件求出AB的长度,再依照全等三角形对应边相等得DE=AB.【解答】解:∵EB=8,AE=2,∴AB=EB+AE=8+2=10,∵△ABC≌△DEF,∴DE=AB=10.【点评】此题要紧考查全等三角形对应边相等的性质,熟练把握性质并灵活运用是解题的关键.2.分式无心义的条件是x= ﹣3 .【考点】分式成心义的条件.【分析】依照分式无心义的条件进行填空即可.【解答】解:∵分式无心义,∴x+3=0,∴x=﹣3,故答案为﹣3.【点评】此题考查了分式无心义的条件,分母为0分式无心义.3.化简:÷= .【考点】分式的乘除法.【专题】计算题;分式.【分析】原式利用除法法那么变形,约分即可取得结果.【解答】解:原式=•=,故答案为:【点评】此题考查了分式的乘除法,熟练把握运算法那么是解此题的关键.4.假设方程无解,那么m= 1 .【考点】分式方程的解.【专题】计算题.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解那个整式方程取得的解使原方程的分母等于0.【解答】解:方程去分母得:(x﹣3)(2﹣x)=m(x﹣2)解得:x=3﹣m,∴当x=2时分母为0,方程无解,即3﹣m=2,∴m=1时方程无解.故答案为:1.【点评】此题考查了分式方程无解的条件,是需要识记的内容.5.已知a+b=2,那么a2﹣b2+4b的值为 4 .【考点】因式分解的应用.【分析】把所给式子整理为含(a+b)的式子的形式,再代入求值即可.【解答】解:∵a+b=2,∴a2﹣b2+4b,=(a+b)(a﹣b)+4b,=2(a﹣b)+4b,=2a+2b,=2(a+b),=2×2,=4.故答案为:4.【点评】此题考查了利用平方差公式分解因式,利用平方差公式和提公因式法整理出a+b的形式是求解此题的关键,同时还隐含了整体代入的数学思想.6.已知:如图,∠ACB=∠DBC,要使△ABC≌△DCB,只需增加的一个条件是∠A=∠D或∠ABC=∠DCB或BD=AC (只需填写一个你以为适合的条件).【考点】全等三角形的判定.【专题】开放型.【分析】已知一条公共边和一个角,有角边角或角角边定理,再补充一组对边相等或一组对角相等即可.【解答】解:添加∠A=∠D,∠ABC=∠DCB,BD=AC后可别离依照AAS、SAS、SAS判定△ABC≌△ADC.故填∠A=∠D或∠ABC=∠DCB或BD=AC.【点评】此题考查三角形全等的判定方式;判定两个三角形全等的一样方式有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,依照已知结合图形及判定方式选择条件是正确解答此题的关键.7.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,那么AC= 6 .【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】先作辅助线,然后利用垂直平分线的性质求出AD=BD,最后解直角三角形计算.【解答】解:连接BD∵DE垂直平分AB。
绝密★启用前上海市闵行区2016-2017学年八年级(下)期末数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(题型注释)1、一次函数y=2﹣x 的图象与y 轴的交点坐标为( )A .(2,0)B .(0,2)C .(﹣2,0)D .(0,﹣2)2、下列方程中,有实数根的是( ) A .=0 B .+=0 C .=2 D .+=23、下列命题中的假命题是( ) A .一组邻边相等的平行四边形是菱形 B .一组邻边相等的矩形是正方形C .一组对边平行且相等的四边形是平行四边形D .一组对边相等且有一个角是直角的四边形是矩形4、如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )A .B .C .D .5、闵行体育公园内有一个形状是平行四边形的花坛(如图),并且AB ∥EF ∥DC ,BC ∥GH ∥AD ,花坛中分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果小杰不小心把球掉入花坛,那么下列说法中错误的是( )A .球落在红花丛中和绿花丛中的概率相等B .球落在紫花丛中和橙花丛中的概率相等C .球落在红花丛中和蓝花丛中的概率相等D .球落在蓝花丛中和黄花丛中的概率相等6、如图,在平行四边形ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,联结EF 、CF ,那么下列结论中一定成立的个数是( )①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.ArrayA.1个 B.2个 C.3个 D.4个第II卷(非选择题)二、填空题(题型注释)7、函数y=﹣x+1的图象不经过第______象限.8、已知直线y=(k+2)x+的截距为1,那么该直线与x轴的交点坐标为______.9、在函数y=﹣3x+7中,如果自变量x大于2,那么函数值y的取值范围是______.10、已知一次函数y=x+m﹣1(其中m是常数),如果函数值y随x的增大而减小,且与y轴交于点P(0,t),那么t的取值范围是______.11、方程3x3﹣2x=0的实数解是______.12、方程2=x﹣6的根是______.13、化简:+﹣=______.14、布袋内装有大小、形状相同的3个红球和1个白球,从布袋中一次摸出两个球,那么两个都摸到红球的概率是______.15、某件商品连续两次降价后,零售价为原来的64%,那么此商品平均每次降价的百分率为______.16、一个多边形的内角和是1440°,那么这个多边形边数是______.17、如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件是______.18、如图,现有一张矩形纸片ABCD ,其中AB=4cm ,BC=6cm ,点E 是BC 的中点.将纸片沿直线AE 折叠,使点B 落在梯形AECD 内,记为点B′,那么B′、C 两点之间的距离是______ cm .三、解答题(题型注释)19、解关于x 的方程:bx 2﹣1=1﹣x 2(b≠﹣1).20、解方程:x 2+2x ﹣=1.21、解方程组:.22、如图,已知点E 在四边形ABCD 的边AB 上,设=,=,=.(1)试用向量、和表示向量,;(2)在图中求作:+﹣.(不要求写出作法,只需写出结论即可)23、已知把直线y=kx+b(k≠0)沿着y轴向上平移3个单位后,得到直线y=﹣2x+5.(1)求直线y=kx+b(k≠0)的解析式;(2)求直线y=kx+b(k≠0)与坐标轴围成的三角形的周长.24、已知:如图,等腰梯形ABCD的中位线EF的长为6cm,对角线BD平分∠ADC,下底BC的长比等腰梯形的周长小20cm,求上底AD的长.25、闵行区政府为残疾人办实事,在道路改造工程中为盲人修建一条长3000米的盲道,根据规划设计和要求,某工程队在实际施工中增加了施工人员,每天修建的盲道比原计划多250米,结果提前2天完成工程,问实际每天修建盲道多少米.26、如图所示,在正方形ABCD中,M是CD的中点,E是CD上一点,且∠BAE=2∠DAM.求证:AE=BC+CE.27、如图1,已知△OAB、△OBC、△OCD、△ODE、△OEF和△OFA均为边长为a的等边三角形,点P为边BC上任意一点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)那么∠MPN=______,并求证PM+PN=3a;(2)如图2,联结OM、ON.求证:OM=ON;(3)如图3,OG平分∠MON,判断四边形OMGN是否为特殊四边形,并说明理由.参考答案1、B2、C3、D4、D5、C6、C7、三.8、(﹣1,0).9、y<1.10、.11、x1=0,x2=,x3=﹣.12、x=12.13、.14、.16、10.17、AD=BC.18、19、b>﹣1,±;b<﹣1,方程无解.20、x1=﹣3,x2=1.21、或或或.22、(1)﹣+;(2)见解析23、3+.24、4cm.25、750米.26、见解析27、60°;1、令x=0可求得y的值,可求得与y轴的交点坐标.解:在y=2﹣x中,令x=0可得y=2,∴函数与y轴的交点坐标为(0,2).故选B.2、A、B、先根据二次根式有意义的条件进行判断;C、两边平方后再来解方程;D、根据二次根式有意义的条件来判断.解:A、>0,故本选项错误;B、由原方程可得=<0,所以方程无实数根,故本选项错误;,C、方程两边平方得x+1=4,即x﹣3=0有实数根,故本选项正确;D、≥0,≥0,则x=1,=0,故本选项错误.故选C.3、要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.解:A、根据菱形的判定定理,正确;B、根据正方形和矩形的定义,正确;C、符合平行四边形的定义,正确;D、错误,可为不规则四边形.故选D.4、先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.解:由题意知,函数关系为一次函数y=﹣2x+4,由k=﹣2<0可知,y随x的增大而减小,且当x=0时,y=4,当y=0时,x=2.故选D.5、根据平行四边形的性质可知GH、BD、EF把一个平行四边形分割成四个小平行四边形,我们知道,一条对角线可以把一个平行四边形的面积一分为二,据此可从图中获得S黄=S蓝,S绿=S红,S(紫+黄+绿)=S(橙+红+蓝),根据等量相减原理知S紫=S橙,依此就可找出题中说法错误的.解:∵AB∥EF∥DC,BC∥GH∥AD,∴GH、BD、EF把一个平行四边形分割成四个小平行四边形,∴一条对角线可以把一个平行四边形的面积一分为二,得S黄=S蓝,S绿=S红,∴球落在蓝花丛中和黄花丛中的概率相等(故D正确);球落在红花丛中和绿花丛中的概率相等(故A正确);S(紫+黄+绿)=S(橙+红+蓝),根据等量相减原理知S紫=S橙,∴球落在紫花丛中和橙花丛中的概率相等(故B正确);S红与S蓝显然不相等∴球落在红花丛中和蓝花丛中的概率不相等(故C错误).故选C.“点睛”本题考查的是平行四边形的性质及几何概率的知识,平行四边形的一条对角线可以把平行四边形分成两个全等的三角形,两条对角线把平行四边形的面积一分为四,同时充分利用等量相加减原理解题,否则容易从直观上对S红等于S蓝产生质疑.6、由在平行四边形ABCD中,AD=2AB,F是AD的中点,易得AF=FD=CD,继而证得①∠DCF=∠BCD;然后延长EF,交CD延长线于M,分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF(ASA),得出对应线段之间关系进而得出答案.解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;②延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故选C.7、先根据一次函数y=﹣x+1中k=﹣,b=1判断出函数图象经过的象限,进而可得出结论.解:∵一次函数y=﹣x+1中k=﹣<0,b=1>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故答案为:三.8、由条件可先求得k的值,再令y=0,可求得直线与x轴的交点坐标.解:∵y=(k+2)x+的截距为1,∴=1,解得k=﹣1,∴直线解析式为y=x+1,令y=0,可得x+1=0,解得x=﹣1,∴直线与x轴的交点坐标为(﹣1,0),故答案为:(﹣1,0).9、首先得到一次函数的增减性,然后结合自变量的取值范围得到函数值的取值范围即可.解:∵函数y=﹣3x+7中k=﹣3<0,∴y随着x的增大而减小,当x=2时,y=﹣3×2+7=1,∴当x>2时,y<1,故答案为:y<1.“点睛”本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了观察函数图象的能力.10、首先根据一次函数的增减性确定m的取值范围,然后用m表示出t,从而确定t的取值范围.解:∵一次函数y=x+m﹣1(其中m是常数)的函数值y随x的增大而减小,∴<0,∴m<,∵一次函数y=x+m﹣1(其中m是常数)与y轴交于点P(0,t),∴t=m﹣1,∴t的取值范围为t<,故答案为:t<.11、方程左边提取x变形后,利用两数相乘积为0,两因式中至少有一个为0转化为一元一次方程来求解.解:方程分解得:x(3x2﹣2)=0,可得x=0或3x2﹣2=0,解得:x1=0,x2=,x3=﹣,故答案为:x1=0,x2=,x3=﹣.12、两边平方,求得一元二次方程的解,进一步利用x﹣3≥0验证得出答案即可.解:2=x﹣64(x﹣3)=x2﹣12x+36整理得x2﹣16x+48=0解得:x1=4,x2=12代入x﹣3>0,当x=4时,等式右边为负数,所以原方程的解为x=12.故答案为:x=12.13、首先利用交换律,可得+﹣=﹣+,然后利用三角形法则求得答案.解:+﹣=﹣+=+=.故答案为:.“点睛”此题考查了平面向量的加减运算.注意掌握交换律的应用.14、列举出所有情况,看两个球颜色是红色的情况数占总情况数的多少即可.解:如图:一共有12种情况,两个球颜色是红色的有6种情况,∴这两个球颜色是红色的概率是=,故答案为:.15、设原价是1,平均每年降价的百分率是x,则降价一次后的价格是(1﹣x),第二次的价格是(1﹣x)2,即可列出方程求解.解:设此商品平均每次降价的百分率为x,根据题意列出方程:(1﹣x)2=64%,解得x=0.2=20%或1.8(不合题意,舍去).答:此商品平均每次降价的百分率为20%.16、利用多边形的内角和为(n﹣2)•180°即可解决问题.解:设它的边数为n,根据题意,得(n﹣2)•180°=1440°,所以n=10.故答案为:10.17、菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.据此四边形ABCD还应满足的一个条件是AD=BC.等.答案不唯一.解:条件是AD=BC.∵EH、GF分别是△ABC、△BCD的中位线,∴EH∥=BC,GF∥=BC,∴EH∥=GF,∴四边形EFGH是平行四边形.要使四边形EFGH是菱形,则要使AD=BC,这样,GH=AD,∴GH=GF,∴四边形EFGH是菱形.18、如图所示:过点B′作B′F⊥BC,垂足为F,连接B′C.首先求得AE=5.然后在求得OE=.,OB=,由翻折的性质可知BB′=,接下来证明△BOE∽△BFB′,由相似三角形的性质可得到:,,从而可求得FC=,Rt△B′FC中,由勾股定理可求得B′C=.解:如图所示:过点B′作B′F⊥BC,垂足为F,连接B′C.∵点E是BC的中点,∴BE=.在Rt△ABE中,AE=.由射影定理可知;OE•AE=BE2,∴OE=.由翻折的性质可知;BO⊥AE.∴.∴OB=.∴BB′=.∵∠OBE=∠FBB′,∠BOE=∠BFB′,∴△BOE∽△BFB′.∴=,即=.解得:,.∴FC=.在Rt△B′FC中,B′C==.故答案为:.“点睛”本题主要考查的是翻折的性质、勾股定理、相似三角形的性质和判定,求得B′F、BF的长度是解题的关键.19、方程整理后,利用平方根定义开方即可求出解.解:方程整理得:(b+1)x2=2,即x2=(b≠﹣1,即b+1≠0),若b+1>0,即b>﹣1,开方得:x=±=±;若b+1<0,即b<﹣1,方程无解.20、设x2+2x=y,则原方程化为y﹣=1,求出y的值,再代入求出x即可.解:设x2+2x=y,则原方程化为:y﹣=1,解得:y1=3,y2=﹣2,当y=3时,x2+2x=3,解得:x1=﹣3,x2=1;当y=﹣2时,x2+2x=﹣2,此时方程无解所以原方程的解为:x1=﹣3,x2=1.21、先把第一个方程利用因式分解的方法化为x﹣3y=0或x+y=0,则原方程可转化为或,然后利用代入法解两个二元二次方程组即可.解:,由①得(x﹣3y)(x+y)=0,所以x﹣3y=0或x+y=0,所以原方程可转化为或,解得或或或,所以原方程组的解为或或或.“点睛”本题考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.22、(1)由=,=,=,直接利用三角形法则求解,即可求得答案;(2)由三角形法则可得:+﹣=﹣=,继而可求得答案.解:(1)∵=,=,=,∴=﹣=﹣;=﹣=﹣(﹣)=﹣+;(2)+﹣=﹣=.如图:即为所求.23、(1)根据题意求出平移后解析式;(2)根据解析式进而得出图象与坐标轴交点,再利用勾股定理得出斜边长,进而得出答案.解:(1)直线y=kx+b(k≠0)沿着y轴向上平移3个单位后,得到直线y=﹣2x+5,可得:直线y=kx+b的解析式为:y=﹣2x+5﹣3=﹣2x+2;(2)在直线y=﹣2x+2中,当x=0,则y=2,当y=0,则x=1,∴直线l与两条坐标轴围成的三角形的周长为:2+1+=3+.24、由等腰梯形的性质得出AB=DC,AD∥BC,得出∠ADB=∠CBD,再由已知条件得出BC=DC=AB,由梯形中位线定理得出AD+BC=2EF=12cm,由已知条件求出BC,即可得出AD的长.解:∵四边形ABCD是等腰梯形,∴AB=DC,AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ADC,∴∠ADB=∠CDB,∴∠CBD=∠CDB,∴BC=DC=AB,∵EF是等腰梯形的中位线,∴AD+BC=2EF=12cm,∵下底BC的长比等腰梯形的周长小20cm,∴BC=AB+BC+CD+AD﹣20,即BC=AB+DC﹣8,∴BC=8cm,∴AD=4cm.25、设实际每天修建盲道x米,则原计划每天修建盲道(x﹣25)米,根据题意可得,实际比原计划少用2天完成任务,据此列方程求解.解:设实际每天修建盲道x米,则原计划每天修建盲道(x﹣25)米,由题意得,﹣=2,解得:x=750,经检验,x=750是原分式方程的解,且符合题意.答:实际每天修建盲道750米.“点睛”本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.26、延长AB到F,使BF=CE,连接EF与BC相交于点N,利用“角角边”证明△BFN 和△CEN全等,根据全等三角形对应边相等可得BN=CN,EN=FN,再根据正方形的性质可得∠BAN=∠DAM,然后求出∠BAN=∠EAN,再根据等腰三角形三线合一可得AE=AF,从而得证.证明:如图,延长AB到F,使BF=CE,连接EF与BC相交于点N,在△BFN和△CEN中,,∴△BFN≌△CEN(AAS),∴BN=CN,EN=FN,又∵M是CD的中点,∴∠BAN=∠DAM,∵∠BAE=2∠DAM,∴∠BAN=∠EAN,∴AN既是△AEF的角平分线也是中线,∴AE=AF,∵AF=AB+BF,∴AE=BC+CE.27、(1)由∠MPN=180°﹣∠BPM﹣∠NPC即可得出∠MPN的度数;作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解;(2)由SAS证明△OMA≌△ONE,得出对应边相等即可;(3)由△OMA≌△ONE得出∠MOA=∠EON,再证出△GOE≌△NOD,得出OG=ON,由△ONG是等边三角形和△MOG是等边三角形即可得出四边形MONG是菱形.(1)解:∵△OAB、△OBC、△OCD、△ODE、△OEF和△OFA均为边长为a的等边三角形∴六边形ABCDEF是边长为a的正六边形,∴∠FAB=∠ABC=∠BCD=∠CDE=∠DEF=∠EFA=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为:60°;作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,如图所示:MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM,HP=BP,PL=PC,NK=ND,∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3a.(2)证明:由(1)得:六边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,∵∠MAO=∠OEN=60°,OA=OE,在△OMA和△ONE中,,∴△OMA≌△ONE(SAS)∴OM=ON.(3)解:四边形MONG是菱形;理由如下:由(2)得,△OMA≌△ONE,∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,∴∠MON=120°,∴∠GON=60°,∵∠GOE=60°﹣∠EON,∠DON=60°﹣∠EON,∴∠GOE=∠DON,∵OD=OE,∠ODN=∠OEG,在△GOE和△DON中,,∴△GOE≌△NOD(ASA),∴OG=ON,又∵∠GON=60°,∴△ONG是等边三角形,∴ON=NG,又∵OM=ON,∠MOG=60°,∴△MOG是等边三角形,∴MG=GO=MO,∴MO=ON=NG=MG,∴四边形MONG是菱形.“点睛”本题是四边形的综合题目,考查了等边三角形的性质与判定、全等三角形的判定与性质、正六边形的性质、平行四边形的判定与性质、菱形的判定等知识;本题综合性强,难度较大,需要多次证明三角形全等和等边三角形才能得出结论.。
2016—2017学年度第一学期期末质量检测八年级数学试题参考答案及评分标准一、选择题:(本题满分36分,每小题3分)A D D A D D CB DCD D二、填空题:(本题满分18分)13. (6,-9) 14. 10 15. 4 16.8 17. 5或7 18.③④三、解答题:(本题满分69分)19.(本题满分8分)(1)解:原方程可变形为:1)2)(2(162)2(-=-++-+-x x x x 方程两边同乘以)2)(2(-+x x ,得:)2)(2(16)2(2-+-=++-x x x ……………………………………2分解这个方程得:2=x ……………………………………3分检验:当2=x 时,)2)(2(-+x x =0,∴2=x 是增根∴原分式方程无解。
……………………………………4分(2)解:原式=1+x x ……………………………………2分 ∵当1,01x =-,时,题中分式无意义,∴23x =或 ∴当2=x 时,原式=32;当3=x 时,原式=43 以上三种情况只选一种即可. ………………………………………4分20. (本题共3个小题,每小题3分,满分9分)(1)30—126(2)4+6(3)23-≥≥x ,此不等式组的正整数解为x=1、2、321.(本题满分9分)证明:∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC∴DE =DF …………………………3分∵点D 是BC 的中点∴BD =CD …………………………5分在Rt △BDE 与Rt △CDF 中⎩⎨⎧==CDBD DF DE ∴Rt △BDE ≌Rt △CDF (HL )…………………………8分∴∠B=∠C …………………………9分22.(本题满分7分)(1)m=3x+8;-------------2分(2)根据题意得:3)1(5831)1(5+-<+≤+-x x x .-----------------4分解得56>≥x∴有6名学生获奖---------6分m=3*6+8=26 该校买了26本课外读物------7分23.(本题满分12分)(1)证明:∵△ABE 为等边三角形∴AB=EA …………………1分又∵EF ⊥AB∴ 3021=∠=∠AEB AEF ………2分 在△ACB 与△EF A 中⎪⎩⎪⎨⎧=∠=∠∠=∠EA AB EFA ACB AEF BAC∴△ACB ≌△EF A ……………………………………4分∴AC =EF ……………………………………5分(2)证明:∵△ACD 为等边三角形∴∠D A C=60°,AC =AD∵AC =EF∴AD =EF ……………………………………7分又∵∠BAC =30°∴∠DAF =60°+30°=90°=∠EF A∴AD ∥EF ……………………………………9分∴四边形ADFE 是平行四边形. …………………10分(3)EF=3---------------------------------------------12分24.(本题满分9分)(1)解:2.4千米=2400米设小明步行的速度是x 米/分钟,则骑自行车的速度是x 3米/分钟,根据题意,得:20324002400=-xx ………………………………3分 解这个方程,得:80=x …………………………………4分 经检验,80=x 是原分式方程的解,且符合题意. 答:小明步行的速度是80米/分钟. …………………………5分(2)4238024002802400=⨯++分钟 …………………………7分 42分钟<45分钟所以,小明能在球赛开始前赶到体育馆. ………………………9分25.(本题满分12分)证明:取AB 的中点M ,连接ME .∵四边形ABCD 是正方形,E 为BC 中点,M 为AB 中点∴AM =MB =BE =EC∴Rt △MBE 为等腰直角三角形∴∠BME =45°∴∠AME =135°∵CF 平分∠DCG∴∠ECF =135°∴∠AME =∠ECF …………………………1分∵∠AEF =90°∴∠CEF +∠AEB =90°又∵∠MAE +∠AEB =90°∴∠MAE =∠CEF …………………………2分在△AME 与△ECF 中⎪⎩⎪⎨⎧∠=∠=∠=∠ECF AME ECAM CEF MAE ∴△AME ≌△ECF (ASA )…………………………3分∴AE =EF ……………………………………………4分【拓展】(1)情况一:当点E 在线段BC 上时,结论成立。
EDCBA2016-2017学年初二上学期期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1. 下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A B C D 2. 下列计算正确的是( )A .32x x x =+B .632x x x =⋅C .623)(x x =D .339x x x =÷ 3.下列式子为最简二次根式的是( )A 、3B 、4C 、8D 、21 4.如果2-x 有意义,那么x 的取值范围是( )A .x >2B .x ≥2C .x ≤2D .x <25.如图在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC =3 cm ,那么AE +DE 等于( )A .2 cmB .3 cmC .4 cmD .5 cm6.如图,所示的图形面积由以下哪个公式表示 2222222222.()().()=2.()2.()()A a b a a b b a bB a b a ab bC a b a ab bD a b a b a b -=-+---++=++-=-+7.若分式211x x --的值为0,则x 的值为( )A . 1.x =B . 1.x =-C . 1.x =±D . 1.x ≠ 8.若11,x x -=则221x x+的值是 ( ) A .3 B .2 C .1 D .49. 如图,△ABC中, AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,连接OC,OB,则图中全等的三角形有A.1对B.2对C.3对D.4对10.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A.B.2C.2D.二、填空题(本题共14分,每空2分)11. 中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素, 这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学技术法表示为.12. 如图,AB=AC,点E,点D分别在AC,AB上,要使△ABE≌△ACD,应添加的条件是 .(添加一个条件即可)13.若22(3)16+-+是一个完全平方式,那么m应为 .x m x14.如图,Rt △ABC 的斜边AB 的中垂线MN 与AC 交于点M ,∠A=150,BM=2,则 △AMB 的面积为 .15.在平面直角坐标系xOy 中,已知点A (2,3),在坐标轴上找一点P ,使得△AOP 是等腰三角形,则这样的点P 共有 个. 16. 观察下列关于自然数的等式:514322=⨯- ① 924522=⨯- ② 1334722=⨯- ③根据上述规律解决下列问题:⑴完成第四个等式: ;⑵写出你猜想的第n 个等式(用含n 的式子表示) ;三、解答题(本题共56分)解答题应写出文字说明,验算步骤或证明过程。
闵行区2017学年度第一学期初二年级数学学科期末教学质量监控测试题一、填空题(本大题共15题,每题2分,满分30分) 1=.2、函数y 的定义域是 .3、方程250x x -=的解是.4、如果关于x 的方程224x x a -+=有一个根是1x =-,那么a =.5、已知函数()f x ,则(1)f -= .6、在实数范围内因式分解:225x x --=.7、如果关于x 的方程2230x x m -+=有两个相等的实数根,那么m 的值为.8、如图,正比例函数图像经过点A ,该函数解析式是 .9、在平面直角坐标系中,如果双曲线ky x=(0)k ≠经过点(2,1)-,那么k = .10、经过定点A 且半径为3厘米的圆的圆心的轨迹是 . 11、已知直角坐标平面内的两点分别为(1,2)A 、(4,6)B,则AB =.12、如果直角三角形的斜边上的高与斜边上的中线长分别为3厘米和4厘米,那么这个直角三角形的面积为平方厘米.13、如图,有两棵树,一棵高10m ,另一棵高4m ,两树相距8m .一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行 m .14、如图,已知在ABC ∆中,90C ∠=︒,MN 是AB 的中垂线,30A ∠=︒,5AM =cm ,则CM =cm .15、如图,等边OAB ∆和等边AFE ∆的一边都在x 轴上,双曲线ky x=(0)k >经过边OB 的中点C 和AE 的中点D .已知等边OAB ∆的边长为8,则等边AFE ∆的边长为 .二、选择题(本大题共4题,每题3分,满分12分)16 …………………………………………………( )(第8题)(第13题图)(第14题图)CBMN A(A)(B)(C)(D) 17、某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是 ………………………………………………………( )(A) 236(1)25x -= (B) 36(12)25x -= (C) 236(1)25x -= (D) 236(1)3625x -=-18、如图,在ABC ∆中,AB AC =,D 为BC 上一点,连接AD ,点E 在AD 上,过点E 作EM AB ⊥,EN AC ⊥,垂足分别 为,M N .下面四个结论正确有…………………………( )① 如果AD BC ⊥,那么EM EN =;② 如果EM EN =,那么BAD CAD ∠=∠; ③ 如果EM EN =,那么AM AN =; ④ 如果EM EN =,那么AEM AEN ∠=∠.(A) 1个(B) 2个(C) 3个(D) 4个19、在函数ky x=(0)k <的图像上有三点1A 11(,)x y ,2A 22(,)x y ,3A 33(,)x y ,已知1230x x x <<<,则下列各式中,正确的是…………………………………………………………………( )(A) 123y y y >>(B) 231y y y >>(C) 213y y y >>(D) 132y y y >>三、简答题(本大题共4题,每题6分,满分24分)2021、解方程:2+262x xx +=解:解:22、关于x 的一元二次方程2(31)210ax a x a --+-=,它的根的判别式的值为1,求a 的值. 解:23、已知:如图,点,E ,A C 在同一直线上,AB CD ∥,AB CE =,AC CD =. 求证:BC ED =. 证明:EDCBA(第18题)A M N BCE四、解答题(本大题共3题,每题8分,满分24分) 24、如图,在平面直角坐标系xOy 中,反比例函数3y x=的图像与正比例函数y kx =的图像的一个交点为(,3)A m -.(1)求正比例函数y kx =的解析式;(2)若点P 在直线OA 上,且满足2PA OA =,求点P 的坐标. 解:26、已知:如图,在ABC ∆中,BC BA =,BE 平分CBA ∠交边CA 于点E ,45ABC ∠=︒,CD AB ⊥,垂足为D ,F 为BC 中点,BE 与DF 、DC 分别交于点G H 、. (1)求证:BH CA =; (2)求证:222BG GE EA =+. 证明:BFGDHCEA27、(本大题满分10分,第1小题6分,第2小题4分)等腰Rt ABC ∆中,90ACB ∠=︒,AC BC =,点D 是BC 边上一点,BN AD ⊥交AD 的延长线于点N . (1)如图1,若CM BN ∥交AD 于点M .① 直接写出图1中所有与MCD ∠相等的角:.(注:所找到的相等关系可以直接用于下面的证明过程中。
2016学年第一学期闵行区八年级期终考试数学试卷(考试时间90分钟,满分100分)一、填空题(本题共14小题,每小题2分,满分28分)1______________.2.计算:2(2-= _____________.3.函数 y _______________.4.已知()f x 1()2f =______________. 5.在实数范围内分解因式:221x x --=__________________________.6.已知关于x 的一元二次方程2340x x m ++-=的一个实数根是1,那么m =_______.7.已知关于x 的一元二次方程24(4)0x x m --+=有两个不相等的实数根,那么m 的取值范围是_____________.8.已知直角坐标平面内两点 A (3,-1)和B (-1,2),那么A 、B 两点间的距离等 于_______.9.已知直角三角形的两边长分别为5,12,那么第三边的长为 .10.底边为定长的等腰三角形的顶点的轨迹是 .11.如果正比例函数的图像经过点(2,-3),那么它的函数解析式为 .12.已知反比例函数1k y x-=的图像在每个象限内,y 的值 随x 的值增大而减小,那么k 的取值范围是_______.13.如图,一棵树在一次强台风中于离地面4米处折断倒 下,倒下部分与地面成30︒夹角,这棵树在折断前的高度为 米.(第13题图)14.如图,在△ABC 中,AB = AC ,边AC 的垂直平分线分别交边AB 、 AC 于点E 、F ,如果75B ∠=︒,那么∠BCE = ______度.二、选择题(本大题共4题,每题2分,满分8分)15.下列二次根式中,与8是同类二次根式的是 ………………( )(A )12; (B )2.0; (C )43; (D )98. 160m n ⋅<),那么化简结果正确的是…………………………( )(A) (B)- (C)- (D)17.在Rt △ABC 中,90A ∠=︒,∠B 与∠C 的平分线相交于点O ,那么∠BOC 等于……( ) (A )100°; (B )120°; (C )135°; (D )150°.18.下列命题中,其逆命题是真命题的命题个数有……………………………( )(1)全等三角形的对应角相等;(2)对顶角相等;(3)等角对等边.(4)两直线平行,同位角相等;(5)全等三角形的面积相等;(A )1个; (B )2个; (C )3个; (D )4个.三、简答题(本大题共5题,每题6分,满分30分)19220.解方程:(1)(2)70x x -+=.21.在直角坐标平面内,已知点C 在x 轴上,它到点A (2,1)和点B (3,4)的距离相等,求点C 的坐标.(第14题图) AB C EF22.已知正比例函数1y k x =(10k ≠)的图像经过A (2,-4)、B (m ,2)两点.(1)求m 的值;(2)如果点B 在反比例函数2k y x =(20k ≠)的图像经过,求反比例函数的解析式.23.已知:如图,E 是四边形ABCD 的边AD 上一点,且△ABC 和△CDE 都是等边三角形.求证:BE = AD .四、(本大题共3题,每题8分,满分24分)24.如图,在甲、乙两同学进行400米跑步比赛中,路程s (米)与时间t (秒)之间的函数关系的图像分别为折线OAB 和线段OC ,请根据图上信息回答下列问题:(1)_________________先到达终点;(2)第______秒时,_____追上_____;(3)比赛全程中,_____的速度始终保持不变;(4)写出优胜者在比赛过程中所跑的路程s (米)与时间t (秒)之间的函数关系式:_________________________.(第23题图) (第24题图)秒)25.如图,某小区在一个长为40米,宽为26米的长方形ABCD 场地上修建三条同样宽度的道路,其中两条道路与AB 平行,另一条道路与AD 平行,其余部分铺设草坪.如果每一块草坪的面积都是144平方米,求道路的宽度.26.如图,在四边形ABCD 中,︒=∠=∠90ADC ABC ,对角线AC 与BD 相交于点O ,M 、N 分别是边AC 、BD 的中点.(1)求证:MN ⊥BD ;(2)当︒=∠15BCA ,AC = 10 cm ,OB = OM 时,求MN 的长..五、(本题满分10分)27.如图,在Rt △ABC 中,90BAC ∠=︒,AB = AC ,点M 、N 在边BC 上.(1)如图1,如果AM = AN ,求证:BM = CN ;(2)如图2,如果M 、N 是边BC 上任意两点,并满足45MAN ∠=︒,那么线段BM 、MN 、NC 是否有可能使等式222MN BM NC =+成立?如果成立,请证明;如果不成立,请说明理由. (第26题图) A B C DM N O A B C M N (第27题图2)AB C M N (第27题图1)CD (第25题图)2016学年第一学期闵行区八年级期末考试数学试卷参考答案及评分意见一、填空题(本题共14小题,每小题2分,满分28分)1. 2. 21222-; 3.2x ≤; 4.22; 5.(11x x --;6.0; 7.8m >-; 8.5; 9.13或119; 10.底边的垂直平分线(底边的中点除外); 11.32y x =-; 12.1k >; 13.12;14.︒45. 二、选择题(本大题共4题,每题2分,满分8分)15..D ; 16.B ; 17.C ; 18.B ..三、简答题(本大题共5题,每题6分,满分30分)19.解:原式=(4分)= …………………………………………………………………(2分)20.解:原方程可变形为0722=-+x x ,………………………………………………(2分)(9)(8)0x x +-=.………………………………………………(2分) 解得 19x =-,28x =.…………………………………………………(2分) 所以,原方程的根是19x =-,28x =.21.解:设点C 坐标为(x ,0).……………………………………………………(1分)利用两点间的距离公式,得 AC =BC (1分) 根据题意,得AC = BC ,∴22AC BC =.即 22(2)1(3)16x x -+=-+.……………………………………………(2分)解得 x = 10.………………………………………………………(1分) 所以,点C 的坐标是(10,0).…………………………………………(1分)22.解:(1)因为函数图像经过点A (2,-4),所以2 k 1 = -4,得k 1 = -2.………………………………………(2分)所以,正比例函数解析式:2y x =-.…………………………(1分)(2)根据题意,当 y = 2 时,-2 m = 2, 得m = -1.…………………(1分) 于是,由点B 在反比例函数2k y x =的图像上,得221k =-,解得 22k =-. 所以,反比例函数的解析式是2y x =-.…………………………………(2分) 23.证明:∵△ABC 和△CDE 都是等边三角形,∴BC = AC ,CE = CD ,∠ACB = ∠ECD = 60º.……………………(2分)∴∠ACB + ∠ACE = ∠ECD + ∠ACE .即得∠BCE = ∠ACD .…………(1分) 在△BCE 和△ACD 中,,,,BC AC BCE ACD CE CD =⎧⎪∠=∠⎨⎪=⎩∴△BCE ≌△ACD (S .A .S ).……………………………………………(2分) ∴BE = AD .……………………………………………………………(1分)四、(本大题共3题,每题8分,满分24分)24.(1)乙;…………………………………………………………………………(1分)(2)40,乙、甲;………………………………………………………………(3分)(3)乙;…………………………………………………………………………(1分)(4)S = 8 t (050t ≤≤).…………………………………………………(3分)25.解:设道路的宽度为x 米. …………………………………………………(1分) 根据题意,得 (402)(26)6144x x --=⨯. …………………………(3分) 整理后,得 246880x x -+=.………………………………………(1分) 解得 12x =,244x =(不合题意,舍去).……………………………(2分)答:道路的宽度为2米. ……………………………………………(1分)26.(1)证明:联结BM 、DM .∵︒=∠=∠90ADC ABC ,点M 、点N 分别是边AC 、BD 的中点, ∴12BM DM AC ==.………………………………………………(1分) ∵N 是BD 的中点,∴MN ⊥BD . ………………………………………………………(2分)(2)解:∵︒=∠15BCA ,12BM CM AC ==, ∴︒=∠=∠15CBM BCA .∴︒=∠30BMA .………………………………………………………(2分)∵OB = OM ,∴︒=∠=∠30BMA OBM .……………………………(1分)∵AC = 10,12BM AC =,∴BM = 5.………………………………(1分) 在Rt△BMN 中,90BNM ∠=︒,︒=∠30NBM , ∴1 2.52MN BM ==.…………………………………………………(1分) 五、(本题满分10分)27.(1)证明:∵AB = AC ,∴∠B = ∠C .∵AM = AN ,∴∠AMN = ∠ANM .即得∠AMB = ∠ANC .……………………………………………(1分) 在△ABM 和△CAN 中,,,,AMB ANC B C AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△CAN (A .A .S ).………………………………………(2分)∴BM = CN .………………………………………………………(1分)另证:过点A 作AD ⊥BC ,垂足为点D .∵AB = AC ,AD ⊥BC ,∴BD = CD .………………………………(1分) 同理,证得MD = ND .………………………………………………(1分) ∴BD MD CD ND -=-.即得 BM = CN .………………………………………………………(2分)(2)222MN BM NC =+成立.证明:过点C 作CE ⊥BC ,垂足为点C ,截取CE ,使CE = BM .联结AE 、EN . ∵AB = AC ,90BAC ∠=︒,∴45B C ∠=∠=︒.∵CE ⊥BC ,∴45ACE B ∠=∠=︒.…………………………………(1分) 在△ABM 和△ACE 中,,,,AB AC B ACE BM CE =⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△ACE (S .A .S ).∴AM = AE ,∠BAM = ∠CAE .……………………………………(2分)∵90BAC ∠=︒,45MAN ∠=︒,∴45BAM CAN ∠+∠=︒.于是,由∠BAM = ∠CAE ,得45MAN EAN ∠=∠=︒.…………(1分)在△MAN 和△EAN 中,,,,AM AE MAN EAN AN AN =⎧⎪∠=∠⎨⎪=⎩∴△MAN ≌△EAN (S .A .S ).∴MN = EN .…………………………………………………………(1分)在Rt △ENC 中,由勾股定理,得222EN EC NC =+.即得222MN BM NC =+.…………………………………………(1分)另证:由90BAC ∠=︒,AB = AC ,可知,把△ABM 绕点A 逆时针旋转90︒后,AB与AC重合,设点M的对应点是点E.于是,由图形旋转的性质,得AM= AE,∠BAM = ∠EAN.…………………………………………………………(3分)以下证明同上.。
2016-2017学年上海市闵行区九校联考八年级(上)期末数学试卷一、选择题(每小题3分,共18分)1.(3分)下列二次根式中与√3是同类二次根式的是( )A .√12B .√0.3C .√23D .√182.(3分)下列方程中,没有实数根的是( )A .x 2+4=4xB .x 2﹣x ﹣1=0C .2x 2+4x +3=0D .3x ﹣8=03.(3分)已知函数y =k x (k ≠0)中,在每个象限内,y 随x 的增大而增大,那么它和函数y =kx (k ≠0)在同一直角坐标平面内的大致图象是( )A .B .C .D .4.(3分)三角形三边长分别为①3,4,5②5,12,13③17,8,15④1,3,2√2.其中直角三角形有( )A .1个B .2个C .3个D .4个5.(3分)下列命题中,其逆否命题是真命题的命题个数有( )(1)线段垂直平分线上的任意一点到这条线段两个端点的距离相等;(2)对顶角相等;(3)在三角形中,相等的角所对的边也相等;(4)到角的两边距离相等的点在这个角的平分线上.A .1个B .2个C .3个D .4个6.(3分)等腰△ABC 中,过A 作BC 的垂线,垂足为D ,且AD=12BC ,则△ABC 底角的度数为( )A .45°B .45°或75°C .45°或15°或75°D .45°或60°二、填空题(每小题2分,共24分)7.(2分)计算:√(π−4)2=.8.(2分)已知x=3是方程x2﹣6x+k=0的一个根,则k=.9.(2分)在实数范围内因式分解:2x2﹣4x﹣1=.10.(2分)已知函数f(x)=√x+1x−1,那么f(7)=.11.(2分)某企业的年产值在两年内从100万元增加到121万元,设平均每年增长的百分率为x,则可以列出的方程是.12.(2分)如图,P为反比例函数y=kx的图象上的点,过P分别向x轴和y轴引垂线,它们与两条坐标轴围成的矩形面积为2,这个反比例函数解析式为.13.(2分)已知正比例函数y=f(x)=kx(k<0),用“<““>“符号连接:f(2)f(3).14.(2分)以线段AB为底边的等腰三角形的顶点的轨迹是.15.(2分)直角三角形中两边长分别为4和5,那么第三边长为.16.(2分)若平面内点A(﹣1,﹣3)、B(5,b),且AB=10,则b的值为.17.(2分)如图,点P是∠AOB的角平分线上的一点,过点P作PC∥OA交OB 于点C,PD⊥OA,若∠AOB=60°,OC=6,则PD=.18.(2分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,点D 在BC边上,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则AD=cm.三、简答题(共26)19.(6分)计算:(3√12﹣2√13+√48)÷2√3.20.(6分)解方程:2y(y﹣2)=y2﹣3.21.(7分)已知y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=﹣1时,y=﹣4,当x=3时,y=623.求y与x的函数关系式.22.(7分)某校计划修建一个长方形花坛,要求花坛的长与宽的比为2:1,如图所示花坛中间为花卉种植区域,花卉种植区域前侧留有2米宽的空地,其它三侧各保留1米宽的通道,如果要求花卉种植区域的面积是55平方米,那么整个花坛的长与宽应为多少米?四、解答题(共26)23.(7分)如图,在四边形ABCD中,AD∥BC,BD⊥AD,点E,F分别是边AB,CD的中点,且DE=BF.求证:∠A=∠C.24.(8分)已知:如图,在△ABC中,BC=BA,BE平分∠CBA交边CA于点E,∠ABC=45°,CD⊥AB,垂足为D,F为BC中点,BE与DF、DC分别交于点G、H.(1)求证:BH=CA;(2)求证:BG2=GE2+EA2.25.(8分)如图,在平面直角坐标系xoy内,点P在直线y=12x上(点P在第一象限),过点P作PA⊥x轴,垂足为点A,且OP=2√(1)求点P的坐标;(2)如果点M和点P都在反比例函数y=kx(k≠0)图象上,过点M作MN⊥x轴,垂足为点N,如果△MNA和△OAP全等(点M、N、A分别和点O、A、P 对应),求点M的坐标.26.(9分)如图,在△ABC中,∠ACB=90°,∠A=30°,D是边AC上不与点A、C 重合的任意一点,DE⊥AB,垂足为点E,M是BD的中点.(1)求证:CM=EM;(2)如果BC=√3,设AD=x,CM=y,求y与x的函数解析式,并写出函数的定义域;(3)当点D在线段AC上移动时,∠MCE的大小是否发生变化?如果不变,求出∠MCE的大小;如果发生变化,说明如何变化.2016-2017学年上海市闵行区九校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共18分)1.(3分)下列二次根式中与√3是同类二次根式的是()A.√12 B.√0.3C.√23D.√18【解答】解:A、原式=2√3;B、原式=√30 10;C、原式=√6 3;D、原式=3√2.故选A.2.(3分)下列方程中,没有实数根的是()A.x2+4=4x B.x2﹣x﹣1=0 C.2x2+4x+3=0 D.3x﹣8=0【解答】解:A、x2+4=4x,△=(﹣4)2﹣4×1×4=0,方程有实数根,此选项不符合题意;B、x2﹣x﹣1=0,△=(﹣1)2﹣4×1×(﹣1)=5>0,方程有实数根,此选项不符合题意;C、2x2+4x+3=0,△=42﹣4×2×3=﹣8<0,方程没有实数根,此选项符合题意;D 、3x ﹣8=0,x =83,方程有实数根,此选项不符合题意; 故选C .3.(3分)已知函数y =k x (k ≠0)中,在每个象限内,y 随x 的增大而增大,那么它和函数y =kx (k ≠0)在同一直角坐标平面内的大致图象是( )A .B .C .D .【解答】解:∵函数y =k x (k ≠0)中,在每个象限内,y 随x 的增大而增大,∴k <0,∴双曲线在第二、四象限,∴函数y =kx 的图象经过第二、四象限,故选:B .4.(3分)三角形三边长分别为①3,4,5②5,12,13③17,8,15④1,3,2√2.其中直角三角形有( )A .1个B .2个C .3个D .4个【解答】解:①32+42=52,符合勾股定理的逆定理,能构成直角三角形; ②52+122=132,符合勾股定理的逆定理,能构成直角三角形;③82+152=172,符合勾股定理的逆定理,能构成直角三角形;④12+(2√2)2=32,符合勾股定理的逆定理,能构成直角三角形.故选:D .5.(3分)下列命题中,其逆否命题是真命题的命题个数有( )(1)线段垂直平分线上的任意一点到这条线段两个端点的距离相等;(2)对顶角相等;(3)在三角形中,相等的角所对的边也相等;(4)到角的两边距离相等的点在这个角的平分线上.A .1个B .2个C .3个D .4个【解答】解:(1)线段垂直平分线上的任意一点到这条线段两个端点的距离相等,正确,故逆否命题正确;(2)对顶角相等,正确,故逆否命题正确;(3)在同一个三角形中,相等的角所对的边也相等,错误,故逆否命题错误;(4)到角的两边距离相等的点在这个角的平分线上,正确,故逆否命题正确. 所以(1)(2)(4)正确.故选C .6.(3分)等腰△ABC 中,过A 作BC 的垂线,垂足为D ,且AD=12BC ,则△ABC 底角的度数为( )A .45°B .45°或75°C .45°或15°或75°D .45°或60°【解答】解:①如图1,当AB=AC 时,∵AD ⊥BC ,∴BD=CD ,∵AD=12BC , ∴AD=BD=CD ,∴底角为45°;②如图2,当AB=BC 时,∵AD=12BC , ∴AD=12AB , ∴∠ABD=30°,∴∠BAC=∠BCA=75°,∴底角为75°.③如图3,当AB=BC 时,∵AD=12BC ,AB=BC ,∴AD=12AB , ∴∠DBA=30°,∴∠BAC=∠BCA=15°;∴△ABC 底角的度数为45°或75°或15°.故选C .二、填空题(每小题2分,共24分)7.(2分)计算:√(π−4)2= 4﹣π .【解答】解:∵π<4,∴π﹣4<0,∴原式=4﹣π.故答案是:4﹣π.8.(2分)已知x =3是方程x 2﹣6x +k =0的一个根,则k = 9 .【解答】解:把x =3代入方程x 2﹣6x +k =0,可得9﹣18+k =0, 解得k =9.故答案为:9.9.(2分)在实数范围内因式分解:2x 2﹣4x ﹣1= 2(x ﹣2+√62)(x ﹣2−√62) . 【解答】解:令2x 2﹣4x ﹣1=0,这里a =2,b =﹣4,c =﹣1,∵△=16+8=24,∴x =4±2√64=2±√62, 则原式=2(x ﹣2+√62)(x ﹣2−√62), 故答案为:2(x ﹣2+√62)(x ﹣2−√62) 10.(2分)已知函数f (x )=√x+1x−1,那么f (7)= √23. 【解答】解:由题意,得f (7)=√7+17−1=√23, 故答案为:√23.11.(2分)某企业的年产值在两年内从100万元增加到121万元,设平均每年增长的百分率为x ,则可以列出的方程是 100(1+x )2=121 .【解答】解:设平均每年增长的百分率是x .根据题意,得100(1+x )2=121,故答案为100(1+x )2=121.12.(2分)如图,P 为反比例函数y =k x 的图象上的点,过P 分别向x 轴和y 轴引垂线,它们与两条坐标轴围成的矩形面积为2,这个反比例函数解析式为 y =−2x .【解答】解:∵过P分别向x轴和y轴引垂线,它们与两条坐标轴围成的矩形面积为2,∴|k|=2,∴反比例函数y=kx的图象在第二象限,k<0,∴k=﹣2,∴此反比例函数的解析式为y=﹣2 x .13.(2分)已知正比例函数y=f(x)=kx(k<0),用“<““>“符号连接:f(2)>f(3).【解答】解:∵k<0,∴y=f(x)=kx是减函数,又∵自变量2<3,∴f(2)>f(3).故答案为:>.14.(2分)以线段AB为底边的等腰三角形的顶点的轨迹是线段AB的垂直平分线(与AB的交点除外).【解答】解:∵△ABC以线段AB为底边,CA=CB,∴点C在线段AB的垂直平分线上,除去与AB的交点(交点不满足三角形的条件),∴以线段AB为底边的等腰三角形的顶点C的轨迹是线段AB的垂直平分线,不包括AB的中点.故答案为线段AB的垂直平分线,不包括AB的中点.15.(2分)直角三角形中两边长分别为4和5,那么第三边长为3或√41.【解答】解:当5是斜边时,则第三边是√52−42=3,当4和5都是直角边时,则第三边是√42+52=√41.故答案为:3或√41.16.(2分)若平面内点A(﹣1,﹣3)、B(5,b),且AB=10,则b的值为﹣11或5.【解答】解:由题意可得,√(−1−5)2+(−3−b)2=10,解得,b=﹣11或b=5,故答案为:﹣11或5.17.(2分)如图,点P是∠AOB的角平分线上的一点,过点P作PC∥OA交OB 于点C,PD⊥OA,若∠AOB=60°,OC=6,则PD=3√3.【解答】解:如图,过点P作PE⊥OB于E,∵OP是∠AOB的角平分线,PD⊥OA∴PE=PD,∵OP是∠AOB的角平分线,∠AOB=60°,∴∠AOP=∠BOP=30°,∵PC∥OA,∴∠OPC=∠AOP,∴∠BOP=∠OPC=30°,∴PC=OC=6,∠PCE=60°.∴PE=OC•sin60°=3√3.∴PE=PD=3√3故答案为:3√3.18.(2分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,点D 在BC边上,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则AD=3√5cm.【解答】解:在R t△ABC中,∵AC=6,BC=8,∴AB=√AC2+BC2=√62+82=10,∵△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在R t△DEB中,∵DE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.在R t△ACD中,AD=√AC2+CD2=√62+32=3√5.故答案为3√5.三、简答题(共26)19.(6分)计算:(3√12﹣2√13+√48)÷2√3.【解答】解:(3√12﹣2√13+√48)÷2√3=(6√3﹣2√33+4√3)÷2√3 =28√33÷2√3 =143.20.(6分)解方程:2y (y ﹣2)=y 2﹣3.【解答】解:原方程整理可得:y 2﹣4y +3=0,∵(y ﹣1)(y ﹣3)=0,∴y ﹣1=0或y ﹣3=0,解得:y =1或y =3.21.(7分)已知y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =﹣1时,y =﹣4,当x =3时,y =623.求y 与x 的函数关系式. 【解答】解:∵y 1与x 成正比例,∴设y 1=k 1x ,∵y 2与x 成反比例,∴设y 2=k 2x ,y 1=k 1x ∵y =y 1+y 2,∴y =k 1x +k 2x ,∵x =﹣1时,y =﹣4,当x =3时,y =623. ∴{−4=−k 1−k 2623=3k 1+k 23, 解得:{k 1=2k 2=2, ∴y 与x 的函数关系式为y =2x +2x.22.(7分)某校计划修建一个长方形花坛,要求花坛的长与宽的比为2:1,如图所示花坛中间为花卉种植区域,花卉种植区域前侧留有2米宽的空地,其它三侧各保留1米宽的通道,如果要求花卉种植区域的面积是55平方米,那么整个花坛的长与宽应为多少米?【解答】解:设花坛的宽为x 米,2x •x =2x +2(2x ﹣2)×1+(x ﹣2)×1+55,解得,x 1=﹣3.5(舍去),x 2=7,∴2x =14,答:整个花坛的长为14米,宽为7米.四、解答题(共26)23.(7分)如图,在四边形ABCD 中,AD ∥BC ,BD ⊥AD ,点E ,F 分别是边AB ,CD 的中点,且DE=BF .求证:∠A=∠C .【解答】证明:∵AD ∥BC ,BD ⊥AD ,∴∠DBC=∠BDA=90°,∵在R t △ADB 中,E 是AB 的中线,∴DE=12AB , 同理:BF=12DC , ∵DE=BF ,∴AB=CD ,在R t △ADB 和R t △CBD 中,{AB =CD DB =BD, ∴R t △ADB ≌R t △CBD (HL ),∴∠A=∠C .24.(8分)已知:如图,在△ABC 中,BC=BA ,BE 平分∠CBA 交边CA 于点E ,∠ABC=45°,CD ⊥AB ,垂足为D ,F 为BC 中点,BE 与DF 、DC 分别交于点G 、H .(1)求证:BH=CA ;(2)求证:BG 2=GE 2+EA 2.【解答】解:(1)∵BC=BA ,BE 平分∠CBA ,∴BH ⊥CA ,∴∠BEA=90°,又CD ⊥AB ,∠ABC=45°,∴∠BDC=∠CDA=90°,∴∠BCD=∠ABC=45°,∠BAC +∠DCA=90°,∠BAC +∠ABE=90°,∴DB=DC ,∠ABE=∠DCA .∵在△DBH 与△DCA 中,∵{∠DBH =∠DCA ∠BDH =∠CDA BD =CD,∴△DBH ≌△DCA (AAS ),∴BH=AC ;(2)如图,连接CG .∵AB=BC,BE⊥AC,∴BE垂直平分AC,∴AG=CG.又∵F点是BC的中点,DB=DC,∴DF垂直平分BC,∴BG=CG,∴AG=BG,BG2=GE2+EA2.在R t△AGE中,∵AG2=GE2+EA2,∴BG2=GE2+EA2.25.(8分)如图,在平面直角坐标系xoy内,点P在直线y=12x上(点P在第一象限),过点P作PA⊥x轴,垂足为点A,且OP=2√5.(1)求点P的坐标;(2)如果点M和点P都在反比例函数y=kx(k≠0)图象上,过点M作MN⊥x轴,垂足为点N,如果△MNA和△OAP全等(点M、N、A分别和点O、A、P 对应),求点M的坐标.【解答】解:(1)∵PA⊥x轴,垂足为点A.∴∠PAO=90°,∵点P在直线y=12x上(点P在第一象限),∴设P(2x,x),其中x>0,∴AO=2x,PA=x,∵AO2+AP2=OP2,∴(2x)2+x2=(2√5)2,解得:x=2∴P(4,2);(2)∵点P在反比例函数y=kx(k≠0)的图象上,∴2=k 4,∴k=8,∴y=8 x,在R t△PAO中,∠PAO=90°,PA=2,AO=4,∵∠MNA=90°,当△MNA和△APO全等时,分以下两种情况:①点N在点A的左侧时,MN=AO=4,AN=2,∴ON=OA﹣AN=4﹣2=2,∴M(2,4).且点M在反比例函数y=8x的图象上.②点N在点A的右侧时,AO=MN=4,AN=2,∴ON=AN+AO=4+2=6.∴M(6,4),但点M不在反比例函数y=8x的图象上,综合①②,满足条件的点M(2,4).26.(9分)如图,在△ABC 中,∠ACB=90°,∠A=30°,D 是边AC 上不与点A 、C 重合的任意一点,DE ⊥AB ,垂足为点E ,M 是BD 的中点.(1)求证:CM=EM ;(2)如果BC=√3,设AD=x ,CM=y ,求y 与x 的函数解析式,并写出函数的定义域;(3)当点D 在线段AC 上移动时,∠MCE 的大小是否发生变化?如果不变,求出∠MCE 的大小;如果发生变化,说明如何变化.【解答】(1)证明:∵在R t △ABC 中,∠ACB=90°,M 是BD 的中点,∴CM=12BD . 同理ME=12BD , ∴CM=ME .(2)解:∵在R t △ABC 中,∠ACB=90°,∠A=30°,BC=√3,∴AB=2BC=2√3.由勾股定理得AC=3,∵AD=x ,∴CD=3﹣x ,在R t △BCD 中,∠BCD=90°,∴BD 2=BC 2+CD 2,∴BD=√3+(3−x)2,∵CM=12BD,CM=y,∴y=√x2−6x+122(0<x<3),(3)不变.∵M是R t△BCD斜边BD的中点,∴MB=MC,∴∠MBC=∠MCB.∴∠CMD=∠MBC+∠MCB=2∠MBC,∵M是R t△BED斜边BD的中点,同理可得:∠EMD=2∠MBE,∠CMD+∠EMD=2∠MBC+2∠MBE=2(∠MBC+∠MBE)=2∠ABC,即∠CME=2∠ABC=120°,∵MC=ME,∴∠MCE=∠MEC=30°.第21页(共21页)。