2018二次函数压轴题解题技巧
- 格式:doc
- 大小:667.00 KB
- 文档页数:32
⼆次函数压轴题---动点问题解答⽅法技巧总结(含例解答案)⼆次函数压轴题---动点问题解答⽅法技巧总结⑴求⼆次函数的图象与x 轴的交点坐标,需转化为⼀元⼆次⽅程;⑵求⼆次函数的最⼤(⼩)值需要利⽤配⽅法将⼆次函数由⼀般式转化为顶点式;⑶根据图象的位置判断⼆次函数ax 2+bx+c=0中a,b,c 的符号,或由⼆次函数中a,b,c 的符号判断图象的位置,要数形结合;⑷⼆次函数的图象关于对称轴对称,可利⽤这⼀性质,求和已知⼀点对称的点坐标,或已知与x 轴的⼀个交点坐标,可由对称性求出另⼀个交点坐标. ⑸与⼆次函数有关的还有⼆次三项式,⼆次三项式ax 2+bx+c ﹙a ≠0﹚本⾝就是所含字母x 的⼆次函数;下⾯以a >0时为例,揭⽰⼆次函数、⼆次三项式和⼀元⼆次⽅程之间的内在联系:动点问题题型⽅法归纳总结动态⼏何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好⼀般与特殊的关系;分析过程中,特别要关注图形的特性(特殊⾓、特殊图形的性质、图形的特殊位置。
)动点问题⼀直是中考热点,近⼏年考查探究运动中的特殊性:等腰三⾓形、直⾓三⾓形、相似三⾓形、平⾏四边形、梯形、特殊⾓或其三⾓函数、线段或⾯积的最值。
下⾯就此问题的常见题型作简单介绍,解题⽅法、关键给以点拨。
⼆、抛物线上动点5、(湖北⼗堰市)如图①,已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1)求抛物线的解析式;(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三⾓形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3) 如图②,若点E为第⼆象限抛物线上⼀动点,连接BE、CE,求四边形BOCE⾯积的最⼤值,并求此时E点的坐标.注意:第(2)问按等腰三⾓形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆⼼CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆⼼MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC 的垂直平分线与对称轴交点即为所求点P。
二次函数压轴题解题口诀,是高中数学学习中最重要的一环,可以帮助学生更好的掌
握二次函数的知识,加深对二次函数的理解。
学习二次函数压轴题解题口诀有以下三个步骤:
第一步:认真研究题目,把题目中的关键信息提取出来,如方程的参数、函数的表达
式等;
第二步:根据口诀,结合题目中的关键信息,来解决题目;
第三步:检查解题的正确性,进行有效的复核,确保解题正确。
二次函数压轴题解题口诀的最重要的就是“以a为关键,b和c要靠肩,求根号内容,反求外部法”。
其中a是二次函数的系数,b和c是二次函数的一次项和常数项,求根号
内容是指求二次函数的两个实数根,反求外部法是指求出二次函数的表达式。
此外,还有一些其他的口诀,如:“三角求根,解二次方程,用函数表示,反求外部法”。
这些口诀把二次函数的解题思路概括得很形象,可以帮助学生更好的理解二次函数。
总之,学习二次函数压轴题解题口诀,不仅可以帮助学生深入理解二次函数,还可以
提高学生的解题能力,更好地应对二次函数压轴题。
中考数学倒计时30:二次函数压轴的十几种问题方法思路总结二次函数压轴题当中,同学们会遇到各种各样的解答问题,那么最常见的那些,今天就带同学们一块总结一下,方便大家记忆解题方法。
我们只说一下方法,过程就不再详细说了,在以前的题目中都有过程。
1.首先是最简单的一种问题,给定两个固定点,然后在对称轴或者抛物线上找一点,使得该点和两个固定点组成的两个线段之和最小,即线段和最小值问题,遇到该种问题,一般直接找某个固定点关于某直线的对称点,然后寻找三点共线时的动点;2.线段和基础上延续而来的三角形或四边形周长最小值问题,同样会出现固定的点,那么就会有固定的边长,所以只需要找到另外的边长之和最小,同样使用找对称点的方法;3.垂直于x轴的一条直线,被抛物线和直线截取的两端线段之间的关系,如最大差值,或者相等、2倍关系。
最大差值问题需要找到该垂线与抛物线和直线的两个交点的纵坐标,利用纵坐标表示的线段来进行线段差的计算,将会得到另一种二次函数,那么进行配方变顶点式,得到差值的最大值;而线段倍数关系则相对更简单,只需要表示出两线段的长度,利用倍数关系建立方程即可;(注意纵坐标的正负未知,所以表示出的线段加上绝对值符号,如此就能避免遗漏一些情况)4.动点和两固定点组成的三角形面积最大值问题,该问题一般会在一段局限的图像上找一点,和其他两个固定点组成三角形,求三角形面积最大,只需要对固定点所在的直线进行平移,使平移后的直线与抛物线只要一个交点,利用判别式=0求出平移距离,从而解出交点坐标;如果要求三角形面积,一般利用面积分割法进行计算,如果有一边在轴上就会更简单;5.四边形面积最大值问题:和三角形面积类似,一般会有三个已定的点,那么就有一个固定的三角形,所以只需要动点和其中相邻的两个定点组成的三角形面积最大即可,同样使用直线平移法求出点的坐标即可;而面积同样利用面积分割法求取;6.直角三角形的存在性:一个动点和两个定点的情况,可以直接利用勾股定理求出动点的坐标;如果是两个动点,一个定点,则可利用直线垂直法,注意利用三角函数去推;同时还要注意情况讨论,三个角可能有不同情况的直角;7.等腰三角形的存在性:和直角三角形类似,包含情况讨论,如果是两个定点和一个动点,那么利用线段长相等解得动点坐标即可;如果是两个动点和一个定点,利用底边中线和底边垂直的性质,使用直线垂直法解得;8.平行四边形存在性:平行四边形对边相等,这本就是一个有利条件,所以一般利用平行且相等的两个线段来寻找;如果是菱形,只需要在平行四边形基础上加上临边相等或者对角线垂直来求解;9.正方形的存在性:一般来说正方形就比较特殊了,所以相对的有利条件也比较多,所以求解会更容易些;10.整数坐标点的存在性:该问题并不是很常见,一般在较难的压轴题中才会出现,在一个范围内寻找符合条件的动点,但前提是坐标需要是整数,所以需要找到横纵坐标的范围,在范围内去求解;11.由动点形成的整数面积问题:例如一个动点和两个定点组成的三角形面积,要求面积为整数,需要先利用平移法找到最大面积的值,然后在范围内寻找面积取整时的动点位置或者个数有多少,需要注意的是只有最大面积时的动点是一个,若无限定条件,其他整数面积时的动点则会同时出现两个,所以同学们不要忽略了;12.全等、相似三角形问题:二次函数中的全等、相似问题有时候简单有时候较难,所以要看运气如何,如果给定了对应点则还好点,如果题中只是说让两个三角形全等或相似,并未给出△∽/≌△这种形式,那么就要考虑多种情况存在了,尤其是在相似问题中,情况讨论较多,所以寻找角是很重要的,但一般又不会出现度数,所以这个时候同学们千万不要忘记三角函数;13.特殊点的存在性:类似什么共谐点、好点,遇到这类问题,一般会直接让写出答案,所以同学们在草纸上可以利用各种技巧性方法进行计算,类似一些高中的可用知识“直线垂直”“点到直线的距离”“两直线的夹角”等,没事可以先看看这些知识点的用法,反正上了高中都要学,所以不如先提前看一下,在遇到直接写答案的题目时如果用上了绝对是优势;14.至于其他的,老师一下子也想不起来,常见的就是上面这十几个种类,如果大家需要分享其他类型可以在留言中给出,方便其他人能够看到。
二次函数压轴题的经典做法
以微课堂
奥数国家级教练与四名特级教师联手打造,初中数学精品微课堂。
271篇原创内容
公众号
GUIDE
导读
今天,王老师为大家整理了二次函数压轴题的经典做法,高分必备,赶紧收藏!
以微课堂高中版
奥数国家级教练与四位高中特级教师联手打造,高中精品微课堂。
35篇原创内容
公众号
以微课堂初中版
奥数国家级教练与四名特级教师联手打造,初中生数学课堂。
公众号
以微课堂小学版
小学微课与各科学习资料
公众号
来源网络,侵删。
温馨提示。
一道《二次函数》压轴题的解法大全
(几乎涵盖代数和几何的所有常规思路)
分析:直角三角形的存在性问题一般分两类题型考察,单动点型(较简单),双动点型(难度较大)。
解决方案一般有3种,第一种:代数法盲解(分别表示出三边,根据勾股定理分类列方程求解);第二种,几何画图求解(单动点构造“两线一圆”)即过2定点构造两条垂线和以2定点长度为直径构造圆,(双动点,抓定点定线与定角)。
第三种,数形结合求解。
本题虽然只有P点一个动点,看起来题目很简单,仔细一想就会发现P点的轨迹是圆,初中阶段学生未接触过圆方程,难以表示出P点坐标,进而写出三边长度来运用勾股定理列方程。
代数法盲解是否无法进行呢?我们在观察发现虽然我们不能用单个未知量表示P点坐标,但可将P点用2个未知量表述,列方程组求解。
因代数法盲解较复杂,本题仅提供其中一种分类解答:。
初三二次函数压轴题知识点解题方法二次函数压轴题是初中数学中重要的一类问题,涉及到了二次函数的定义、性质、图像、判别式等知识点,同时也需要灵活运用代数运算和图像分析的方法进行解题。
本文将介绍二次函数压轴题的一般解题方法,并分析其中涉及的主要知识点。
一、压轴题的一般形式及定义二次函数的一般形式为:y = ax^2 + bx + c,其中a、b、c为实数且a不等于0。
在这种形式下,一般有三种情况:当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下;当二次函数的图像与x轴相切或者与x轴没有交点时,称为“压轴题”。
压轴题的定义是通过给定函数关系和一些额外条件,求出关于未知数的取值范围、特殊情况、极值点、最值等问题。
二、压轴题的解题方法解压轴题的方法主要有以下几种:1.代数方法:通过解方程组或者利用已知的条件,求出未知数的取值范围和特殊情况。
2.图像分析法:通过分析二次函数的图像性质,包括开口方向、对称轴、顶点、焦点等,得出未知数的取值范围和特殊情况。
3.判别式法:通过判别式的符号来确定二次函数与x轴的交点个数和位置,进而得出未知数的取值范围和特殊情况。
下面我们将结合具体例题,详细介绍这些解题方法。
例题1:求二次函数y = ax^2 + bx + c的图象与x轴相切的条件。
解法1:当二次函数的图像与x轴相切时,有且仅有一个交点。
设交点坐标为(x0,0),代入方程得到0 = ax0^2 + bx0 + c。
根据判别式法,如果二次函数与x轴相切,判别式D = b^2 - 4ac = 0。
所以有b^2 - 4ac = 0,即b^2 = 4ac。
这就是二次函数图像与x 轴相切的条件。
解法2:当二次函数的图像与x轴相切时,说明二次函数的顶点坐标与x轴相交。
顶点坐标为(-b/2a, f(-b/2a)),其中f(x) = ax^2 + bx + c。
所以当x = -b/2a时,有f(x) = 0。
二次函数压轴题解题口诀第一步:观察观察题目给出的二次函数关系式,包括一般式和顶点式。
确定二次函数的参数a、b、c的取值范围。
1.若a>0,则二次函数开口向上,最低点为最小值;若a<0,则二次函数开口向下,最高点为最大值。
2.根据顶点式形式f(x)=a(x-h)²+k,h为顶点横坐标,k为顶点纵坐标。
3. 根据一般式形式f(x)=ax²+bx+c,a为二次项系数,b为一次项系数,c为常数项。
第二步:画图根据观察结果,用适当的坐标系画出函数图像。
确定函数的顶点、对称轴、最值、切线等。
可以通过以下步骤进行画图:1.若已有顶点坐标,直接画出顶点。
2.若没有顶点坐标,可以用顶点坐标公式求得,即h=-b/2a,将h带入函数,求出k=f(h)。
3.根据顶点和对称性,确定对称轴。
对称轴方程为x=h。
4.将对称轴两边的点带入函数,得到其他点的坐标。
5.根据a的正负确定开口方向,画出函数图像。
6.根据图像确定函数的最值、相交点等。
第三步:转移对于部分二次函数题目,可能需要做坐标系的转移,以便于求解题目要求。
1.若需要移动坐标系,可通过平移或缩放来实现。
2.平移坐标系时,可以找到新坐标系原点与旧坐标系原点之间的关系,并移动坐标系。
3.缩放坐标系时,可以根据函数图像的特点来进行缩放。
第四步:求解根据题目要求,利用二次函数的相关特性进行求解。
常用的求解方法有以下几种:1.求零点:当函数值等于0时,求得函数的横坐标即为零点的横坐标。
2.求最值:如果二次函数开口向上,则最低点为最小值;如果二次函数开口向下,则最高点为最大值。
3.求交点:当两个函数相交时,求得两个函数对应的横坐标即为交点的横坐标。
通过以上四个步骤,可以有效地解决二次函数压轴题目。
在解题过程中,需要注重观察和画图,根据函数的特性来合理转移坐标系,最后通过计算求得答案。
一、二次函数常考点汇总1、两点间的距离公式:AB = y j(y A - y B )2 + (XΛ-X f) )^2、中点坐标:线段也的中点C的坐标为:空竺,2±旦纣I 2 2 )直线y = k l x + b l(k]≠θ)与y = k2x + b2 ( Ar2≠ 0 )的位置关系:(1 )两直线平行Ok\=灯且* 也 (2)两直线相交<=> ≠ Ar2(3)两直线重合U>k∖=k^且S=S(4)两直线垂直<=> k l k2 =-13、一元二次方程有整数根问题,解题步骤如下:①用△和参数的其他要求确定参数的取值范围;②解方程,求出方程的根;(两种形式:分式、二次根式)③分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。
例:关于X的一元二次方程X2—2(∕n + l)x + m2=0有两个整数根,m<5且加为整数,求加的值。
4、二次函数与X轴的交点为整数点问题。
(方法同上)例:若抛物线y = nix2 +(3m +1 )x + 3与尤轴交于两个不同的整数点,且〃[为正整数,试确定此抛物线的解析式。
5、方程总有固定根问题,可以通过解方程的方法求出该固定根。
举例如下:已知关于X的方程ιnx2 -3(/W-I)x+2m-3 = 0 ( 为实数),求证:无论加为何值,方程总有一个固定的根。
解:当加=0时,x = l;当加Ho时,Δ = (m-3)2≥ 0 , X= —■~' ° , X l = 2- — > x2 = 1 ;2m m 综上所述:无论加为何值,方程总有一个固定的根是1。
6、函数过固定点问题,举例如下:已知抛物线y = x2-nιx + m-2 S是常数),求证:不论加为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。
解:把原解析式变形为关于加的方程y-√+2 = ,π(l-x);:.-V--V^+2= °,解得:-v = _1;Λ抛物线总经过一个固定的点(1, I-X = O X = 1 —1)。
专题七二次函数综合题的解题思路一、方法简述二次函数综合题通常作为压轴题, 意图通过压轴题考查学生的综合素质,尤其是分析问题、解决问题的能力,发现挖掘学生继续升学的潜力。
压轴题设置常见有探究型问题、开放型问题、运动变化型问题、操作型问题、应用型问题等。
压轴题常以支撑整个初中数学的核心知识与重要思想方法为载体, 突出能力考查,对学生的阅读能力、计算能力、理解能力、思维能力有较高的要求;主要的形式上是以函数为载体考查函数或几何,其中函数的载体以二次函数为重点。
函数考查的内容有求函数的解析式、求相关点的坐标、求函数的最值、研究函数的图象、函数的性质等。
代数方面涉及的知识主要有方程、函数、不等式、坐标、和解直角三角形(三角函数的应用)等。
函数不仅与数学其它知识有着密切的联系,而且还有着极为广泛的应用.因此,它是联系数学知识间或数学与实际问题间的纽带和桥梁,是中考数学试卷中不可或缺的重要内容.其呈现方式灵活多变,特别在压轴题中,函数常常起着其他知识不可替代的作用.二次函数是初中学习的重点与难点,也是高中进一步学习的重要内容。
以二次函数为背景的试题常受命题者的青睐,能够全面考查用数析形的技能与计算能力,这也是学生将来学习高中数学知识所必备的。
但受所学知识限制,命题一般不会用以纯函数的形式出现,而是结合几何图形或点的运动使几何图形发生变化,从而让代数与几何有机结合起来. 在实际问题或综合问题中,一般首先是函数思想指导下确定或选择运用函数,然后建立函数,最后根据函数性质解决相应的问题,突出考查了函数思想在动态几何中的运用.随着对《课程标准》基本理念被更为广泛和更为深入地认识,对“合情推理”与“数学活动过程”的考查也呈增强之势.因此培养并提高学生的合情推理能力,让学生经历数学活动过程,并从中体会及感悟积极的态度与科学的思想方法所蕴涵的意义和作用,都是促进学生创新精神的养成及学习能力提高的有效方式和途径.二、解题策略二次函数综合题,综合了初中代数、几何中相当多的知识点,如方程、不等式、函数、三角形、四边形、圆等内容,有些又与生产、生活的实际相结合,用到的数学思想方法有化归思想、分类思想、数学结合思想,以及代入法、消元法、配方法、代定系数法等。
2018二次函数压轴题解题技巧标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII图1图2二次函数压轴题解题技巧引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。
审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。
解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。
认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。
一、动态:动点、动线1.如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4),其中x 1、x 2是方程x 2-2x -8=0的两个根.(1)求这条抛物线的解析式; (2)点P 是线段AB 上的动点,过点P 作PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标; (3)探究:若点Q 是抛物线对称轴上的点,是否存在这样的点Q ,使△QBC 成说明理由.二、圆2.如图1,在平面直角坐标系xOy ,二次函数y =ax 2+bx +c (a >0)的图象顶点为D ,与y 轴交于点C ,与x 轴交于点A 、B ,点A 在原点的左侧,点B 的坐标为(3,0),OB =OC ,tan ∠ACO = 13.(1)求这个二次函数的解析式;(2)若平行于x 轴的直线与该抛物线交于点M 、N ,且以MN 为直径的圆与x 轴相切,求该圆的半径长度;(3)如图2,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上的一动点,当点P 运动到什么位置时,△AGP 的面积最大求此时点P 的坐标和△AGP 的最大面积.三、比例比值取值范围3.如图是二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,-4). (1)求出图象与x 轴的交点A,B 的坐标; (2)在二次函数的图象上是否存在点P ,使MAB PAB S S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;(3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.四、探究型4. 如图,直线33+=x y 交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交x 轴于另一点C (3,0).⑴ 求抛物线的解析式;⑵ 在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形 若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.yxOC B A五、最值类5.如图,在平面直角坐标系中,二次函数cy+=2的图象与x轴交于+bxxA、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POP/C,那么是否存在点P,使四边形POP/C为菱形若存在,请求出此时点P的坐标;若不存在请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.课后作业1.在平面直角坐标系中,已知A(-4,0),B(1,0),且以AB为直径的圆交y 轴的正半轴于点C,过点C作圆的切线交x轴于点D.(1)求点C的坐标和过A,B,C三点的抛物线的解析式;(2)求点D的坐标;(3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x由.2.已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,6,那么EF=2GO是否成立若成立,请给予证明;若不成点M的横坐标为5立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形若存在,请求出点Q的坐标;若不存在,请说明理由.Array3.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴相交于点C(0,3).当x=-4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连结AC、BC.(1)求实数a,b,c的值;(2)若点M 、N 同时从B 点出发,均以每秒1个单位长度的速度分别沿BA 、BC 边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将△BMN 沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;4. 如图,抛物线y =21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A(一1,0).⑴求抛物线的解析式及顶点D 的坐标; ⑵判断△ABC 的形状,证明你的结论;⑶点M (m ,0)是x 轴上的一个动点,当CM +DM 的值最小时,求m 的值.面积最大5、如图,在平面直角坐标系中,点A 、C 的坐标分别为(-1,0)、(0,3-),点B 在x 轴上.已知某二次函数的图象经过A 、B 、C 三点,且它的对称轴为直线x =1,点P 为直线BC 下方的二次函数图象上的一个动点(点P 与B 、C 不重合),过点P 作y 轴的平行线交BC 于点F . (1)求该二次函数的解析式;(2)若设点P 的横坐标为m ,试用含m 的代数式表示线段PF 的长; (3)求△PBC 面积的最大值,并求此时点P 的坐标.yO x C N B P M A6、在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C (2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、OQ的坐标.讨论等腰1x2+bx+c与y轴相交于C,与x轴相交于A、B,7、如图,已知抛物线y=2点A的坐标为(2,0),点C的坐标为(0,-1).(1)求抛物线的解析式;(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连结DC,当△DCE 的面积最大时,求点D的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P8、(武汉市中考)如图,已知抛物线y=x 2+bx +3与x 轴交于点B (3,0),与y 轴交于点A ,P 是抛物线上的一个动点,点P 的横坐标为m (m >3),过点P 作y 轴的平行线PM ,交直线AB 于点M . (1)求抛物线的解析式;(2)若以AB 为直径的⊙N 与直线PM 相切,求此时点M 的坐标;(3)在点P 的运动过程中,△APM 能否为等腰三角形若能,求出点M 的坐标;若不能,请说明理由.论直角三角形备用图9、如已知:如图一次函数y =21x +1的图象与x 轴交于点A ,与y 轴交于点B ;二次函数y =21x 2+bx +c 的图象与一次函数y =21x +1的图象交于B 、C 两点,与x 轴交于D 、E 两点且D 点坐标为(1,0) (1)求二次函数的解析式;(2)求四边形BDEC 的面积S ;(3)在x 轴上是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形若存在,求出所有的点P ,若不存在,请说明理由.10、(九市联考)如图,抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,-3),设抛物线的顶点为D . (1)求该抛物线的解析式与顶点D 的坐标;(2)以B 、C 、D 为顶点的三角形是直角三角形吗为什么(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与△BCD 相似若存在,请指出符合条件的点P 的位置,并直接写出点P 的坐标;若不存在,请说明理由.讨论四边形11、二次函数y =x 2+px +q (p <0)图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),△ABC 的面积为45.(1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与△ABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使四边形ACBD 为直角梯形若存在,求出点D 的坐标;若不存在,请说明理由.2017中考二次函数压轴题专题分类训练题型一:面积问题【例1】如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ;(3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △PAB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.【变式练习】1.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B 的坐标; (2)求经过A 、O 、B 三点的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小若存在,求出点C 的坐标;若不存在,请说明理由.(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.2.如图,抛物线y = ax 2 + bx + 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G . (1顶点D 的坐标; (2)在直线EF 上求一点H ,使△CDH (3)若点K 在x 轴上方的抛物线上运动,当K △EFK 的面积最大并求出最大面积.3.如图,已知:直线3=xy交x轴于点A,交y轴于点B,抛物线+-y=ax2+bx+c经过A、B、C(1,0)三点.(1)求抛物线的解析式;(2)若点D的坐标为(-1,0),在直线3y上有一点P,使ΔABO与ΔA DP相=x+-似,求出点P的坐标;(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使ΔADE 的面积等于四边形APCE的面积如果存在,请求出点E的坐标;如果不存在,请说明理由.题型二:构造直角三角形【例2】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求此时点M的坐标;(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90º的点P的坐标.E【变式练习】1.如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.3.在平面直角坐标系内,反比例函数和二次函数y=k (x 2+x ﹣1)的图象交于点A (1,k )和点B (﹣1,﹣k ).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y 随着x 的增大而增大,求k 应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值4.如图(1),抛物线42y x x =+-与y 轴交于点A ,E (0,b )为y 轴上一动点,过点E 的直线y x b =+与抛物线交于点B 、C .(1)求点A 的坐标;4b >-BOC 是以题型三:构造等腰三角形【例3】如图,已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1)求抛物线的解析式;(2)在x 轴上是否存在一点Q 使得△ACQ 为等腰三角形若存在,请直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由;(3)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.2.如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC=BC .(1)写出A,B,C 三点的坐标并求抛物线的解析式;(2)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.ACByx11题型四:构造相似三角形【例4】如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似若存在,求出点P的坐标;若不存在,请说明理由.【变式练习】1.如图,已知抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求该抛物线的解析式;(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.(3)P是直线x=1右侧的该抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与△OAC相似若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.7),且顶点C的横坐标为4,该图象2. 如图,二次函数的图象经过点D(0,39在x 轴上截得的线段AB的长为6.(1)求二次函数的解析式;(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;(3)在抛物线上是否存在点Q,使△QAB与△ABC相似如果存在,求出点Q的坐标;如果不存在,请说明理由.3.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C (0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为,求点M的坐标.题型六:构造平行四边形【例7】如图,在平面直角坐标系中,抛物线经过A(—1,0),B(3,0),C(0,—1)三点。