化工原理王晓红版习题答案第三章
- 格式:docx
- 大小:79.37 KB
- 文档页数:5
第三章习题解答3-1 某圆柱形固定床填充的催化剂直径为p d ,高为h ,试求等体积的当量直径及球形度。
解:h d d e 2p 346ππ=,32p 23h d d e = ()p 312p p 2322218)24(23d h h d h d d h d P P +=⋅⋅+⨯⎪⎭⎫ ⎝⎛=πππφ3-2 求20mm×20mm×25mm 的长方体颗粒的体积当量直径,表面积当量直径,比表面积当量直径及形状系数。
解:体积当量直径:mm V d ev 7.262520206633=⨯⨯⨯==ππ表面积当量直径:mm Sd es 8.282)252020202020(=⨯⨯+⨯+⨯==ππ比表面积当量直径:mm S V a d ea 1.232)252020202020(252020666=⨯⨯+⨯+⨯⨯⨯⨯=== 形状系数:86.08.287.26222222=====es ev es ev P s d d d d S S ππφ 3-3 由边长皆为2mm 的立方体,直径和高度均为2mm 的圆柱体及直径为3mm 的球体各10kg 组成的均匀颗粒床层,床层直径为0.2m ,高度为 1 m 。
已知颗粒的密度皆为1900kg/m 3,求床层的空隙率和颗粒的平均比表面积。
解: 床层体积:3220314.012.044m h d V b =⨯⨯==ππ颗粒体积:30158.01900310m V P =⨯= 床层空隙率:497.00314.00158.00314.0=-=-=bpb V V V ε 颗粒的平均比表面积:3球柱立a a a a ++=-13000002.0002.0002.06002.0002.0-=⨯⨯⨯⨯=m a 立 1223000002.0)002.0(4002.02)002.0(4-=⨯⨯⋅+⨯⨯=m a πππ柱 1322000003.066003.0003.0-==⨯⨯=m a ππ球 11 2.67676232000300030003---==++=++=mm m a a a a 球柱立 3-4 某形状近似球形的微小固体颗粒,其沉降运动处于斯托克斯定理区,试计算(1)该颗粒在20℃与200℃的常压空气中的沉降速度之比为多少?(2)该颗粒在20℃与50℃的水中的沉降速度之比为多少?[(1)1.44,(2)0.55]解:(1)20℃空气的粘度s Pa ⋅⨯=-51081.1μ,200℃空气的粘度s Pa ⋅⨯=-5'106.2μ,因沉降速度处于斯托克斯定律区,ρρ>>p ,故()()()()44.11081.1106.2181855''''22'=⨯⨯=--=--=--μρρμρρμρρμρρs s s s t t g d gd u u (2)20℃水的粘度s Pa ⋅⨯=-3101μ,50℃水的粘度s Pa ⋅⨯=-3'1055.0μ,因沉降速度处于斯托克斯定律区,并考虑到液体的密度随温度变化很小,故()()()()55.01011055.0181833'''''22'=⨯⨯=≈--=--=--μμμρρμρρμρρμρρs s p p p p t t g d g d u u 无论是气体还是液体,温度的改变主要是通过粘度的变化而影响沉降速度。
第三章一、填空题1.某颗粒的重力沉降服从斯托克斯定律,若在水中的沉降速度为u 1,在空气中为u 2,则u 1 u 2;若在热空气中的沉降速度为u 3,冷空气中为u 4,则u 3 u 4。
(>,<,=) 答:μρρ18)(2-=s t g d u ,因为水的粘度大于空气的粘度,所以21u u <热空气的粘度大于冷空气的粘度,所以43u u <2.用降尘室除去烟气中的尘粒,因某种原因使进入降尘室的烟气温度上升,若气体质量流量不变,含尘情况不变,降尘室出口气体含尘量将 (上升、下降、不变),导致此变化的原因是1) ;2) 。
答:上升,原因:粘度上升,尘降速度下降;体积流量上升,停留时间减少。
3.含尘气体在降尘室中除尘,当气体压强增加,而气体温度、质量流量均不变时,颗粒的沉降速度 ,气体的体积流量 ,气体停留时间 ,可100%除去的最小粒径min d 。
(增大、减小、不变)答:减小、减小、增大,减小。
ρξρρ3)(4-=s t dg u ,压强增加,气体的密度增大,故沉降速度减小, 压强增加,p nRTV =,所以气体的体积流量减小,气体的停留时间A V L u L t s /==,气体体积流量减小,故停留时间变大。
最小粒径在斯托克斯区)(18min ρρμ-=s t g u d ,沉降速度下降,故最小粒径减小。
4.一般而言,同一含尘气以同样气速进入短粗型旋风分离器时压降为P 1,总效率为1η,通过细长型旋风分离器时压降为P 2,总效率为2η,则:P 1 P 2,1η 2η。
答:小于,小于5.某板框过滤机恒压操作过滤某悬浮液,滤框充满滤饼所需过滤时间为τ,试推算下列情况下的过滤时间τ'为原来过滤时间τ的倍数:1)0=s ,压差提高一倍,其他条件不变,τ'= τ;2)5.0=s ,压差提高一倍,其他条件不变,τ'= τ;3)1=s ,压差提高一倍,其他条件不变,τ'= τ;1)0. 5;2)0.707;3)1s p -∆∝1)/(1τ,可得上述结果。
第一章绪论习题1.热空气与冷水间的总传热系数K值约为42.99k c a l/(m2・h・℃),试从基本单位换算开始,将K值的单位改为W/(m2・℃)。
[答案:K=50M(m2・C)]。
解:从附录查出:1k c a l=1.1622×10-3K W·h=1.1622W·h所以:K=42.99K c a l/(m2·h·℃)=42.99K c a l/(m2·h·℃)×(1.1622W·h/1k c a l)=50w/(m2·℃)。
2.密度ρ是单位体积物质具有的质量。
在以下两种单位制中,物质密度的单位分别为:S I k g/m2;米制重力单位为:k g f.s2/m4;常温下水的密度为1000k g/m3,试从基本单位换算开始,将该值换算为米制重力单位的数值。
〔答案:p=101.9k g f/s2/m4〕解:从附录查出:1k g f=9.80665k g·m/s2,所以1000k g/m3=1000k g/m3×[1k g f/(9.80665k g·m/s2)]=101.9k g f·s2/m4.3.甲烷的饱和蒸气压与温度的关系符合下列经验公式:今需将式中p的单位改为P a,温度单位改为K,试对该式加以变换。
〔答案:〕从附录查出:1m m H g=133.32P a,1℃=K-273.3。
则新旧单位的关系为:P=P’/133.32;t=T-273.3。
代入原式得:l g(P’/133.32)=6.421-352/(T-273.3+261);化简得l g P=8.546-3.52/(T-12.3).4.将A、B、C、D四种组分各为0.25(摩尔分数,下同)的某混合溶液,以1000m o l/h 的流量送入精馏塔内分离,得到塔顶与塔釜两股产品,进料中全部A组分、96%B组分及4%C组分存于塔顶产品中,全部D组分存于塔釜产品中。
第三章 沉降与过滤沉 降【3-1】 密度为1030kg/m 3、直径为的球形颗粒在150℃的热空气中降落,400m μ求其沉降速度。
解 150℃时,空气密度,黏度./30835kg m ρ=.524110Pa s μ-=⨯⋅颗粒密度,直径/31030p kg m ρ=4410p d m -=⨯假设为过渡区,沉降速度为()(.)()./..1122223345449811030410179225225241100835p t p g u d m s ρρμρ--⎡⎤-⎡⎤⨯==⨯⨯=⎢⎥⎢⨯⨯⨯⎢⎥⎣⎦⎣⎦验算 .Re ..454101790.835=24824110p t d u ρμ--⨯⨯⨯==⨯为过渡区【3-2】密度为2500kg/m 3的玻璃球在20℃的水中和空气中以相同的速度沉降。
试求在这两种介质中沉降的颗粒直径的比值,假设沉降处于斯托克斯定律区。
解 在斯托克斯区,沉降速度计算式为()/218t p p u d g ρρμ=-由此式得(下标w 表示水,a 表示空气)()()2218= p w pw p a pat w ad d u g ρρρρμμ--=pw pad d =查得20℃时水与空气的密度及黏度分别为./,.339982 100410w w kg m Pa sρμ-==⨯⋅./,.35120518110a a kg m Pa sρμ-==⨯⋅已知玻璃球的密度为,代入上式得/32500p kg m ρ=.961pw pad d ==【3-3】降尘室的长度为10m ,宽为5m ,其中用隔板分为20层,间距为100mm ,气体中悬浮的最小颗粒直径为,气体密度为,黏度为10m μ./311kg m ,颗粒密度为4000kg/m 3。
试求:(1)最小颗粒的沉降速度;(2)若需要.621810Pa s -⨯⋅最小颗粒沉降,气体的最大流速不能超过多少m/s? (3)此降尘室每小时能处理多少m 3的气体?解 已知,/./.6336101040001121810pc p d m kg m kg m Pa sρρμ--=⨯===⨯⋅,,(1) 沉降速度计算 假设为层流区().()(.)./.26269811010400011001181821810pc p t gd u m sρρμ---⨯⨯-===⨯⨯验算 为层流..Re .66101000111000505221810pc t d u ρμ--⨯⨯⨯===<⨯,(2) 气体的最大流速。
化工原理下册第三章 蒸馏和吸收塔设备习题解答1.解: 由于设计类题目并不一定有“标准答案”,此处的解仅供参考 (1) 精馏段塔取板间距0.45T H m =,又知总板效率0.6T E =,则实际塔板数 /6/0.610P T T N N E ===精馏段塔高100.4545T T Z N H =⋅=⨯= (2) 塔径下降液体的平均流量 311.8/36000.00328/SL m s == 上升蒸汽的平均流量314600/3600 4.05/S V m s ==11220.00328801.5()()0.02154.05 1.13S L S V L V ρρ=⨯=取板上液层高度 0.07l h m = 则 0.450.070.38T l H h m -=-=由以上数据查史密斯关联图,得200.078C =液体表面张力 20.1/mN m σ=,故C 值不需校正 C =C 20=0.078 极限空塔气速max 0.078 2.07/m s μ===取安全系数为0.7,则空塔气速 0.7 2.07 1.45/m s μ=⨯= 塔径1.87D m ===根据塔径标准圆态,取D =2.0m实际空塔气速 224/4 4.05/3.142 1.29/S V D m s μπ==⨯⨯= (3) 溢流装置选用单溢流弓形降液管,取溢流延堰长 0.6550.6552 1.31l D m ==⨯=则 25211.8 6.03(1.31)n W L l -==因/0.655W l D =,查取材图3-8知液流收缩系数E =1.02则堰上液层高度 232.8411.81.02()0.013100 1.31ow h m=⨯⨯=溢流堰高 0.070.0130.0w l o w h h h m =-=-= 降液管底隙高度 0.0060.0570.0060.051o w h h m =-=-=按0.65wl D =,,查取材图(3-10),得0.122dw D =,0.07f T A A =则降液管宽度 0.1220.122 2.00.d w Dm ==⨯= 降液管截面积 223.140.070.07(2.0)0.224f T A A m ==⨯⨯=验算液体在降液管内的停留时间:0.220.4530.250.00328f T S A H s s L θ⨯===>(4) 塔板布量因塔径较大,故采用分块式塔板。
根据 d50 = 0.27[μD/u t(ρs- ρ)]1/2计算颗粒的分割粒径∴ d50 = 0.27[3.6×10-5×0.4/(13.889×2300)]1/2= 0.00573×10-3m = 5.73μm(3)压强降根据△P = ξ·ρu i2/2 计算压强降∴△P = 8.0×0.674×13.8892/2 = 520 Pa7、实验室用一片过滤面积为0.1m2的滤叶对某种颗粒在水中的悬浮液进行实验,滤叶内部真空读为500mmHg,过滤5min的滤液1L,又过滤5min的滤液0.6L,若再过滤5min得滤液多少?已知:恒压过滤,△P =500mmHg ,A=0.1m,θ1=5min时,V1=1L;θ2=5min+5min=10min时,V2=1L+0.6L=1.6L求:△θ3=5min时,△V3=?解:分析:此题关键是要得到虚拟滤液体积,这就需要充分利用已知条件,列方程求解思路:V2 + 2VV e= KA2θ(式中V和θ是累计滤液体积和累计过滤时间),要求△V3,需求θ3=15min时的累计滤液体积 V3=?则需先求Ve和K。
⑴虚拟滤液体积Ve由过滤方程式 V2 + 2VV e= KA2θ过滤5min得滤液1L(1×10-3)2 + 2×10-3 V e= KA2×5 ①过滤10min得滤液1.6L(1.6×10-3)2 + 2×1.6×10-3 V e= KA2×10 ②由①②式可以得到虚拟滤液体积V e= 0.7×10-3 KA2= 0.396⑵过滤15分钟假设过滤15分钟得滤液V'V'2 + 2V'V e= KA2θ'V'2 + 2×0.7×10-3V'= 5×0.396V' = 2.073×10-3∴再过滤5min得滤液△V = 2.073×10-3 -1.6×10-3 = 0.473×10-3 m3=0.473L8.以小型板框压滤机对碳酸钙颗粒在水中的悬浮液进行过滤实验,测得数据列于本题附表。
第三章机械分离一、名词解释(每题2分)1.非均相混合物物系组成不同,分布不均匀,组分之间有相界面2.斯托克斯式ϕ3.球形度s非球形粒子体积相同的球形颗粒的面积与球形颗粒总面积的比值4.离心分离因数离心加速度与重力加速度的比值5.临界直径dc离心分离器分离颗粒最小直径6.过滤利用多孔性介质使悬浮液中液固得到分离的操作7.过滤速率单位时间所产生的滤液量8.过滤周期间歇过滤中过滤、洗涤、拆装、清理完成一次过滤所用时间9.过滤机生产能力过滤机单位时间产生滤液体积10.浸没度转筒过滤机浸没角度与圆周角比值二、单选择题(每题2分)1、自由沉降的意思是_______。
A颗粒在沉降过程中受到的流体阻力可忽略不计B颗粒开始的降落速度为零,没有附加一个初始速度C颗粒在降落的方向上只受重力作用,没有离心力等的作用D颗粒间不发生碰撞或接触的情况下的沉降过程D2、颗粒的沉降速度不是指_______。
A等速运动段的颗粒降落的速度B加速运动段任一时刻颗粒的降落速度C加速运动段结束时颗粒的降落速度D净重力(重力减去浮力)与流体阻力平衡时颗粒的降落速度B3、对于恒压过滤_______。
A滤液体积增大一倍则过滤时间增大为原来的?2倍B滤液体积增大一倍则过滤时间增大至原来的2倍C滤液体积增大一倍则过滤时间增大至原来的4倍D当介质阻力不计时,滤液体积增大一倍,则过滤时间增大至原来的4倍D4、恒压过滤时,如介质阻力不计,滤饼不可压缩,过滤压差增大一倍时同一过滤时刻所得滤液量___。
A增大至原来的2倍B增大至原来的4倍倍D增大至原来的1.5倍C5、以下过滤机是连续式过滤机_______。
A箱式叶滤机B真空叶滤机C回转真空过滤机D板框压滤机C6、过滤推动力一般是指______。
A过滤介质两边的压差B过滤介质与滤饼构成的过滤层两边的压差C滤饼两面的压差D液体进出过滤机的压差B7、回转真空过滤机中是以下部件使过滤室在不同部位时,能自动地进行相应的不同操作:______。
第三章一、填空题 1.某颗粒的重力沉降服从斯托克斯定律,若在水中的沉降速度为u 1,在空气中为u 2,则u 1 u 2;若在热空气中的沉降速度为u 3,冷空气中为u 4,则u 3 u 4。
(>,<,=) 答:μρρ18)(2-=s t g d u ,因为水的粘度大于空气的粘度,所以21u u <热空气的粘度大于冷空气的粘度,所以43u u <2.用降尘室除去烟气中的尘粒,因某种原因使进入降尘室的烟气温度上升,若气体质量流量不变,含尘情况不变,降尘室出口气体含尘量将 (上升、下降、不变),导致此变化的原因是1) ;2) 。
答:上升,原因:粘度上升,尘降速度下降;体积流量上升,停留时间减少。
3.含尘气体在降尘室中除尘,当气体压强增加,而气体温度、质量流量均不变时,颗粒的沉降速度 ,气体的体积流量 ,气体停留时间 ,可100%除去的最小粒径min d 。
(增大、减小、不变) 答:减小、减小、增大,减小。
ρξρρ3)(4-=s t dg u ,压强增加,气体的密度增大,故沉降速度减小,压强增加,p nRTV =,所以气体的体积流量减小, 气体的停留时间A V L u L t s /==,气体体积流量减小,故停留时间变大。
最小粒径在斯托克斯区)(18min ρρμ-=s tg u d ,沉降速度下降,故最小粒径减小。
4.一般而言,同一含尘气以同样气速进入短粗型旋风分离器时压降为P 1,总效率为1η,通过细长型旋风分离器时压降为P 2,总效率为2η,则:P 1 P 2,1η 2η。
答:小于,小于5.某板框过滤机恒压操作过滤某悬浮液,滤框充满滤饼所需过滤时间为τ,试推算下列情况下的过滤时间τ'为原来过滤时间τ的倍数:1)0=s ,压差提高一倍,其他条件不变,τ'= τ;2)5.0=s ,压差提高一倍,其他条件不变,τ'= τ;3)1=s ,压差提高一倍,其他条件不变,τ'= τ;1)0. 5;2)0.707;3)1s p -∆∝1)/(1τ,可得上述结果。
第三章 沉降与过滤沉 降【3-1】 密度为1030kg/m 3、直径为400m μ的球形颗粒在150℃的热空气中降落,求其沉降速度。
解 150℃时,空气密度./30835kg m ρ=,黏度.524110Pa s μ-=⨯⋅颗粒密度/31030p kg m ρ=,直径4410p d m -=⨯ 假设为过渡区,沉降速度为()(.)()./..1122223345449811030410179225225241100835p t p g u d m s ρρμρ--⎡⎤-⎡⎤⨯==⨯⨯=⎢⎥⎢⎥⨯⨯⨯⎢⎥⎣⎦⎣⎦验算 .R e ..454101790.835=24824110p t d u ρμ--⨯⨯⨯==⨯ 为过渡区【3-2】密度为2500kg/m 3的玻璃球在20℃的水中和空气中以相同的速度沉降。
试求在这两种介质中沉降的颗粒直径的比值,假设沉降处于斯托克斯定律区。
解 在斯托克斯区,沉降速度计算式为()/218t p p u d g ρρμ=-由此式得(下标w 表示水,a 表示空气)()()2218= p w pw p a pat w ad d u g ρρρρμμ--=pw pad d =查得20℃时水与空气的密度及黏度分别为./,.339982 100410w w kg m Pa s ρμ-==⨯⋅ ./,.35120518110a a kg m Pa s ρμ-==⨯⋅已知玻璃球的密度为/32500p kg m ρ=,代入上式得.961pw pad d ==【3-3】降尘室的长度为10m ,宽为5m ,其中用隔板分为20层,间距为100mm ,气体中悬浮的最小颗粒直径为10m μ,气体密度为./311kg m ,黏度为.621810Pa s -⨯⋅,颗粒密度为4000kg/m 3。
试求:(1)最小颗粒的沉降速度;(2)若需要最小颗粒沉降,气体的最大流速不能超过多少m/s? (3)此降尘室每小时能处理多少m 3的气体?解 已知,/./.6336101040001121810pc p d m kg m kg m Pa s ρρμ--=⨯===⨯⋅,, (1) 沉降速度计算 假设为层流区().()(.)./.26269811010400011001181821810pc p t gd u m s ρρμ---⨯⨯-===⨯⨯验算..Re .66101000111000505221810pc t d u ρμ--⨯⨯⨯===<⨯. 为层流(2) 气体的最大流速max u 。
第三部分蒸馏一、填空题1、蒸馏是用来分离均相液体混合物的单元操作。
2、含乙醇12%(质量百分数)的水溶液,其乙醇的摩尔分率为 5.07% 。
3、蒸馏操作是借助于液体混合物中各组分挥发度的差异而达到分离的目的。
4、进料板将精馏塔分为精馏段和提馏段。
5、理想溶液的气液相平衡关系遵循拉乌尔定律。
6、当一定组成的液体混合物在恒这一总压下,加热到某一温度,液体出现第一个气泡,此温度称为该液体在指定总压下的泡点温度,简称泡点。
7、在一定总压下准却气体混合物,当冷却到某一温度,产生第一个液滴,则此温度称为混合物在指定总压下的露点温度,简称露点。
8、理想溶液中各组分的挥发度等于其饱和蒸气压。
9、相对挥发度的大小反映了溶液用蒸馏分离的难易程度。
10、在精馏操作中,回流比的操作上限是全回流。
11、在精馏操作中,回流比的操作下限是最小回流比。
12、表示进料热状况对理论板数的影响的物理量为进料热状况参数。
13、q值越大,达到分离要求所需的理论板数越少。
14、精馏塔中温度由下而上沿塔高的变化趋势为逐渐降低。
15、当分离要求一定,回流比一定时,在五种进料状况中,冷液进料的q值最大,此时,提馏段操作线与平衡线之间的距离最远,分离所需的总理论板数最少。
16、精馏过程是利用部分冷凝和部分汽化的原理而进行的。
精馏设计中,回流比越大,所需理论板越少,操作能耗增加,随着回流比的逐渐增大,操作费和设备费的总和将呈现先降后升的变化过程。
17、精馏设计中,当回流比增大时所需理论板数减小(增大、减小),同时蒸馏釜中所需加热蒸汽消耗量增大(增大、减小),塔顶冷凝器中冷却介质消耗量减小(增大、减小),所需塔径增大(增大、减小)。
18、分离任务要求一定,当回流比一定时,在5种进料状况中, 冷液体进料的q值最大,提馏段操作线与平衡线之间的距离最远, 分离所需的总理论板数最少。
19、相对挥发度α=1,表示不能用普通精馏分离分离,但能用萃取精馏或恒沸精馏分离。
新版化工原理习题答案(03)第三章-非均相混合物分离及固体流态化-题解第三章非均相混合物分离及固体流态化1 •颗粒在流体中做自由沉降,试计算(1)密度为2 650 kg∕m3,直径为0.04 mm的球形石英颗粒在20 C空气中自由沉降,沉降速度是多少?(2)密度为2 650 kg∕m3,球形度0.6的非球形颗粒在20 C清水中的沉降速度为0.1 m/ s,颗粒的等体积当量直径是多少?(3)密度为7 900 kg∕m3,直径为6.35 mm的钢球在密度为1 600kg∕m3的液体中沉降150 mm所需的时间为7.32 s,液体的黏度是多少?解:(1)假设为滞流沉降,则:U t d2(s )18查附录20 C 空气 1.205kg/m3, 1.81 10 5 6PaS ,所以,2 3 2U t卫3—ms 0.1276ms18 18 1.81 10核算流型:3Re 型1205 0.1276 0.04 100.34 11.81 10 5所以,原假设正确,沉降速度为0.1276 m/s。
(2)采用摩擦数群法: 3431.93 1.205 0.1gRe1 7——s2 33 2u37 1.81 10 5 2650 1.205 9.81依0.6 , Re 1431.9,查出:Re t 上d e0.3,所以:d e0.3 1.81 10 4.506 10 5m 45 μm1.205 0.1(3)假设为滞流沉降,得: d2( S )g-18UU t h 0.15 7.32m S 0.02049m S将已知数据代入上式得:0.006352 7900 1 600 9.81Pa S18 0.02049核算流型du t0.00635 0.02049 1600Re t0.03081 16.7572 •用降尘室除去气体中的固体杂质,降尘室长5 m,宽5 m,高4.2 m,固体杂质为球形颗粒,密度为3000 kg/m3。
气体的处理量为3000 (标准)m3∕h。
3-1、试求直径μm 70,密度为3m 650kg 2−⋅的球形石英粒子,在C 200水中及在C 200空气中的沉降速度。
(答:13s m 1079.6−−⋅×,11s m 1097.3−−⋅×)解:⑴在C 20°水中的沉降速度先假定此沉降属层流区,可按斯托克斯定律求t u ,查表得C 20°水的3m kg 2.998−⋅=ρ,s Pa 10004.13⋅×=−µ,()()()133262s m 1079.610004.1188.92.9982650107018−−−−⋅×=×××−××=−=µρρg d u s t 复核:147.010004.12.9981079.61070Re 336<=×××××==−−−µρt t du 与假定相符;⑵在C 20°空气中的沉降速度先假定此沉降属层流区,按按斯托克斯定律求t u ,查表得C 20°空气的3m kg 205.1−⋅=ρ,s Pa 1081.15⋅×=−µ,()()()15262s m 39.01081.1188.9205.12650107018−−−⋅=×××−××=−=µρρg d u s t 复核:182.11081.1205.139.01070Re 56>=××××==−−µρt t du 与假定不符,再设该沉降属于过渡区,按艾伦定律求t u ,()6.0Re 27.0t s t g d u ρρρ−=()()6.0682.1205.18.9205.12650107027.0×−×=−1111097.3s m 397.0−−−⋅×=⋅=s m 复核:864.11081.1205.1397.01070Re 56=××××==−−µρt t du 属于过渡区,与假定相符。
化工原理分章试题与解答第三章(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第三章一、填空题1.某颗粒的重力沉降服从斯托克斯定律,若在水中的沉降速度为u 1,在空气中为u 2,则u 1 u 2;若在热空气中的沉降速度为u 3,冷空气中为u 4,则u 3 u 4。
(>,<,=) 答:μρρ18)(2-=s t g d u ,因为水的粘度大于空气的粘度,所以21u u <热空气的粘度大于冷空气的粘度,所以43u u <2.用降尘室除去烟气中的尘粒,因某种原因使进入降尘室的烟气温度上升,若气体质量流量不变,含尘情况不变,降尘室出口气体含尘量将 (上升、下降、不变),导致此变化的原因是1) ;2) 。
答:上升,原因:粘度上升,尘降速度下降;体积流量上升,停留时间减少。
3.含尘气体在降尘室中除尘,当气体压强增加,而气体温度、质量流量均不变时,颗粒的沉降速度 ,气体的体积流量 ,气体停留时间 ,可100%除去的最小粒径min d 。
(增大、减小、不变) 答:减小、减小、增大,减小。
ρξρρ3)(4-=s t dg u ,压强增加,气体的密度增大,故沉降速度减小, 压强增加,p nRTV =,所以气体的体积流量减小,气体的停留时间A V L u L t s /==,气体体积流量减小,故停留时间变大。
最小粒径在斯托克斯区)(18min ρρμ-=s t g u d ,沉降速度下降,故最小粒径减小。
4.一般而言,同一含尘气以同样气速进入短粗型旋风分离器时压降为P 1,总效率为1η,通过细长型旋风分离器时压降为P 2,总效率为2η,则:P 1 P 2,1η 2η。
答:小于,小于5.某板框过滤机恒压操作过滤某悬浮液,滤框充满滤饼所需过滤时间为τ,试推算下列情况下的过滤时间τ'为原来过滤时间τ的倍数:1)0=s ,压差提高一倍,其他条件不变,τ'= τ;2)5.0=s ,压差提高一倍,其他条件不变,τ'= τ;3)1=s ,压差提高一倍,其他条件不变,τ'= τ;1)0. 5;2)0.707;3)1s p -∆∝1)/(1τ,可得上述结果。
第三章沉降与过滤沉 降【 3-1 】 密度为 1030kg/m 3、直径为 400 m 的球形颗粒在 150℃的热空气中降落,求其沉降速度。
解 150℃时,空气密度0.835kg / m 3 ,黏度 2.41 10 5 Pa s颗粒密度p 1030kg / m3,直径 d p 4 10 4 m假设为过渡区,沉降速度为4 g 2 ( p)214 9 81 2 103013234u td p( . ) ( ) 4 101.79 m / s225225 2.41 10 50.835d p u t44101 79 0.835验算Re=.24 82 41 105..为过渡区3【 3-2 】密度为 2500kg/m 的玻璃球在 20℃的水中和空气中以相同的速度沉降。
解 在斯托克斯区,沉降速度计算式为u td 2ppg / 18由此式得(下标w 表示水, a 表示空气)18pw d pw2( pa )d pa2 u t =gwad pw ( d pa(pa )wpw)a查得 20℃时水与空气的密度及黏度分别为w998 2 3w 1 . 004 10 3 . kg / m , Pa s 1 205 3a1 81 10 5 Pa sa . kg / m , .已知玻璃球的密度为p2500 kg / m 3 ,代入上式得dpw( 2500 1 205 ) 1 . 004 10.d pa( 2500998 2 1 . 81 10. )359.61【 3-3 】降尘室的长度为10m ,宽为 5m ,其中用隔板分为 20 层,间距为 100mm ,气体中悬浮的最小颗粒直径为10 m ,气体密度为1.1kg / m 3 ,黏度为 21.8 10 6 Pa s ,颗粒密度为4000kg/m 3。
试求: (1) 最小颗粒的沉降速度;(2) 若需要最小颗粒沉降,气体的最大流速不能超过多少m/s (3) 此降尘室每小时能处理多少m 3 的气体解 已知 d pc10 10 6 m, p4000kg / m 3 ,1.1kg / m 3 ,21.8 10 6 Pa s(1) 沉降速度计算假设为层流区gd pc 2 (p) 9 . 81 ( 10 10 6 2 ( 4000 1 1u t)6 . ) 0.01m / s1818 21.8 10d pc u t10 10 6 0 01 1 1000505. 2 验算 Re21 8 10 6 为层流.(2) 气体的最大流速 umax 。
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
化工原理习题集卡片
-----精心整理,希望对您有所帮助!。
第三章非均相混合物分离及固体流态化1 .颗粒在流体中做自由沉降,试计算(1)密度为2 650 kg/m3,直径为0.04 mm的球形石英颗粒在 20 C 空气中自由沉降,沉降速度是多少? ( 2 )密度为2 650 kg/m 3,球形度 0.6的非球形颗粒在 20 C 清水中的沉降速度为 0.1 m/ s ,颗粒的等体积当量直径是多少? ( 3)密度为7 900 kg/m 的液体中沉降150 mm 所需的时间为解:(1 )假设为滞流沉降,则:d 2( s)U t—183 20.04 10 3 1818 1.81 10 5核算流型:查附录20 C 空气31.205kg/m,1.81 10 5 Pa s ,所以,Re du t1.205 0.1276 0.04 10 3 1.81 10 50.34 所以,原假设正确,沉降速度为(2 )采用摩擦数群法 0.1276 m/s s g 2 3 3 U t4 1.81 105 2650 Re 1- 1依 0.6, Re 1 431.9 , ,0.3 1.81 10 5 d e1.205 0.1(3 )假设为滞流沉降,得:d 2( s )g 18u t0.13431.9查出:Utde / R q ( 4.506105m 451.205 9.81 3 1.2052所以:其中u t h 0.15 7.32m s 0.02049m s 将已知数据代入上式得: 0.006352 7900 1600 9.81Pa s 18 0.02049 6.757Pa s核算流型 Re 4 O'00635O'02049 16006.7572 •用降尘室除去气体中的固体杂质,降尘室长 球形颗粒,密度为 3000 kg/m3。
气体的处理量为 0.030815 m , 3000 宽5 m ,高4.2 m ,固体杂质为(标准)m 3/h 。
试求理论上能完3,直径为6.35 mm 的钢球在密度为 1 600 kg/m7.32 s ,液体的黏度是多少?18 2650 12059^ms 0.1276ms全除去的最小颗粒直径。
第三章 非均相物系的分离和固体流态化3. 在底面积为40m ²的除尘室内回收气体中的球形固体颗粒。
气体的处理量为3600m ³/h , 固体的密度ρs=3600kg/m ³,操作条件下气体的密度ρ=1.06kg/m ³,粘度为3.4×10-5Pa •s 。
试求理论上完全除去的最小颗粒直径。
解:理论上完全除去的最小颗粒直径与沉降速度有关。
需根据沉降速度求。
1)沉降速度可根据生产能力计算u t = V s /A= (3600/3600)/40 = 0.025m/s (注意单位换算)2)根据沉降速度计算理论上完全除去的最小颗粒直径。
沉降速度的计算公式与沉降雷诺数有关。
(参考教材P148)。
假设气体流处在滞流区则可以按 u t = d 2(ρs - ρ)g/18μ进行计算 ∴ d min 2= 18μ/(ρs - ρ)g ·u t可以得到 d min = 0.175×10-4m=17.5 m μ3)核算Re t = d min u t ρ/μ< 1 , 符合假设的滞流区∴能完全除去的颗粒的最小直径 d = 0.175×10-4 m = 17.5 μm5. 含尘气体中尘粒的密度为2300kg/m ³,气体流量为1000m ³/h ,粘度为3.6×10-5Pa •s 密度为0.674kg/m ³,采用如图3-8所示的标准型旋风分离器进行除尘。
若分离器圆筒直径为0.4m ,试估算其临界直径,分割粒径及压强降。
解:P158图3-7可知,对标准旋风分离器有: Ne = 5 ,ξ= 8.0 B = D/4 ,h = D/2 (1) 临界直径根据d c = [9μB/(πNe ρs u i )]1/2 计算颗粒的临界直径 其中:μ=3.6×10-5Pa •s ;B = D/4=0.1m ;Ne = 5;ρs =2300kg/m ³;sm DV D D V BhV u s s s i /89.138242====将以上各参数代入,可得d c = [9μB/(πNe ρs u i )]1/2 = [9×3.6×10×0.25×0.4/(3.14×5×2300×13.89)]1/2 = 8.04×10-6 m = 8.04 μm (2)分割粒径根据 d 50 = 0.27[μD/u t (ρs - ρ)]1/2计算颗粒的分割粒径 ∴ d 50 = 0.27[3.6×10-5×0.4/(13.889×2300)]1/2= 0.00573×10-3m = 5.73μm(3)压强降根据△P = ξ·ρui2/2 计算压强降∴△P = 8.0×0.674×13.8892/2 = 520 Pa7、实验室用一片过滤面积为0.1m2的滤叶对某种颗粒在水中的悬浮液进行实验,滤叶内部真空读为500mmHg,过滤5min的滤液1L,又过滤5min的滤液0.6L,若再过滤5min 得滤液多少?已知:恒压过滤,△P =500mmHg ,A=0.1m,θ1=5min时,V1=1L;θ2=5min+5min=10min时,V2=1L+0.6L=1.6L求:△θ3=5min时,△V3=?解:分析:此题关键是要得到虚拟滤液体积,这就需要充分利用已知条件,列方程求解思路:V2 + 2VVe= KA2θ(式中V和θ是累计滤液体积和累计过滤时间),要求△V3,需求θ3=15min时的累计滤液体积 V3=?则需先求Ve和K。
第
3章 1.计算甲醇在30℃的水中的扩散系数。
解:扩散系数()6.0A S 21
8AS V T
aMs 104.7D μ-⨯=
其中水的缔合参数为a=,水的分子量Ms=18g/mol ,T=303K ,s mPa 1007.802S ⋅⨯=-μ,甲醇在正常沸点下的摩尔体积V A =25.8cm3/mol 。
所以甲醇在30℃的水中的扩散系数为×10-5m 2/s 。
2.正庚烷(A )和正辛烷(B )所组成的混合液,在388K 时沸腾,外界压力为,根据实
验测定,在该温度条件下的kPa p A
1600=,kPa p B 8.740=,试求相平衡时气、液相中正庚烷的组成。
(原题 8) 解:311.08
.741608.743.1010B 0A 0B A =--=--=p p p P x
物系。
解:计算结果
t Pa Pb x y
10 1 1
117
120 10 0 0
绘图
4.将含苯摩尔分数为,甲苯摩尔分数为的溶液加以汽化,汽化率为1/3,已知物系的相对挥发度为,试计算:
(1)作简单蒸馏时,气相与液相产物的组成;
(2)作平衡蒸馏时,气相与液相产物的组成;
解:(1)作简单蒸馏时,设液相产物的组成为x 2。
通过试差法,可以求得x 2=。
再通过物料衡算,可以得到6766.03
214117.032-0.51W W x W x W y 212211=-⨯⨯=-⋅-⋅= (2)作平衡蒸馏时,残液率3
2311q =-= 物料横算式为5.12x 1
q x x 1-q q y F +-=--= 相平衡方程为:()47x
.1147x .2x 1-1x y +=+=αα 联立上述两个方程,可以得到x=,y=。
5.每小时将15000kg 含苯40%和甲苯60%的溶液,在连续精馏塔中进行分离。
操作压力为,要求馏出液能回收原料中的%的苯,釜液中含苯不高于2%(以上均为质量百分数)。
求馏出液和釜液的摩尔流率及摩尔组成。
(原题 10)
解:根据质量衡算与回收率的定义: 所以h kg h kg F W W F
/8700/02
.04.015000029.0'029.0'=⨯⨯=⨯=ωω 所以()h kg h kg W F D /6300/87001500'''=-=-= 所以9248.06300
4.015000971.0''971.0=⨯⨯=⨯=
D F F D ωω 所以摩尔流率为
6.在一连续精馏塔中分离某二元理想混合液。
原料液流量为100kmol/h,浓度为(摩尔分率,下同)。
要求塔顶产品浓度为,塔釜浓度为。
试求:(1)馏出液与釜残液的流量;(2)若每小时从塔顶采出50kmol 馏出液,工艺要求应作何改变?(原题 11) 解:根据⎩⎨⎧+=+=W D F
Wx Dx Fx W D F 如果每小时从塔顶采出50kmol 馏出液,则由W D F Wx Dx Fx +=
得W D x x 50504.0100+=⨯
即W D x x +=8.0
由于,0>D x 所以8.0<W x
7.某液体混合物易挥发性组分含量为,在泡点状态下连续送入精馏塔,加料量为
1001-⋅h kmol ,易挥发性组分的回收率为99%,釜液易挥发性组分含量为,回流比为3,以上均为摩尔分数。
试求:(1)塔顶产品与塔底产品的摩尔流率;(2)精馏段和提馏段内上升蒸汽及下降液体的摩尔流率;(3)精馏段和提馏段的操作线方程。
解:(1)根据题意99.0==F D Fx Dx η,所以0.0199.011=-=-=ηF
W Fx Wx 所以
(2)h kmol h kmol RD L /264/883=⨯==
(3)精馏段操作线方程:169.075x .01
313311+=+++=+++=D D x x R x x R R y 提馏段操作线方程:0017.0034.112
36405.01212364364-=-⨯--=---=x x W L'Wx x W L'L'y W 8.采用常压连续精馏塔分离苯-甲苯混合物。
原料中含苯(摩尔分数,下同),进料为气液混合物,其中蒸汽与液体量的摩尔比为1:2。
已知操作条件下物系的平均相对挥发度为,操作回流比为最小回流比的倍。
塔顶采用全凝器冷凝,泡点回流,塔顶产品液中含苯。
试求:(1)操作回流比;(2)精馏段操作线方程;(3)塔顶第二层理论板的汽液相组成。
解:⑴根据题意q =2/3,故进料线方程:
相平衡线方程:()()x
x x x x α-αx y 1.512.51-2.51 2.511+=+=+= 联立上述两式,可以求得x q =,y q =
则最小回流比:
操作回流比:R ==×=
⑵精馏段操作线方程:
⑶塔顶第二层理论板的气液相组成 由0.961.512.51
11==+=D x x x y 得到x 1= 由0.92141.512.5222=+=
x x y ,得到x 2= 9.用一精馏塔分离苯-甲苯溶液,进料为气液混合物,气相占50%(摩尔分数),进料混合物中苯的摩尔分率为,苯与甲苯的相对挥发度为,现要求塔顶、塔底产品组成分别为和(摩尔分率),回流比取最小回流比的倍。
塔顶分凝器所得的冷凝液全部回流,未冷凝的蒸气经过冷凝冷却后作为产品。
试求:(1)塔顶塔底产品分别为进料量的多少倍?(2)塔顶第一理论板上升的蒸气组成为多少?
解:(1)对全塔做总物料衡算以及对全塔做组分A 的物料衡算,可以得到:
其中,60.0=F x ,95.0=D x ,05.0=W x
所以()()F F x x x x F D W D W F 611.005
.095.005.06.0=--=--= (2)气液平衡方程为:()()x
x x x x x y 5.115.215.215.211+=-+=-+=αα 进料线方程为:2.11
5.06.015.05.011+-=---=---=x x q x x q q y F 联立上述方程,得⎩⎨⎧==708
.0492.0e e y x ,故进料线与相平衡线的交点为(, )。
最小回流比:12.1492
.0708.0708.095.0min =--=--=e e e D x y y x R 所以回流比为:68.112.15.15.1min =⨯==R R
分凝器相当于一块理论板,设离开分凝器的液相组成为x 0:
则()()95.015.215.2110
0000=-+=-+==x x x x y x D αα 可以得到884.00=x
精馏段的操作线方程为:
所以,塔顶第一块理论板上的蒸汽组成为:
10.如图所示,常压连续精馏塔具有一层实际塔板及一台蒸馏釜,原料预热到泡点由塔顶加入,进料组成20.0=F x (易挥发性组分的摩尔分率,下同)。
塔顶上升蒸汽经全凝器全部冷凝后作为产品,已知塔顶馏出液的组成为,塔顶易挥发性组分的回收率为80%。
系统的相对挥发度为。
试求釜液组成及塔板的默弗里板效率。
解:(1)对全塔做总物料衡算以及对全塔做组分A 的物料衡算,可以得到:
其中,2.0=F x ,28.0=D x ,
由于塔顶易挥发组分的回收率为80%,所以,8.0=⋅⋅=
F D x F x D η 可定义得到
571.028.02.08.08.0=⨯=⨯=D F x x F D 所以,
429.0571.011=-=-=F D F W 由于8.0=⋅⋅F D x F x D ,所以2.08.011=-=⋅⋅-=⋅⋅F
D F W x F x D x F x W 所以0932.0429
.02.02.02.0=⨯=⨯
=F
W x x F W (2)由于蒸馏釜可以视为一层理论板,所以离开该釜的气液两相呈平衡状态,即: 对塔板做易挥发组分的物料衡算,塔板上下可以视为恒摩尔流,可得 或()()11x x F y y D F W -⋅=-⋅ 所以()()157.0204.028.0571.02.011=-⨯-=-⋅-
=W F y y F
D x x 对于气相莫弗里板效率,与x 1呈平衡的气相组成为: 所以,664.0204
.0318.0204.028.0*11=--=--=W W MV y y y y E 对于液相莫弗里板效率,与y 1呈平衡的液相组成为: 所以,662.0135.02.0157.02.0*11=--=--=x x x x E F F ML。