整车NVH形象图形解释
- 格式:pdf
- 大小:532.25 KB
- 文档页数:11
一:定义汽车NVH是指汽车的Noise(噪声)、Vibration(振动)和Harshness(舒适性)。
汽车NVH研究以提高顾客的听觉、触觉、视觉等感官舒适度、改善汽车乘坐舒适性为目的,以提高车辆结构动态响应性能为手段,实现汽车的舒适性设计。
Noise(噪声)是指引起人烦躁、音量过强而危害人体健康的声音。
汽车噪音不但增加驾驶员和乘员的疲劳,而且影响汽车的行驶安全。
它是NVH问题中最主要的部分,常用声压级评价。
汽车噪声主要包括车身壁板产生的噪声、空气冲击摩擦车身形成的噪声以及外界噪声源(如发动机、制动器等)传入的噪声。
噪声是NVH问题中最主要的部分,汽车上的噪声主要包括车身壁板振动产生的噪声、空气冲击摩擦车身形成的噪声以及外界噪声源(如发动机、制动器等)传入的噪声。
人耳能分辩的声音频率一般在lkHz以下,噪声常用声压和声压级评价。
国家标准规定:汽车加速行驶时车外噪声要小于88dB,M1类汽车应小于77dBN;而车内噪声会影响乘员的语言交流,损伤驾驶员的听力,美国在1965年就规定公共汽车的车内噪声不得超过88dB。
主要通过频率、级别和音质来描述。
Vibration(振动)描述的是系统状态的参量(如位移)在其基准值上下交替变化的过程。
汽车振动主要包括由路面不平整而引起的车身垂直方向振动、发动机的不平衡往复惯性力产生的车身振动、转向轮的摆振和传动系的扭转摆动等,还有方向盘、仪表板等振动,一般来说,对人体舒适性影响较大的振动主要表现为座椅、地板对人体输入的低频振动,其频率范围在1~80HZ。
主要通过频率、振幅和方向来描述。
Harshness(舒适性)指的是振动和噪声的品质,它并不是一个与振动、噪声相并列的物理概念,而是描述人体对振动和噪声的主观感觉,不能直接用客观测量方法来直接度量。
总的说来,舒适性描述的是振动和噪声共同产生的使人感到疲劳的程度。
二:现象车辆的NVH基本上可以分为车身NVH、发动机NVH和底盘NVH三个部分;类型可以细分为道路NVH、制动NVH、空调系统NVH、空气动力NVH等数个部分。
整车NVH介绍(汽车资料汇编)——姜——一、 NVH定义NVH是指Noise(噪声),Vibration(振动)和Harshness(声振粗糙度),由于以上三者在汽车等机械振动中是同时出现且密不可分,因此常把它们放在一起进行研究。
声振粗糙度是指噪声和振动的品质,是描述人体对振动和噪声的主观感觉,不能直接用客观测量方法来度量。
由于声振粗糙描述的是振动和噪声使人不舒适的感觉,因此有人称Har shness为不平顺性。
又因为声振粗糙度经常用来描述冲击激励产生的使人极不舒适的瞬态响应,因此也有人称Harshness为冲击特性。
二、噪声的种类产生汽车噪声的主要因素是空气动力、机械传动、电磁三部分。
从结构上可分为发动机(即燃烧噪声),底盘噪声(即传动系噪声、各部件的连接配合引起的噪声),电器设备噪声(冷却风扇噪声、汽车发电机噪声),车身噪声(如车身结构、造型及附件的安装不合理引起的噪声及噪声源通过各种声学途径传入车内的噪声及汽车各部分振动传递途径激发车身板件的结构振动向驾驶室内辐射的噪声组成车内噪声。
)。
其中发动机噪声占汽车噪声的二分之一以上,包括进气噪声和本体噪声(如发动机振动,配气轴的转动,进、排气门开关等引起的噪声)。
因此发动机的减振、降噪成为汽车噪声控制的关键。
此外,汽车轮胎在高速行驶时,也会引起较大的噪声。
这是由于轮胎在地面流动时,位于花纹槽中的空气被地面挤出与重新吸入过程所引起的泵气声,以及轮胎花纹与路面的撞击声。
三、噪声的抑制1、改进噪声源噪声源抑制主要为发动机减震、进气噪声抑制、排气噪声抑制及传动系噪声抑制,即优化前消声器、主消声器及降低排气吊挂刚度;改进空气滤清器;采用小动不平衡量传动轴(在动力线校核后基础上)。
1.1、发动机减震减震垫布置原则:动力总成悬置布置主要分为三点式、四点式两种,KZ218系列车型动力总成悬置采用三点式布置。
动力总成质心理论上应布置在三角形重心上,并发动机悬置平面法线交点应在动力总成惯性主轴上方。
NVH的名词解释NVH(Noise, Vibration, Harshness),即噪声、振动与粗糙感,是指汽车行业中关于车辆噪音和振动的一种评估和殊效应的概念。
在汽车行业中,NVH是一个非常重要的指标,对于提升车辆的舒适性和质量具有重要意义。
1. 噪声(Noise)噪声是指车辆运行时产生的任何不必要的声音。
噪声来源主要有发动机、排气系统、刹车片、悬挂系统以及风噪等。
其中,发动机噪声是汽车行业中最主要的噪声来源之一。
发动机噪声主要由爆震噪声、气缸振动导致的噪声以及气体流动噪声等组成。
汽车制造商通过添加隔音材料、改善发动机设计和优化排气系统等方式来降低噪声水平。
2. 振动(Vibration)振动是指车辆在行驶过程中产生的震动。
振动的来源包括发动机振动、车轮与路面的振动、传动系统的振动等。
汽车中的振动不仅会降低车辆的乘坐舒适性,还可能对车辆的可靠性和耐久性产生不利影响。
因此,汽车制造商需要通过细致的设计和调试来减小振动问题。
例如,对引擎和传动系统进行动平衡处理,使用减振器和悬挂系统等。
3. 粗糙感(Harshness)粗糙感是指车辆在行驶过程中产生的不舒适感觉,其主要体现在座椅、方向盘和底盘等部位。
粗糙感可以由噪声和振动引起,也可能是由座椅和悬挂系统等的设计不良导致的。
为了减小粗糙感,汽车制造商需要通过优化车辆的悬挂系统、改善座椅的舒适性以及加强隔音等措施来提升乘坐的舒适性。
整体而言,NVH评估是汽车制造商在设计和生产过程中不可或缺的一环。
通过对NVH的研究和改进,汽车制造商可以提供更加安静、平稳和舒适的驾驶体验。
此外,NVH评估还有利于解决车辆振动和噪声对驾驶员和乘客的健康影响问题。
在未来,随着汽车技术的不断发展,我们可以期待更加出色的NVH性能,为用户带来更高水准的驾驶体验。
总之,NVH评估是汽车行业重要的一部分。
它旨在减少车辆的噪音、振动和粗糙感,提升汽车的舒适性和品质。
为了达到这一目标,汽车制造商需要不断推动技术创新,改进车辆设计和制造工艺,并且采取精细化的测试和调试方法来提升NVH性能。
NVH基础知识轰鸣噪声,英文Booming Noise主要指的是汽车车内在怠速或者加速时,某个转速下骤然出现的轰鸣声。
该噪声会极大的影响车内声品质和舒适度,是乘客所不能接受的主观驾驶感受。
而该噪声主要以低频为主,因此也是进行NVH控制时极难消除的噪声之一。
轰鸣噪声对车内声品质的影响影响汽车车内声品质评价的主要因素之一是声压级及主要点火阶次的线性度。
这就要求在进行汽车驾驶尤其是加速行驶时,总噪声声压级及主要点火阶次应随转速升高而基本呈线性增高趋势,而没有明显的波峰或者波谷现象。
如下图所示为一总声压级与点火频率对应转速的分析图,由图可见其二阶频率在4000转左右有一个极强的波峰现象,其会导致该范围的声品质下降。
频谱瀑布图,英文Waterfall plot简称瀑布图,又称谱阵图。
是将等间距时间或者转速变化下振动或噪声的系列功率谱或者是幅值谱相叠置而成的三维谱线图,显示振动、噪声信号中各阶次成分随转速或时间变化的情况。
随时间的变化或者转速的增大,整个三维图像中的功率谱或者幅值谱会随之发生渐变,其形状非常类似瀑布的流动,因此被称之为“瀑布图”。
瀑布图在NVH中的应用类似于Colormap,频谱瀑布图主要用于分析与发动机相关的振动噪声频率、阶次成分,进而进行故障诊断或者是优化处理。
如下图所示为一典型的发动机转速-频率-幅值的三维瀑布图实例。
Colormap,即彩图是通过颜色深浅的变化,将两个变量以及其对应的函数值同时显示的一种方法,在现代计算数值分析或试验数据处理都经常应用到。
其原理是通过一个mx3的矩阵,将具体的颜色变成colormap中的相应Index,即相应的数值通过转算矩阵,将指定的数值向量(矩阵),映射到相应的颜色,形成Colormap。
Colormap在NVH中的应用Colormap是进行NVH数据分析的重要途径之一。
通过Colormap将噪声、振动数值与发动机转速、频率同时显示,可以清晰全面的反映当前的振动或噪声状态,进而进行优化设计或者故障诊断。
车身NVH设计基础目录一、车身NVH概述二、车身结构NVH控制三、车身NVH灵敏度控制四、整车响应分析1、车身结构与NVH问题2、车身NVH性能的传递路径分析➢结构声对车身的传递➢空气声对车身的传递3、车身模态分离4、车身NVH的目标体系5、车身NVH研究的内容1)车身的结构骨架结构➢A、B、C柱➢地板➢顶棚➢……2)车门3)发动机舱盖4)行李箱盖5)仪表台1、车身结构与NVH问题碰撞安全操稳油耗(风阻系数、重量)疲劳耐久(强度)NVH(合理的动态特性匹配)车身开发涉及领域1、车身结构与NVH问题2、车身NVH 性能的传递路径分析激励源传递路径响应动力系统车轮系统路面、风噪、环境噪声车内噪声传递路径分析的基本概念车内噪声和振动往往是由多个激励,经由不同的传递路径抵达目标位置后叠加而成的。
车内噪声总体上可分为结构声和空气声两种。
结构传递途径空气传播途径车内噪声2、车身NVH 性能的传递路径分析2、车身NVH性能的传递路径分析结构声对车身的传递结构传递路径:外界激励源直接激励或者传递至车身,引起车体及壁板件振动,并与车内声腔耦合而产生的车内噪声,简称为:“结构声”。
结构声主要通过车身结构的模态匹配进行控制。
空气声对车身的传递空气传播路径:轮胎/路面、进排气、发动机本体等噪声它通过空气传播路径传递至车内引起的噪声,简称空气声。
空气声主要通过声学包装技术来控制。
2、车身NVH 性能的传递路径分析在车身NVH 开发过程中,模态匹配即结构动态特性(振型和频率)匹配的目的是避免总成系统、子系统和部件之间的模态耦合,以避免与主要激励源发生共振。
通常将整车模态匹配的重点关注在5~80Hz 的频率范围内。
此频带基本包括了动力总成、传动系统和路面等主要激励源,以及发动机的怠速工况范围。
同时,该频率范围主要涉及发动机刚体模态、悬架模态、转向系统模态、车体及相关附件模态、以及大部分板件结构模态。
3、车身模态分离4、车身NVH性能的目标体系一般而言,基于对参考车型的车身结构性能分析情况,结合同类车身NVH开发的性能数据库及开发经验,再对比竞争车型的车身结构和性能,指定车身NVH性能的开发目标。