怎样求y=Asin(ωx+ψ)的解析式
- 格式:doc
- 大小:253.00 KB
- 文档页数:3
如何确定正弦型函数y =A s i n (ωx +φ)的解析式ʏ朱亚奇由函数图像或部分图像确定解析式的关键是求出A ,ω,φ的值㊂一般可由图像上的最大值㊁最小值确定A 的值㊂因为T =2πω,所以往往通过求周期T 来确定ω的值㊂确定φ的两种常用方法:①代入法,把图像上的一个已知点代入(此时,A ,ω已知)或代入图像与x 轴的交点求解(此时要注意交点在上升区间上还是在下降区间上);②五点法,寻找五点作图法中的第一个零点-φω,0作为突破口,第一点 (即图像上升时与x 轴的交点)为ωx +φ=0, 第二点 (即图像的 峰点 )为ωx +φ=π2, 第三点 (即图像下降时与x 轴的交点)为ωx +φ=π, 第四点 (即图像的 谷点 )为ωx +φ=3π2, 第五点 为ωx +φ=2π㊂例1 图1是函数y =A s i n (ωx +φ)|φ|<π2的图像的一部分,试确定其一个函数解析式㊂图1解:(方法1)由图知A =3㊂由T =5π6--π6 =π,可得ω=2πT =2㊂由图像过点-π6,0 ,可得-π6ˑ2+φ=0,解得φ=π3㊂故函数y =3s i n 2x +π3 ㊂(方法2)由图可得A =3㊂由图知过点π3,0 和5π6,0,根据五点作图法可得π3㊃ω+φ=π,5π6㊃ω+φ=2π,解得ω=2,φ=π3㊂故函数y =3s i n 2x +π3㊂解决同一个问题,可以有多种途径,同学们在解题时,要注意提高发散思维能力,这样才能做到举一反三㊂例2 已知函数y =A s i n (ωx +φ)A >0,ω>0,|φ|<π2在一个周期内的图像如图2所示,求此函数的解析式㊂图2解:由图知A =2,T 2=43-13=1,则T =2㊂由T =2πω=2,可得ω=π,这时函数y =2s i n (πx +φ)㊂由图像过点13,2 ,可得2s i n π3+φ =2,所以s i n π3+φ =1㊂又|φ|<π2,所以φ=π6㊂故函数y =2s i n πx +π6㊂A 由最值确定,ω由周期确定,周期通常通过特殊点观察求得,如相邻两个最大值㊁最小值点相差半个周期,φ由点在函数图像上列方程求得,确定φ值时,注意它的不唯一性,一般要求|φ|中最小的φ㊂作者单位:江苏省阜宁县东沟中学(责任编辑 郭正华)9知识结构与拓展高一数学 2022年12月Copyright ©博看网. All Rights Reserved.。
辅导讲义――函数y =Asin(ωx +φ)的图象及性质教学内容1.y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)振幅 周期 频率 相位 初相 AT =2πωf =1T =ω2πωx +φφ2.用五点法画y =A sin(ωx +φ)一个周期内的简图 五个特征点的取法:设X =ωx +φ,由X 取0,2π,π,23π,π2来求出相应的x 的值,及对应的y 值,再描点作图.如下表所示.x0-φω π2-φω π-φω 3π2-φω 2π-φω ωx +φ 0 π2 π 3π2 2π y =A sin(ωx +φ)A-A3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的步骤如下:[例1] 函数)421sin(2π+=x y 的周期,振幅,初相分别是______________.[巩固1] 函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则ω=______;ϕ=______知识模块1 y =A sin(ωx +φ)精典例题透析[巩固] 若关于x 的方程01sin sin 2=+-+m x x 有解,则实数m 的取值范围为_____________.[例5] 要得到)21sin(x y -=的图象,只需将)621sin(π--=x y 的图象_______________.[巩固1] 为得到函数)3cos(π+=x y 的图象,只需将函数x y sin =的图象_____________________.[巩固2] 为得到函数)62sin(π-=x y 的图象,只需将函数x y 2cos =的图象_____________________.[例6] 已知函数x x f πsin )(=的图象的一部分如左图,则右图的函数图象所对的函数解析式为_____________.[巩固1] 函数)0,0,0)(sin()(πϕωϕω<<>>+=A x A x f 的部分图象如图所示,则)(x f 的解析式为____________.[巩固2] 已知函数),0,)(sin()(πϕπωϕω<<->∈+=R x x A x f 的部分图象如图所示,则函数)(x f 的解析式 是_______________.[例7] 设函数f (x )=3sin(ωx +φ)(ω>0,-π2<φ<π2)的图象关于直线x =2π3对称,它的周期是π,则下列说法正确的是________.(填序号)[例](1)已知函数f (x )=2sin(ωx +φ)(其中ω>0,|φ|<π2)的最小正周期是π,且f (0)=3,则ω=_____,φ=_______.(2)已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示,则该函数的解析式为____________.[巩固] 如图为y =A sin(ωx +φ)的图象的一段.(1)求其解析式;(2)若将y =A sin(ωx +φ)的图象向左平移π6个单位长度后得y =f (x ),求f (x )的对称轴方程.题型三:函数y =A sin(ωx +φ)的性质[例] (2014·重庆改编)已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)当x ∈[0,π2]时,求函数y =f (x )的最大值和最小值.[巩固] 已知函数f (x )=A sin(ωx +φ)(x ∈R ,ω,A >0,0<φ<π2)的最大值为2,最小正周期为π,直线x =π6是其图象的一条对称轴.(1)求函数f (x )的解析式;(2)求函数g (x )=f (x -π12)-f (x +π12)的单调递增区间.1.(2013·山东)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A .3π4B .π4C .0D .-π42.(2013·浙江)函数f (x )=sin x cos x +32cos 2x 的最小正周期和振幅分别是__________.3.已知函数f (x )=2sin(ωx +φ)(ω>0,且|φ|<π2)的部分图象如图所示,则函数f (x )的一个单调递增区间是______________.4.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如右图所示,则当t =1100秒时,电流强度是_____________.5.已知函数f (x )=2sin ωx 在区间[-π3,π4]上的最小值为-2,则ω的取值范围是_________________.6.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°, KL =1,则f (16)的值为________.,7.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6) (x =1,2,3,…,12,A >0)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值 为________℃.夯实基础训练。
1.3.4 函数sin()y A x ωϕ=+的解析式一、课题:函数sin()y A x ωϕ=+的解析式二、教学目标:1.会根据函数图象写出解析式;2.能根据已知条件写出sin()y A x ωϕ=+中的待定系数,,A ωϕ.三、教学重、难点:1.根据函数图象写解析式;2.根据已知条件写出sin()y A x ωϕ=+中的待定系数,,A ωϕ.四、教学过程:(一)复习:由函数sin y x =的图象到sin()y A x ωϕ=+的图象的变换方法:(方法一):先移相位,再作周期变换,再作振幅变换;(方法二):先作周期变换,再作相位变换,再作振幅变换。
(二)新课讲解:1.根据函数图象求解析式例1:已知函数sin()y A x ωϕ=+(0A >,0ω>)一个周期内的函数图象,如下图 所示,求函数的一个解析式。
解:由图知:函数最大值为又∵0A >,∴A =由图知52632T πππ=-= ∴2T ππω==,∴2ω=, 又∵157()23612πππ+=,∴图象上最高点为7(12π,7)12πϕ⨯+,即7sin()16πϕ+=,可取23πϕ=-,所以,函数的一个解析式为2)3y x π=-. 2.由已知条件求解析式例2: 已知函数cos()y A x ωϕ=+(0A >,0ω>,0ϕπ<<)的最小值是5-, 图象上相邻两个最高点与最低点的横坐标相差4π,且图象经过点5(0,)2-,求这 个函数的解析式。
解:由题意:5A =,24T π=, ∴22T ππω==, ∴4ω=, ∴5cos(4)y x ϕ=+, 又∵图象经过点5(0,)2-, ∴55cos 2ϕ-=, 即1cos 2ϕ=-, x3- 3π 56π 3O又∵0ϕπ<<, ∴23πϕ=, 所以,函数的解析式为25cos(4)3y x π=+. 例3:已知函数sin()y A x B ωϕ=++(0A >,0ω>,||ϕπ<)的最大值为最小值为23π,且图象过点(0,4-,求这个函数的解析式。
函数y =A sin(ωx +φ)的图象及应用一、知识梳理1.y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0),x ∈R振幅 周期 频率 相位 初相 AT =2πωf =1T =ω2πωx +φφ2.用五点法画y =A sin(ωx +φ)(A >0,ω>0,x ∈R )一个周期内的简图时,要找五个特征点 如下表所示:x0-φω π2-φω π-φω 3π2-φω 2π-φω ωx +φ 0 π2 π 3π2 2π y =A sin(ωx +φ)A-A3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)(A >0,ω>0)的图象的两种途径注意:1.函数y =A sin(ωx +φ)+k 图象平移的规律:“左加右减,上加下减”.2.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.3.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2,k ∈Z 确定;对称中心由ωx +φ=k π,k ∈Z 确定其横坐标.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)y =sin )4(π-x 的图象是由y =sin )4(π+x 的图象向右平移π2个单位长度得到的.( ) (2)将函数y =sin ωx 的图象向右平移φ(φ>0)个单位长度,得到函数y =sin(ωx -φ)的图象.( ) (3)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.( )(4)由图象求函数解析式时,振幅A 的大小是由一个周期内图象中最高点的值与最低点的值确定的.( ) 题组二:教材改编2.为了得到函数y =2sin )32(π-x 的图象,可以将函数y =2sin 2x 的图象( )A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度3.]函数y =2sin )321(π-x 的振幅、频率和初相分别为( )A .2,4π,π3B .2,14π,π3C .2,14π,-π3D .2,4π,-π34.如图,某地一天从6~14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+b ,则这段曲线的函数解析式为__________________________.题组三:易错自纠 5.要得到函数y =sin )34(π-x 的图象,只需将函数y =sin 4x 的图象( )A .向左平移π12个单位长度B .向右平移π12个单位长度C .向左平移π3个单位长度D .向右平移π3个单位长度6.函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为________.三、典型例题题型一:函数y =A sin(ωx +φ)的图象及变换 典例 已知函数y =2sin )32(π+x .(1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象; (3)说明y =2sin )32(π+x 的图象可由y =sin x 的图象经过怎样的变换而得到.思维升华:(1)y =A sin(ωx +φ)的图象可用“五点法”作简图得到,可通过变量代换z =ωx +φ计算五点坐标. (2)由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)图象有两条途径:“先平移后伸缩”与“先伸缩后平移”.跟踪训练:(1)若把函数y =sin )6(πω-x 的图象向左平移π3个单位长度,所得到的图象与函数y =cos ωx 的图象重合,则ω的一个可能取值是( )A .2 B.32 C.23 D.12(2)把函数y =sin x 的图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,再把所得函数图象向左平移π4个单位长度,得到的函数图象的解析式是________.题型二:由图象确定y =A sin(ωx +φ)的解析式典例 (1)函数y =A sin(ωx +φ)的部分图象如图所示,则y =________________.(2)已知函数f (x )=sin(ωx +φ))2,0(πϕω<>的部分图象如图所示,则y =f )6(π+x 取得最小值时x 的集合为________.思维升华:y =A sin(ωx +φ)中φ的确定方法(1)代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.(2)五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口. 跟踪训练 已知函数f (x )=A sin(ωx +φ)+B )2,0,0(πϕω<>>A 的部分图象如图所示,将函数f (x )的图象向左平移m (m >0)个单位长度后,得到函数g (x )的图象关于点)23,3(π对称,则m 的值可能为( )A.π6B.π2C.7π6D.7π12 题型三:三角函数图象性质的应用 命题点1:三角函数模型典例 如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin )6(ϕπ+x +k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10 命题点2:函数零点(方程根)问题典例 已知关于x 的方程2sin 2x -3sin 2x +m -1=0在),2(ππ上有两个不同的实数根,则m 的取值范围是____________.引申探究:本例中,若将“有两个不同的实数根”改成“有实根”,则m 的取值范围是__________. 命题点3:三角函数图象性质的综合 典例 已知函数f (x )=3sin )32(πω+x (ω>0)的图象与x 轴相邻两个交点的距离为π2.(1)求函数f (x )的解析式;(2)若将f (x )的图象向左平移m (m >0)个单位长度得到函数g (x )的图象恰好经过点)0,3(π-,求当m 取得最小值时,g (x )在]127,6[ππ-上的单调递增区间.思维升华:(1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,利用三角函数的有关知识解决问题. (2)方程根的个数可转化为两个函数图象的交点个数.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.跟踪训练 (1)已知函数f (x )=sin(ωx +φ))2,0(πϕω≤>的图象上的两个相邻的最高点和最低点的距离为22,且过点)21,2(-,则函数f (x )的解析式为__________.四、反馈练习1.已知曲线C 1:y =cos x ,C 2:y =sin )322(π+x ,则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 22.若将函数f (x )=sin 2x +cos 2x 的图象向右平移φ个单位长度,所得图象关于y 轴对称,则φ的最小正值是( ) A.π8 B.π4 C.3π8D.5π43.若函数y =sin(ωx -φ))2,0(πϕω<>在区间],2[ππ-上的图象如图所示,则ω,φ的值分别是( )A .ω=2,φ=π3B .ω=2,φ=-2π3C .ω=12,φ=π3D .ω=12,φ=-2π34.函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移的单位长度是( ) A.π2 B.2π3 C.π3D.π45.将函数f (x )=3sin x -cos x 的图象沿着x 轴向右平移a (a >0)个单位长度,所得函数图象关于y 轴对称,则a 的最小值是( )A.π6B.π3C.π2D.2π3 6.函数f (x )=sin(2x +φ))2(πϕ<的图象向左平移π6个单位长度后所得函数图象的解析式是奇函数,则函数f (x )在]2,0[π上的最小值为( )A .-32B .-12C.12D.327.将函数y =sin x 的图象上所有的点向右平移π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是______________. 8.函数f (x )=2sin(ωx +φ))20,0(πϕω<<>的部分图象如图所示,已知图象经过点A (0,1),B )1,3(-π,则f (x )=________.9.已知函数f (x )=cos )33(π+x ,其中x ∈],6[m π,若f (x )的值域是]23,1[--,则m 的取值范围是________. 10.已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________. 11.已知函数y =A sin(ωx +φ))2,0,0(πϕω<>>A 的图象过点P )0,12(π,图象上与点P 最近的一个最高点是Q )5,3(π.(1)求函数的解析式;(2)求函数f (x )的单调递增区间. 12.将函数f (x )=sin(2x +θ))2(πϕ<的图象向右平移φ(0<φ<π)个单位长度后,得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P )23,0(,则φ的值为________. 13.已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为________.14.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f )61(的值为________..15.设函数f (x )=sin )6(πω-x +sin )2(πω-x ,其中0<ω<3.已知f )6(π=0. (1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位长度,得到函数y =g (x )的图象,求g (x )在]43,4[ππ-上的最小值.。
怎样求y=Asin(ωx+ϕ)的解析式学习了正弦函数y=Asin(ωx+ϕ)(A>0,ω>0)后,经常会遇到确定其解析式的问题.这里振幅A常由函数的最值确定,ω则由周期公式T=2πω来求得,问题的关键是求初相ϕ.本文介绍确定正弦函数解析式的两种基本方法.一、待定系数法分析正弦曲线y=Asin(ωx+ϕ)(A>0,ω>0)满足的几何条件,列出关于A、ω、ϕ的三个方程,从而解出A、ω、ϕ,这就是待定系数法.例1 若函数y=Asin(ωx+ϕ)(A>0,ω>0,0<ϕ<2π)的最小值是-2,周期为23π,且它的图象经过点(0,),求此函数的解析式.解析:∵函数的最小值是-2,∴A=|-2|=2.∵函数的周期是23π,∴23π=2πω,解得ω=3.∵函数的图象经过点(0,),∴将x=0,y=及A=2代入y=Asin(ωx+ϕ)得-=2sinϕ,sinϕ=-2.∵0<ϕ<2π,∴y=54π或74π.故所求函数的解析式是:y=2sin(3x+54π)或y=2sin(3x+74π)例2 已知函数y=Asin(ωx+ϕ)(A>0,ω>0)的图象如图1所示,求此函数的解析式.分析:由图1提供的信息,正弦曲线相邻的最大、最小值之间为周期的12.∴2T=56π-6π=23π,即T=43π,∴ω=2Tπ=32又显然有A=2,下面只须求初相ϕ.设曲线与x轴交C,易知,C(2π,0)将A=2,ω=32,x=2π,y=0代入y=Asin(ωx+ϕ)得0=2sin(34π+ϕ).∴ϕ=kπ-34π,(k∈Z).注意到y=Asin(ωx+ϕ)的图象是由y=sinx的图象,经过振幅、周期变换,且向右平移而得,当k=0时,ϕ在区间[-π,π]上有解.∴ϕ=-34π,故函数的解析式是y=2sin(32x-34π).二、平移变换图1图2 我们知道,设A>0,ω>0,正弦函数y=Asin(ωx+ϕ)=Asin[ω(x+ϕω)]的图象,可以看成是由函数y=sinx 的图象经过下面变换而得到: y=sinx 的图象 →y=Asinx 的图象(振幅变换)→y=Asinωx 的图象(周期变换)→y=Asin[ω(x+ϕω)]的图象(平移变换),这里抓住特殊点的平移来求ϕ.例3 图2是正弦曲线y=Asin(ωx+ϕ)(A>0,ω>0)的一个周期的图象,试求此函数的解析式.分析 这里2T =32π,∴T=3π,ω=23.∵函数的图象可以看成是y=sinx 的图象经过振幅变换、 周期变换后,再向左平移52π个单位.∴52π=ϕω,即ϕ= 54π·23=53π.下面只须再由图象过点(0,来确定A. 将x=0,y=及ϕ=53π代入y=Asin(ωx+ϕ)=Asin 53π,A=2,故函数的解析式是y=2sin(23x+53π).评注:由y=Asinωx 的图象经过平移得到y=Asin[ω(x+ϕω)]的图象,可从图像上特殊点的变化得到平移的规则,如本题中向左平移52π个单位等. 三、“五点法”我们知道,用“五点法”作函数y=Asin(ωx+ϕ)的简图,主要是作变量代换X=ωx+ϕ,由X 取0,2π,π,32π,2π来求出对应的x 的值,确定图象五个关键点的位置.而求其表达式,则相当于X ,x 已知,求ω与ϕ.例4 如图3,写出函数y=Asin(ωx+ϕ)(A>0,ω>0)的一个表达式.解析: 易知,令X=ωx+ϕ.图象中的特征点(2,-),(6,0)对应y=sinX 图象中五个关键点的两点(32π,-1),(2π,0),因此, 32262πωϕωϕπ⎧⋅+=⎪⎨⎪⋅+=⎩,解得854πωπϕ⎧=⎪⎪⎨⎪=⎪⎩ ∴8πx+54π)评注: 建立x ,X 对应点间的联系,必须注意特征点是与y=sinx 图象上五个关键点中(0,0),(2π,1),(π,0),(32π,-1),(2π,0)的哪一个相对应,如当ω·2+ϕ=32π时,只能有ω·6+ϕ=2π.而已知图象求表达式,答案是不唯一的,但只是ϕ值不同,可以相差2kπ(k ∈Z).如当ω·6+ϕ=0时,由ω·2+ϕ=2π也可解得:ω=8π,ϕ=-34π.。
求三角函数解析式)sin(ϕω+=x A y 常用的方法全面总结三角函数的解析式是研究三角函数图像与性质的重要依据,也是高中数学教学的重点,也是历年来高考考查的热点,学生往往不知如何挖掘出有用的信息,去求A、ω、φ。
A(振幅):A=2-最小值最大值φ+wx :相位,其中Tw π2=(T 为最小正周期)ϕ:初相,求φ常有代入法、五点法、特殊值法等一、利用五点法,逆求函数解析式三角函数五点法是三角函数图像绘制的方法,分别找三角函数一个周期内端点与终点两个点,另加周期内一个零点,两个极值点和一共零点,总共五个点第一点,即图像上升时与x 轴的交点,为φ+wx =0第二点,即图像曲线的最高点,为φ+wx =2π第三点,即图像下降时与x 轴的交点,为φ+wx =π第四点,即图像曲线的最低点,为φ+wx =23π第五点,即图像最后一个端点,为φ+wx =π2例1.右图所示的曲线是)sin(ϕω+=x A y (0>A ,0>ω)图象的一部分,求这个函数的解析式.解:由22y -≤≤,得A=2已知第二个点(,2)12π和第五个点5(,0)6π35346124T πππ=-=T π∴=2ω=把(,2)12π代入,2122ππφ⨯+=得3πϕ=所以y=)32sin(2π+x例2.是函数π2sin()2y x ωϕϕ⎛⎫=+< ⎪⎝⎭的图象上的一段,则()A.10π116ωϕ==B.10π116ωϕ==-,C.π26ωϕ==,D.π26ωϕ==-,分析:πππ==)(12--1211T 222===πππT w ,因此解析式为)2sin(2ϕ+=x y ,此时取第一个点(0,12-π)代入得012-2=+⨯φπ((将该点看做正弦函数图像一个周期内的第一个端点0),6πφ=例3.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则A .4,2πϕπω==B .6,3πϕπω==C .4,4πϕπω==D .45,4πϕπω==分析:42,8413ππω====-T T T 则,,代入得)4sin(φπ+=x y ,取(1,0)作为正弦函数图像一个周期内的最大值点,令4,214πφπφπ==+⨯则例4、函数()ϕω+=x A y sin 的一个周期内的图象如下图,求y 的解析式。
函数y =Asin (ωx +φ)的图象及三角函数模型的简单应用‖知识梳理‖ 1.y =Asin (ωx +φ)的有关概念 T =2πωωx +φ用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个关键点,如下表所示:3.| 微 点 提 醒 |1.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.2.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2,k ∈Z 确定;对称中心由ωx +φ=k π,k∈Z 确定其横坐标.‖易错辨析‖判断下列结论是否正确(请在括号中打”√”或“×”)(1)把y =sin x 的图象上各点的横坐标缩短为原来的12,纵坐标不变,所得图象对应的函数解析式为y =sin 12x .(×)(2)将y =sin2x 的图象向右平移π3个单位长度,得到y =sin ⎝⎛⎭⎫2x -π3的图象.(×) (3)函数f (x )=A sin(ωx +φ)(A ≠0)的最大值为A ,最小值为-A .(×)(4)如果y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.(√) (5)若函数y =A sin(ωx +φ)为偶函数,则φ=2k π+π2(k ∈Z ).(×)‖自主测评‖1.函数y =2sin ⎝⎛⎭⎫2x +π4的振幅、频率和初相分别为( ) A .2,1π,π4B .2,12π,π4C .2,1π,π8D .2,12π,-π8解析:选A 由振幅、频率和初相的定义可知,函数y =2sin ⎝⎛⎭⎫2x +π4的振幅为2,频率为1π,初相为π4.2.函数y =sin ⎝⎛⎭⎫2x -π3在区间⎣⎡⎦⎤-π2,π上的简图是( )解析:选A 当x =0时,y =sin ⎝⎛⎭⎫-π3=-32,排除B 、D ;当x =π6时,y =0,排除C ,故选A.3.(教材改编题)为了得到函数y =3sin ⎝⎛⎭⎫x -π5的图象,只需将y =3sin ⎝⎛⎭⎫x +π5的图象上的所有点( )A .向左平移π5个单位长度B .向右平移π5个单位长度C .向左平移2π5个单位长度D .向右平移2π5个单位长度解析:选D 因为y =3sin ⎝⎛⎭⎫x -π5=3sin ⎣⎡⎦⎤⎝⎛⎭⎫x +π5-2π5,故选D. 4.用五点法作函数y =sin ⎝⎛⎭⎫x -π6在一个周期内的图象时,主要确定的五个点是________、________、________、________、________.答案:⎝⎛⎭⎫π6,0 ⎝⎛⎭⎫2π3,1 ⎝⎛⎭⎫7π6,0 ⎝⎛⎭⎫5π3,-1 ⎝⎛⎭⎫13π6,0 5.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.解析:由题图可知,T 4=2π3-π3=π3,即T =4π3,所以2πω=4π3,故ω=32.答案:32………考点一 函数y =Asin (ωx +φ)的图象及变换………|重点保分型|…………|研透典例|【典例】 某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值; (3)作出函数f (x )在长度为一个周期的闭区间上的图象.[解] (1)根据表中已知数据,解得A =5,ω=2,φ=-π6,数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6,则g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为函数y =sin x 图象的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,k ∈Z ,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0成中心对称, 所以令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.(3)由数据作出的图象如图所示:『名师点津』………………………………………………|品名师指点迷津| 1.函数y =Asin (ωx +φ)(A>0,ω>0)的图象的两种作法(1)五点法:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换法:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径“先平移后伸缩”与“先伸缩后平移”. 2.三角函数图象的左右平移时应注意的三点(1)弄清楚平移方向,平移哪个函数的图象,得到哪个函数的图象.(2)注意平移前后两个函数的名称一致,若不一致,应先利用诱导公式化为同名函数.(3)由y =A sin ωx 的图象得到y =A sin(ωx +φ)的图象时,需平移的单位数应为⎪⎪⎪⎪φω而不是|φ|. [提醒]y =A sin(ωx +φ)的图象横向伸缩规律,可联系周期计算公式T =2π|ω|进行记忆;纵向伸缩规律,可联系函数的最值进行记忆.|变式训练|1.(2018届河南豫南九校联考)将函数y =sin ⎝⎛⎭⎫x -π4的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移π6个单位,则所得函数图象的解析式为( )A .y =sin ⎝⎛⎭⎫x 2-5π24 B .y =sin ⎝⎛⎭⎫x 2-π3 C .y =sin ⎝⎛⎭⎫x 2-5π12D .y =sin ⎝⎛⎭⎫2x -7π12 解析:选B 函数y =sin ⎝⎛⎭⎫x -π4经伸长变换得y =sin ⎝⎛⎭⎫x 2-π4,再作平移变换得y =sin ⎣⎡⎦⎤12⎝⎛⎭⎫x -π6-π4=sin ⎝⎛⎭⎫x 2-π3. 2.(2019届南昌模拟)函数y =sin ⎝⎛⎭⎫2x +π6的图象可以由函数y =cos2x 的图象( ) A .向右平移π6个单位长度得到B .向右平移π3个单位长度得到C .向左平移π6个单位长度得到D .向左平移π3个单位长度得到解析:选A 将函数y =cos2x 的图象向右平移π4个单位长度,可得函数y =sin2x 的图象,再将y =sin2x 的图象向左平移π12个单位长度,可得函数y =sin ⎝⎛⎭⎫2x +π6的图象,综上可得,函数y =sin ⎝⎛⎭⎫2x +π6的图象可以由函数y =cos2x 的图象向右平移π6个单位长度得到,故选A. 3.(2019届石家庄质量检测)若ω>0,函数y =cos ⎝⎛⎭⎫ωx +π3的图象向右平移π3个单位长度后与函数y =sin ωx 的图象重合,则ω的最小值为________.解析:将函数y =cos ⎝⎛⎭⎫ωx +π3的图象向右平移π3个单位长度,得y =cos ⎝⎛⎭⎫ωx -ωπ3+π3的图象.因为所得函数图象与y =sin ωx 的图象重合,所以-ωπ3+π3=3π2+2k π(k ∈Z ),解得ω=-72-6k (k∈Z ),因为ω>0,所以当k =-1时,ω取得最小值52.答案:52………考点二 由图象确定y =Asin (ωx +φ)的解析式…………|重点保分型|………|研透典例|【典例】 (1)(2018届兰州诊断考试)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的部分图象如图所示,若x 1,x 2∈⎝⎛⎭⎫-π6,π3,且f (x 1)=f (x 2),则f (x 1+x 2)=( )A.12 B.22C.32D .1(2)已知函数f (x )=A sin(ωx +φ)+B (A >0,x ∈R ,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为f (x )=________.[解析] (1)由题图知,T 2=π2,即T =π,则ω=2,所以f (x )=sin(2x +φ),因为点⎝⎛⎭⎫π3,0在函数f (x )的图象上,所以sin ⎝⎛⎭⎫2×π3+φ=0,即2π3+φ=2k π+π,k ∈Z , 所以φ=2k π+π3,k ∈Z ,又|φ|<π2,所以φ=π3,所以f (x )=sin ⎝⎛⎭⎫2x +π3, 因为x 1,x 2∈⎝⎛⎭⎫-π6,π3, 且f (x 1)=f (x 2), 所以x 1+x 22=π12,所以x 1+x 2=π6,所以f (x 1+x 2)=sin ⎝⎛⎭⎫2×π6+π3=32. (2)由题图可知,函数的最大值为A +B =3,最小值为-A +B =-1,解得A =2,B =1. 函数的最小正周期为T =2×⎣⎡⎦⎤5π12-(-π12)=π, 由2πω=π,解得ω=2. 由f ⎝⎛⎭⎫-π12=2sin ⎣⎡⎦⎤2×⎝⎛⎭⎫-π12+φ+1=-1,得sin ⎝⎛⎭⎫φ-π6=-1, 故φ-π6=2k π-π2(k ∈Z ),解得φ= 2k π-π3(k ∈Z ),又因为|φ|<π, 所以φ=-π3.所以f (x )=2sin ⎝⎛⎭⎫2x -π3+1. [答案] (1)C (2)2sin ⎝⎛⎭⎫2x -π3+1 『名师点津』………………………………………………|品名师指点迷津| 确定y =Asin (ωx +φ)+b (A>0,ω>0)的步骤和方法(1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m2.(2)求ω:确定函数的最小正周期T ,则可得ω=2πT .(3)求φ:常用的方法有①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:“最大值点”(即图象的“峰点”)时ωx +φ=π2+2k π,k ∈Z ;“最小值点”(即图象的“谷点”)时ωx +φ=3π2+2k π,k ∈Z .|变式训练|1.函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则f ⎝⎛⎭⎫11π24的值为( )A .-62B .-32C .-22D .-1解析:选D 由图象可得A =2,最小正周期T =4×⎝⎛⎭⎫7π12-π3=π,则ω=2πT =2.又f ⎝⎛⎭⎫7π12=2sin ⎝⎛⎭⎫7π6+φ=-2,得φ=π3,则f (x )=2sin ⎝⎛⎭⎫2x +π3,f ⎝⎛⎭⎫11π24=2sin ⎝⎛⎭⎫11π12+π3=2sin 5π4=-1,选项D 正确.2.已知函数f (x )=A cos(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的图象如图所示,f ⎝⎛⎭⎫π2=-23,则f ⎝⎛⎭⎫-π6=( )A .-23B .-12C.23D.12解析:选A 由题图知T 2=11π12-7π12=π3,所以T =2π3,即ω=3,当x =7π12时,y =0,即3×7π12+φ=2k π-π2,k ∈Z ,所以φ=2k π-9π4,k ∈Z ,即k =1时,φ=-π4,所以f (x )=A cos ⎝⎛⎭⎫3x -π4. 即A cos ⎝⎛⎭⎫3π2-π4=-23,得A =223, 所以f (x )=223cos ⎝⎛⎭⎫3x -π4, 故f ⎝⎛⎭⎫-π6=223cos ⎝⎛⎭⎫-π2-π4=-23. …………考点三 三角函数图象与性质的应用……………|多维探究型|……………|多角探明|角度一 三角函数模型的实际应用【例1】 某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的平均气温最高,为28 ℃,12月份的平均气温最低,为18 ℃,则10月份的平均气温值为________ ℃. [解析] 依题意知,a =28+182=23,A =28-182=5,所以y =23+5cos ⎣⎡⎦⎤π6(x -6),当x =10时,y =23+5cos ⎝⎛⎭⎫π6×4=20.5. [答案] 20.5角度二 与三角函数有关的零点(方程根)问题【例2】 已知关于x 的方程2sin 2x -3sin2x +m -1=0在⎝⎛⎭⎫π2,π上有两个不同的实数根,则m 的取值范围是________.[解析] 方程2sin 2x -3sin2x +m -1=0可转化为m =1-2sin 2x +3sin2x =cos2x +3sin2x =2sin ⎝⎛⎭⎫2x +π6,x ∈⎝⎛⎭⎫π2,π. 设2x +π6=t ,则t ∈⎝⎛⎭⎫76π,136π, 所以题目条件可转化为m2=sin t ,t ∈⎝⎛⎭⎫76π,136π有两个不同的实数根. 所以y =m2和y =sin t ,t ∈⎝⎛⎭⎫76π,136π的图象有两个不同交点,如图:由图象观察知,m2的取值范围为⎝⎛⎭⎫-1,-12, 故m 的取值范围是(-2,-1).[答案] (-2,-1)角度三 三角函数的图象与性质的综合问题【例3】 已知函数f (x )=3sin ⎝⎛⎭⎫2ωx +π3(ω>0)的图象与x 轴相邻两个交点的距离为π2. (1)求函数f (x )的解析式;(2)若将f (x )的图象向左平移m (m >0)个单位长度得到函数g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0,求当m 取得最小值时,g (x )在⎣⎡⎦⎤-π6,7π12上的单调递增区间. [解] (1)函数f (x )的图象与x 轴相邻两个交点的距离为π2,得函数f (x )的最小正周期为T =2×π2=2π2ω,得ω=1,故函数f (x )的解析式为f (x )=3sin ⎝⎛⎭⎫2x +π3. (2)将f (x )的图象向左平移m (m >0)个单位长度得到函数g (x )= 3 s in ⎣⎡⎦⎤2(x +m )+π3=3sin ⎝⎛⎭⎫2x +2m +π3的图象,根据g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0, 可得3sin ⎝⎛⎭⎫-2π3+2m +π3=0,即sin ⎝⎛⎭⎫2m -π3=0, 所以2m -π3=k π(k ∈Z ),m =k π2+π6(k ∈Z ),因为m >0,所以当k =0时,m 取得最小值,且最小值为π6.此时,g (x )=3sin ⎝⎛⎭⎫2x +2π3. 因为x ∈⎣⎡⎦⎤-π6,7π12,所以2x +2π3∈⎣⎡⎦⎤π3,11π6. 当2x +2π3∈⎣⎡⎦⎤π3,π2,即x ∈⎣⎡⎦⎤-π6,-π12时,g (x )单调递增, 当2x +2π3∈⎣⎡⎦⎤3π2,11π6,即x ∈⎣⎡⎦⎤5π12,7π12时,g (x )单调递增. 综上,g (x )在区间⎣⎡⎦⎤-π6,7π12上的单调递增区间是⎣⎡⎦⎤-π6,-π12和⎣⎡⎦⎤5π12, 7π12. 『名师点津』………………………………………………|品名师指点迷津|(1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题:二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题. (2)方程根的个数可转化为两个函数图象的交点个数.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.|变式训练|1.已知函数f (x )=cos ⎝⎛⎭⎫3x +π3,其中x ∈⎣⎡⎦⎤π6,m ,若f (x )的值域是⎣⎡⎦⎤-1,-32,则m 的取值范围是________. 解析:画出函数的图象.由x ∈⎣⎡⎦⎤π6,m ,可知5π6≤3x +π3≤3m +π3, 因为f ⎝⎛⎭⎫π6=cos 5π6=-32且f ⎝⎛⎭⎫2π9=cosπ=-1,要使f (x )的值域是⎣⎡⎦⎤-1,-32,只要2π9≤m ≤5π18,即m ∈⎣⎡⎦⎤2π9,5π18. 答案:⎣⎡⎦⎤2π9,5π182.已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π6+a (ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π. (1)求a 和ω的值;(2)求函数f (x )在[0,π]上的单调递减区间. 解:(1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π6+a =4cos ωx ·⎝⎛⎭⎫32sin ωx +12cos ωx +a =23sin ωx cos ωx +2cos 2ωx -1+1+a =3sin2ωx +cos2ωx +1+a =2sin ⎝⎛⎭⎫2ωx +π6+1+a . 当sin ⎝⎛⎭⎫2ωx +π6=1时,f (x )取得最大值2+1+a =3+a ,又f (x )图象上最高点的纵坐标为2, 所以3+a =2,所以a =-1.又f (x )图象上相邻两个最高点的距离为π, 所以f (x )的最小正周期T =π,所以2ω=2πT =2,所以ω=1.(2)由(1)得f (x )=2sin ⎝⎛⎭⎫2x +π6, 由π2+2k π≤2x +π6≤3π2+2k π,k ∈Z , 得π6+k π≤x ≤2π3+k π,k ∈Z . 令k =0,得π6≤x ≤2π3,所以函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤π6,2π3. 核心素养系列 数学建模——三角函数中的实际问题【典例】 已知某海滨浴场的海浪高度y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作y =f (t ).下表是某日各时的浪高数据:t (小时) 0 3 6 9 12 15 18 21 24 y (米)1.51.00.51.01.51.00.50.991.5数据,(1)求函数f (t )的解析式;(2)求一日(持续24小时)内,该海滨浴场的海浪高度超过1.25米的时间.[解] (1)由表格得⎩⎪⎨⎪⎧A +b =1.5,-A +b =0.5,解得⎩⎪⎨⎪⎧A =12,b =1,又因为T =12,所以ω=2π12=π6,故y =f (t )=12cos π6t +1.(2)由题意,令12cos π6t +1>1.25,即cos π6t >12,又因为t ∈[0,24],所以π6t ∈[0,4π],故0≤π6t <π3或5π3<π6t ≤2π,或2π<π6t <2π+π3或2π+5π3<π6t ≤2π+2π,即0≤t<2或10<t≤12或12<t<14或22<t≤24,所以在一日内该海滨浴场的海浪高度超过1.25米的时间为8小时.[点评]数学建模是通过计算得到结果来解释实际问题,并接受实际的检验,具体来讲,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学手段.。
怎样求y=Asin(ωx+ϕ)的解析式
学习了正弦函数y=Asin(ωx+ϕ)(A>0,ω>0)后,经常会遇到确定其解析式的问题。
这里振幅A 常由函数的最值确定,ω则由周期公式T=2π
ω
来求得,问题的关键是求初相ϕ。
本文介绍确定正弦函数解析式的两种基本方法。
一、待定系数法 分析正弦曲线y=Asin(ωx+ϕ)(A>0,ω>0)满足的几何条件,列出关于A 、ω、ϕ的三个方程,从而解出A 、ω、ϕ,这就是待定系数法。
例1 若函数y=Asin(ωx+ϕ)(A>0,ω>0,0<ϕ<2π)的最小值是-2,周期为23
π,且它的图象经过点(0,
),求此函数的解析式。
解析: ∵函数的最小值是-2,∴A=|-2|=2。
∵函数的周期是
23π,∴23π=2πω
,解得ω=3。
∵函数的图象经过点(0,
),∴将x=0,y=
及A=2代入y=Asin(ωx+ϕ)
=2sin ϕ,sin ϕ=
-2.∵0<ϕ<2π,∴y=54π或74
π。
故所求函数的解析式是: y=2sin(3x+
54π)或y=2sin(3x+74
π
) 例2 已知函数y=Asin(ωx+ϕ)(A>0,ω>0)的图象如图1所示,求此函数的解析式。
分析:由图1提供的信息,正弦曲线相邻的最大、最小值之间为周期的1
2。
∴
2T =56π-6π=23
π
,即T=43π,∴ω=2T π=32
又显然有A=2,下面只须求初相ϕ。
设曲线与x 轴交C ,易知,C(2π,0)将A=2,ω=32,x=2
π
,
y=0代入y=Asin(ωx+ϕ)得0=2sin(34
π
+ϕ)。
∴ϕ=k π-34
π
,(k ∈Z)。
注意到y=Asin(ωx+ϕ)的图象是由y=sinx 的图象,经过振幅、周
期变换,且向右平移而得,当k=0时,ϕ在区间[-π,π]上有解。
∴ϕ=-34
π
,故函数的
解析式是y=2sin(32x -34
π
)。
二、平移变换 我们知道,设A>0,ω>0,正弦函数y=Asin(ωx+ϕ)=Asin[ω(x+ϕ
ω)]
的图象,可以看成是由函数y=sinx 的图象经过下面变换而得到: y=sinx 的图象 →y=Asinx
图1
图2 的图象(振幅变换)→y=Asin ωx 的图象(周期变换)→y=Asin[ω(x+ϕ
ω
)]的图象(平移变换),这里抓住特殊点的平移来求ϕ。
例3 图2是正弦曲线y=Asin(ωx+ϕ)(A>0,ω>0)的一个周期的图象,试求此函数的解析式。
分析 这里2T =32
π
,∴T=3π,ω=23。
∵函数的图象可以看成是y=sinx 的图象经过振幅变换、
周期变换后,再向左平移52π个单位。
∴52π=ϕ
ω
,即ϕ=
54π·23
=53
π。
下面只须再由图象过点(0,)
来确定A 。
将x=0,y =及ϕ=
53π代入y=Asin(ωx+ϕ)53
π
,A=2,故函数的解
析式是y=2sin(23x+53
π
)。
评注:由y=Asin ωx 的图象经过平移得到y=Asin[ω(x+ϕ
ω
)]的图象,可从图像上特殊点
的变化得到平移的规则,如本题中向左平移52
π
个单位等。
三、“五点法” 我们知道,用“五点法”作函数y=Asin(ωx+ϕ)的简图,主要是作变
量代换X=ωx+ϕ,由X 取0,
2
π
,π,32π,2π来求出对应的x 的值,确定图象五个关
键点的位置。
而求其表达式,则相当于X ,x 已知,求ω与ϕ。
例4 如图3,写出函数y=Asin(ωx+ϕ)(A>0
,ω>0)的一个表达式。
解析: 易知令
X=ωx+ϕ。
图象中的特征点(2,-),(6,0)对应y=sinX 图象中五个关键点的两点(
32
π
,-1),(2π,0),因此, 32262πωϕωϕπ⎧⋅+=⎪⎨
⎪⋅+=⎩,解得8
54
πωπϕ⎧
=⎪
⎪⎨⎪=⎪⎩ ∴8
πx+54π
)
评注: 建立x ,X 对应点间的联系,必须注意特征点是与y=sinx 图象上五个关键点中
(0,0),(
2
π
,1),(π,0),(32π,-1),(2π,0)的哪一个相对应,如当ω·2+ϕ=32π时,只能
有ω·6+ϕ=2π。
而已知图象求表达式,答案是不唯一的,但只是ϕ值不同,可以相差
2k
π(k ∈Z)。
如当ω·6+ϕ=0时,由ω·2+ϕ=
2π也可解得:ω=8
π
,ϕ=-34π。