6-1-23 鸡兔同笼问题(三).教师版
- 格式:pdf
- 大小:828.50 KB
- 文档页数:5
-. 6-1-9.鸡兔同笼问题(三)教学目标1. 熟悉鸡兔同笼的“砍足法”和“假设法”.2. 利用鸡兔同笼的方法解决一些实际问题,需要把多个对象进行恰当组合以转化成两个对象.知识精讲一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500 年前,《孙子算经》中就记载了这个有趣的问题.书 中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有 若干只鸡兔同在一个笼子里,从上面数,有35 个头;从下面数,有 94 只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成 了“双脚兔”.这样,鸡和兔的脚的总数就由94 只变成了 47 只;如果笼子里有一只兔子,则脚的总数就比头 的总数多1 .因此,脚的总只数 47 与总头数 35 的差,就是兔子的只数,即47 - 35 = 12 (只).显然,鸡的只 数就是 35 - 12 = 23 (只)了。
这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外, “鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比 较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数每只鸡的脚数) 兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚 数)鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的 2 倍当脚数一样时,头的关系:鸡是兔子的 2 倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等 专题中也都会接触到假设法例题精讲模块一、多个量的“鸡兔同笼”——鸡兔同笼问题【例 1】有蜘蛛、蜻蜓、蝉三种动物共 18 只,共有腿 118 条,翅膀 20 对(蜘蛛 8 条腿;蜻蜓 6 条腿,两对 翅膀;蝉 6 条腿,一对翅膀),求蜻蜓有多少只?【考点】鸡兔同笼问题 【难度】4 星 【题型】解答【关键词】假设思想方法【解析】这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是 6 条腿,只有蜘蛛 8 条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是 6 条腿,则总腿数为 6 ⨯18 = 108 (条),所差 118 - 108 = 10 (条),必然是由于少算了蜘蛛的腿数而造成的 所以,应有(118 - 108) ÷ (8 - 6) = 5 (只)蜘蛛.这样剩下的18 - 5 = 13 (只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设 13 只都是蝉,则总翅膀数 1⨯13 = 13 (对),比实际数少 20 - 13 = 7 (对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只).【答案】7只【巩固】希望小学的生物标本室里有蜻蜓,蝉,蜘蛛共11只,它们共有74条腿,10对翅膀,由图7知该标本室里有只蜘蛛。
鸡兔同笼问题在我国古代的数学著作《孙子算经》中,记载着流传甚广的数字歌谣:鸡兔同笼不知数,三十五头笼中露。
数清脚共九十四双,各有多少鸡和兔。
翻译成现代数学语言为:今有鸡兔共居一笼,已知鸡头与兔头共有35个,鸡脚与兔脚一共有94只。
问鸡和兔一共有多少只?这就是我们通常说的“鸡兔同笼”问题。
这一古老的数学问题在现实生活中普遍存在,解法多种多样,但一般采用假设法。
【例1】★今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只。
问鸡、兔各有多少只?【解析】鸡兔同笼问题往往用假设法来解答,即假设全是鸡或全是兔,脚的总数必然与条件矛盾,根据数量上出现的矛盾适当调整,从而找到正确答案。
假设全是鸡,那么相应的脚的总数应是2×35=70只,与实际相比,减少了94-70=24只。
减少的原因是把一只兔当作一只鸡时,要减少4-2=2只脚。
所以兔有24÷2=12只,鸡有35-12=23只。
【小试牛刀】小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?【解析】假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。
如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。
因此只要算出12里面有几个2,就可以求出兔的只数。
有兔(44-2×16)÷(4-2)=6(只),有鸡16-6=10(只)。
【例2】★面值是2元、5元的人民币共27张,全计99元。
面值是2元、5元的人民币各有多少张?【解析】这道题类似于“鸡兔同笼”问题。
假设全是面值2元的人民币,那么27张人民币是2×27=54元,与实际相比减少了99-54=45元,减少的原因是每把一张面值2元的人民币当作一张面5元的人民币,要减少5-2=3元,所以,面值是5元的人民币有45÷3=15张,面值2元的人民币有27-15=12张。
6-1-9. 鸡兔同笼问题(二)教课目的1.熟习鸡兔同笼的“砍足法”和“假定法”.2.利用鸡兔同笼的方法解决一些实质问题,需要把多个对象进行适合组合以转变为两个对象.知识精讲一、鸡兔同笼这个问题,是我国古代有名趣题之一.大概在1500年前,《孙子算经》中就记录了这个风趣的问题.书中是这样表达的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上边数,有35个头;从下边数,有94 只脚.求笼中各有几个鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是怎样解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:若是砍去每只鸡、每只兔一半的脚,则每只鸡就变为了“独脚鸡”,每只兔就变为了“双脚兔”.这样,鸡和兔的脚的总数就由 94只变为了 47 只;假如笼子里有一只兔子,则脚的总数就比头的总数多 1 .所以,脚的总只数47与总头数 35 的差,就是兔子的只数,即47 35 12(只).明显,鸡的只数就是3512 23 (只)了.这一思路新奇而奇异,其“砍足法”也令古今中外数学家赞美不已.除此以外,“鸡兔同笼”问题的经典思路“假定法”.假定法顺口溜:鸡兔同笼很奇妙,用假定法能做到,假定里面所有是鸡,算出共有几个脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:假如假定所有是兔,那么则有:数=(每只兔子脚数×鸡兔总数-实质脚数)÷(每只兔子脚数-每只鸡的脚数)兔数 =鸡兔总数 -鸡数假如假定所有是鸡,那么就有:兔数=(实质脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数 =鸡兔总数 -兔数当头数相同时,脚的关系:兔子是鸡的 2 倍当脚数相同时,头的关系:鸡是兔子的 2 倍在学习的过程中,着重假定法的运用,浸透假定法的重要性,在此后的专题中,如工程,行程,方程等专题中也都会接触到假定法例题精讲两个量的“鸡兔同笼”问题——变例【例 1】某次数学比赛,共有20道题,每道题做对得 5 分,没做或做错都要扣 2 分,小聪得了79分,他做对了多少道题?【考点】鸡兔同笼问题 【难度】 3 星【题型】解答【重点词】假定思想方法【分析】 做错 (5 20 79 )(5 2) 3 (道 ),所以,做对的 20 3 17 (道 ).【答案】 17 道【稳固】 数学比赛共有 20 道题,规定做对一道得5 分,做错或不做倒扣 3 分,赵天在此次数学比赛中得了60 分,他做对了几道题?【考点】鸡兔同笼问题 【难度】 3 星【题型】解答【重点词】假定思想方法【分析】 假定他将所有题所有做对了,则可得 100 分,实质上只得了 60 分,比假定少了 40 分,做错一题要少得 8 分,少得的 40 分中,有多少个 8 分,就是他做错的题的数目,则知他做对了15 道.【答案】 15 道【稳固】 东湖路小学三年级举行数学比赛,共 20道试题 .做对一题得 5 分,没有做一题或做错一题都要倒扣 2 分 .刘钢得了 86分,问他做对了几道题? 【考点】鸡兔同笼问题 【难度】 3 星【题型】解答【重点词】假定思想方法【分析】 这道题也近似于 “鸡兔同笼 ”问题.假定刘钢 20道题全对,可得分 5 20100(分),但他实质上只得 86 分,少了 100 8614 (分),所以他没做或做错了一些题.因为做对一道题得5 分,没做或做错一道题倒扣 2 分,所以没做或做错一道题比做对一道题要少 5 2 7 (分). 14 分中含有多少 个 7 ,就是刘钢没做或做错多少道题. 所以,刘钢没做或做错题为14 7 (道),做对题为20 2 182(道).【答案】 18 道【稳固】 某次数学比赛,试题共有 10道,每做对一题得 6 分,每做错一题倒扣2 分。
鸡兔同笼问题的本质:(1) 两种不同的事物如鸡和兔(2) 它们有相同点如鸡兔都有一个头,那么在做鸡兔同笼变形题时把数量相同的特征看做头(3) 它们有不同点如鸡兔腿的数量不同,把数量不同的特征看做腿基本型鸡兔同笼的解决方法:(1) 假设 ;(2) 找总差 ;(3) 找单位差 ;(4) 求出另一种事物的数量。
鸡兔同笼问题的基本公式:(1) 假设全兔:鸡数=(每只兔脚数×鸡兔总数-实际脚数)÷(每只兔脚数-每只鸡脚数)兔数=鸡兔总数-鸡数注意假设全兔时先求出的是鸡的数量。
(2) 假设全鸡:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔脚数-每只鸡脚数)鸡数=鸡兔总数-兔数注意假设全鸡时先求出的是兔子的数量。
不建议孩子们死记硬背公式,希望透彻理解,才能灵活应用。
有若干只鸡和兔同在一个笼子里,从上面数共有35个头;从下面数,有94只脚,问鸡与兔各多少只?【知识点】:鸡兔同笼;【难度】:★★;【出处】:数学奥林匹克【分析】:方法一:共有35个头表示鸡与兔共有35只,如果35只都是兔,一共应有140354=⨯只脚,这比已知的94只脚多了4694140=-只脚.由于我们把鸡看作兔,每只鸡多算了2只脚,才有了这多出来的46只脚,因此这46里面有多少个2,笼子里面就有几只鸡,求出鸡的只数后再拿总只数减去鸡的只数即可.解答:假设全部都是兔,则鸡有:()()232462494354=÷=-÷-⨯(只)兔有:122335=-(只)答:鸡有23只,兔有12只.方法二:砍足法(金鸡独立法) (本方法了解一下即可,不通用,重点还是假设法)假设所有的动物用一半的腿站立,即鸡用1腿,兔用2腿。
这时只剩下100÷2=50条腿 这样的好处是:鸡的头腿数量相同,而兔腿数比头数多一。
所以腿比头多的数量就是兔子的数量,兔数:50-35=15(只)鸡数:35-15=20(只)注:(1)建议孩子们在熟悉之后可以列综合算式解鸡兔同笼问题。
鸡兔同笼问题-冀教版五年级数学上册教案教学目标1.理解并掌握鸡兔同笼问题的基本应用。
2.能够运用代数式求解鸡兔同笼问题。
3.通过鸡兔同笼问题的练习,提高学生的分析问题能力和运算能力。
教学内容本节课将要教授鸡兔同笼问题。
鸡兔同笼问题是一个数学基础问题,是指鸡和兔子被关在同一个笼子里,用腿数和头数计算出鸡和兔子的数量。
这个问题的应用非常广泛,不仅仅是在数学领域中,还可以运用在生物学、化学、物理等领域中,是学生必备的基本应用知识。
教学方法1.情境教学法:通过教师和学生一起思考鸡兔同笼问题的细节,从抽象的理论中突破出来,有助于学生理解和掌握鸡兔同笼问题。
2.演示法:通过演示不同情形下鸡兔同笼问题的求解过程,帮助学生理解代数式的运算规律,提高他们的运算能力。
教学步骤第一步:引入问题1.让学生想象一个房间里有很多鸡和兔子,但是他们全都被一张白纸挡住了,只能看到它们隔着白纸的腿和头,然后请学生把鸡和兔子的数量猜测出来。
2.逐步引导学生的思考,让学生从鸡的腿和头的数量、兔的腿和头的数量入手,想办法列出代数式。
第二步:讲解原理1.在学生完全理解鸡兔同笼问题之前,不要针对题目讲解应用方法,教师可以采用情境教学法,带领孩子尽可能多地思考、发散出问题的思维。
2.通过提出不同的问题情境,让学生根据自己的理解尝试写出代数式。
3.引导学生理解代数式含义,并总结出简单易懂的规律。
让学生用自己的话总结出鸡兔同笼问题求解的方法。
第三步:解决问题1.根据具体题目,让学生独立思考求解鸡兔同笼问题的方法。
2.通过解释不同题目的解法和思路,帮助学生更好地掌握其求解方法。
3.让学生自己总结出鸡兔同笼问题的解题规律,掌握其运算技巧,从而可以用更熟练的方法解决这种问题。
教学反思鸡兔同笼问题是一个需要通过实际操作完成的问题,学生需要依据自身的实际情况进行求解,才能完全掌握其应用方法。
在教学中,通过情境教学、演示法和学生独立思考等多种方式,提高了学生在鸡兔同笼问题求解中的思考能力和运算能力,使学生更好地理解求解的基本原理和运算方法。
鸡兔同笼问题〔假设法〕〔第一讲〕我国古代数学名著《子算经》中有这样的一道应用题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?意思是说:鸡和兔同关在一个笼子里,鸡与兔共有35只,鸡脚与兔脚共有94只,问鸡、兔各有多少只?这就是著名的鸡兔同笼问题。
怎样解决这个问题呢?我们通常把题中相当于“鸡〞和“兔〞的两种量,全部假设看作“鸡〞或“兔〞,然后找出与实际数量的差,由此求出“鸡〞或“兔〞,这种解决问题的方法就是假设法。
鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那局部置出来。
解鸡兔同笼问题的根本关系式是:解法1:鸡的只数=〔每只兔脚数×兔总数-实际脚数〕÷〔每只兔子脚数-每只鸡的脚数〕兔的只数=总只数-鸡的只数解法2:兔的只数=〔总脚数-鸡的脚数×总只数〕÷〔兔的脚数-鸡的脚数〕鸡的只数=总只数-兔的只数例1 、鸡兔同笼,头共46,足共128,鸡兔各几只?分析:假设 46只都是兔,一共应有 4×46=184只脚,这和的128只脚相比多了184-128=56只脚。
如果用一只鸡来置换一只兔,就要减少4-2=2〔只〕脚。
那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了。
所以,鸡的只数就是28,兔的只数是46-28=18。
例2、小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有2×16=32〔只〕脚,但实际上有44只脚,比假设的情况多了44-32=12〔只〕脚,出现这种情况的原因是把兔当作鸡了。
因此只要算出12里面有几个2,就可以求出兔的只数。
解:有兔〔44-2×16〕÷〔4-2〕=6〔只〕,有鸡16-6=10〔只〕。
答:有6只兔,10只鸡。
我们也可以假设16只都是兔子,那么就应该有4×16=64〔只〕脚,但实际上有44只脚,比假设的情况少了64-44=20〔只〕脚,这是因为把鸡当作兔了。
小升初解决问题——鸡兔同笼问题教学内容:人教版四年级数学下册数学广角《鸡兔同笼》鸡兔同笼问题是我国古代著名趣题之一。
通过学习解鸡兔同笼问题,可以提高我们的分析问题、解决问题的能力。
例题:大约一千五百年前,我国古代数学名著《孙子算经》中记载了一道数学趣题,这就是著名的“鸡兔同笼”问题。
书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”意思就是:笼子里有若干只鸡和兔,从上面数,有35个头,从下面数,有94只脚,问鸡和兔各有多少只?方法一:列表枚举法列表枚举法就是让我们列出表格,采用依次列举,逐步尝试的方法来解决这个问题。
详细过程见下表:鸡35 34 33 32 26 25 24 23兔0 1 2 3 9 10 11 12脚70 72 74 76 88 90 92 94 用这种方法解题简单,容易理解,但过程太过笨拙、繁琐。
方法二:抬腿法这是古人解题的方法,也就是《孙子算经》中采用的方法。
1、抬腿,即鸡“金鸡独立”,兔两个后腿着地,前腿抬起,腿的数量就为原来数量的一半。
94÷2=47只脚。
2、现在鸡有一只脚,兔有两只脚。
笼子里只要有一只兔子,脚数就比头数多1。
3、那么脚数与头数的差47-35=12就是兔子的只数。
4、最后用头数减去兔的只数35-12=23就得出鸡的只数。
所以,我们可以总结出这样的公式:兔子的只数=总腿数÷2-总只数。
方法三:假设法假设法是鸡兔同笼类问题最常用的方法之一。
假设这35个头都是兔子,那么腿数就应该是35×4=140,就比94还多,那么是哪里多的呢?当然是我们把两条腿的鸡看成了四条腿的兔子了。
我们都知道一只兔子比一只鸡多2条腿,多2条腿就有1只鸡,那么多的腿数当中有多少个2就有多少只鸡。
我们可以列式为:鸡的只数=(35×4-94)÷(4-2)。
总结公式为:鸡的只数=(兔的脚数×总只数-总腿数)÷(兔的腿数-鸡的腿数)。
北师大版小学五年级上册数学《鸡兔同笼》教案三篇篇一教学内容:北师大版五年级上册第80、81页。
教材分析:“鸡兔同笼”问题是我国古代的一道数学趣题,最早出现在《孙子算经》中。
它集题型的趣味性、解法的多样性、应用的广泛性于一体,是实施开放式教学的好题材。
教材中要求掌握3种解题方法(逐一列表法、跳跃列表法、取中列表法),要求学生在教师的指导下,通过小组合作,运用假设举例列表等方法,寻找解决的结果。
教学中,要求教师不宜补充其他解法,以免分散学生的注意力。
学情分析:五年级学生已经学了一些用列表法解决问题的策略,?还有一些学生在兴趣小组、奥数等的学习中已经学过“鸡兔同笼”问题。
学生的程度参差不齐。
学生的思维活跃?敢想、敢说,有一定的小组合作经验。
教学目标:1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、尝试用列表、假设的方法解决“鸡兔同笼”问题,通过列表尝试和不断调整的过程,从中体会解决问题的一般策略—列表,让学生学会从不同角度分析,掌握解题的策略与方法。
3、在解决问题的过程中,培养学生的迁移思维能力。
合作、交流等学习品质和能力。
教学重点:让学生经历列表、尝试和不断调整的过程,体会解决问题的一般策略—列表。
教学难点:运用学到的解题策略解决生活中的实际问题。
教学过程:一、创设情境(出示儿歌)鸡兔同笼不知数,三十六头笼中露,数数脚有一百只,几只鸡来几只兔?师:这就是我国民间的三大趣题之一,最早记载在1500年前的数学名著《孙子算经》中(课件出示古书动画打开书出现原题),原题是这样的,请看:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?谁知道,这是一个什么问题?(鸡兔同笼问题,课件出示鸡兔同笼情境图)这节课我们就来研究中国历的数学趣题“鸡兔同笼”。
(板书:鸡兔同笼)师:谁能用自己的话说说这道题的意思?(鸡兔同笼,上面数有35个头,从下面数共有94条腿,问鸡、兔各有几只?)师:这道古代趣题你能解决吗?我们还是化繁为简,从简单入手吧!二、探索新知出示例题:鸡兔同笼,有20个头,54条腿,鸡兔个有几只?1、明确问题,独立思考通过读题你获得了那些数学信息?这道题里还有隐藏的数学信息吗?同学们先来猜一猜鸡、兔可能各有多少只?(找一两个同学猜测)到底是几只鸡几只兔呢?2、小组合作交流。
鸡兔同笼教案鸡兔同笼教案8篇作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。
教案应该怎么写呢?以下是小编收集整理的鸡兔同笼教案8篇,希望对大家有所帮助。
鸡兔同笼教案篇1一、教学目标:1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、在解决“鸡兔同笼”的活动中,尝试通过列表举例、画图分析、尝试计算、列方程等方法解决鸡兔的数量问题。
3、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。
二、教材分析:(一)设计意图:通过向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,从多角度思考,运用多种方法解题,学生可以应用作图法、列表法(逐一列表法、跳跃式列表法、取中列表法)、假设法、列方程解决问题。
学生根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
(二)设计思路:遵照《新课程标准》的精神,在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。
通过教师创设的现实情景,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。
通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。
在学习中应注意鼓励每个学生参与学习过程,注重学生之间交流,使学生共同学习,共同进步,共同提高,把所学的数学知识应用到生活中去,用数学的眼光看待身边的事物,体会数学的价值。
教学重点:体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。
三、教学设计:<一>、提出问题师:(出示主题图)大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。
小学奥数-鸡兔同笼问题(教师版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(小学奥数-鸡兔同笼问题(教师版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为小学奥数-鸡兔同笼问题(教师版)的全部内容。
鸡兔同笼问题在我国古代的数学著作《孙子算经》中,记载着流传甚广的数字歌谣:鸡兔同笼不知数,三十五头笼中露。
数清脚共九十四双,各有多少鸡和兔.翻译成现代数学语言为:今有鸡兔共居一笼,已知鸡头与兔头共有35个,鸡脚与兔脚一共有94只。
问鸡和兔一共有多少只?这就是我们通常说的“鸡兔同笼”问题。
这一古老的数学问题在现实生活中普遍存在,解法多种多样,但一般采用假设法。
【例1】★今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只。
问鸡、兔各有多少只?【解析】鸡兔同笼问题往往用假设法来解答,即假设全是鸡或全是兔,脚的总数必然与条件矛盾,根据数量上出现的矛盾适当调整,从而找到正确答案。
假设全是鸡,那么相应的脚的总数应是2×35=70只,与实际相比,减少了94-70=24只.减少的原因是把一只兔当作一只鸡时,要减少4-2=2只脚。
所以兔有24÷2=12只,鸡有35-12=23只。
【小试牛刀】小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?【解析】假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。
如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只.因此只要算出12里面有几个2,就可以求出兔的只数。
6-1-9.鸡兔同笼问题(三)教学目标1. 熟悉鸡兔同笼的“砍足法”和“假设法”.2. 利用鸡兔同笼的方法解决一些实际问题,需要把多个对象进行恰当组合以转化成两个对象.知识精讲一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在年前,《孙子算经》中就记载了这个有趣的问题.书1500中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有个头;从下面数,有只脚.求笼中各有几只鸡和兔? 3594你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由只变成了只;如果笼子里有一只兔子,则脚的总数就比头的总数9447多.因此,脚的总只数与总头数的差,就是兔子的只数,即(只).显然,鸡的只数就是14735473512-=(只)了。
这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同351223-=笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数) 兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数) 鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法例题精讲模块一、多个量的“鸡兔同笼”——鸡兔同笼问题【例 1】 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?【考点】鸡兔同笼问题 【难度】4星 【题型】解答【关键词】假设思想方法【解析】 这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为(条),所618108⨯=差(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(只)11810810-=(118108)(86)5-÷-=蜘蛛.这样剩下的(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀18513-=数(对),比实际数少 (对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计11313⨯=20137-=算所差,这样蜻蜓只数可求(只).7(21)7÷-=【答案】只7【巩固】 希望小学的生物标本室里有蜻蜓,蝉,蜘蛛共11只,它们共有74条腿,10对翅膀,由图7知该标本室里有 只蜘蛛。
图7【考点】鸡兔同笼问题 【难度】4星 【题型】填空【关键词】希望杯,4年级,1试,假设思想方法【解析】 这个题目就是有三种动物的鸡兔同笼问题,需先转化成两种动物。
蜻蜓与蝉有共同的特征,所以我们可以先把它们看成一种动物,取名叫蜻蝉。
用假设法知:如果这11只全是蜻蝉,则应长腿:(只),比实际少了:(只),用一只蜘蛛去换一只蜻蝉,则就多2只,要多811666⨯=74668-=只则需要蜘蛛(只)。
824÷=【答案】只4【巩固】 犀牛、羚羊、孔雀三种动物共有头26个,脚80只,犄角20只.已知犀牛有4只脚、1只犄角,羚羊有4只脚,2只犄角,孔雀有2只脚,没有犄角.那么,犀牛、羚羊、孔雀各有几只呢?【考点】鸡兔同笼问题 【难度】4星 【题型】解答【关键词】假设思想方法【解析】 这道题有三种不同的动物混合在一起,这样假设起来会比较麻烦,像前面的题一样,我们可以观察一下:虽然有三种不同的动物,但是犀牛和羚羊都是4只脚,这样,只看脚数,就可以把孔雀与这两种动物分开,转化成我们熟悉的“鸡兔同笼”问题,然后再通过犄角的不同,把犀牛和羚羊分开,也就是说我们需要做两次“鸡兔同笼”.假设26只都是孔雀,那么就有脚:(只),比实际的少:(只),这说明孔雀26252⨯=805228-=多了,需要增加犀牛和羚羊.每增加一只犀牛或羚羊,减少一只孔雀,就会增加脚数:422-=(只).所以,孔雀有(只),犀牛和羚羊总共有(只).2628212-÷=261214-=假设14只都是犀牛,那么就有犄角:(只),比实际的少:(只),这说明犀牛14114⨯=20146-=多了羚羊少了,需要减少犀牛增加羚羊.每增加一只羚羊,减少一只犀牛,犄角数就会增加:211-=(只),所以,羚羊的只数:(只),犀牛的只数:(只).616÷=1468-=[小结]这道题出现了三种动物,关键是寻找不同动物的相同点,把三种动物化为两类,先使用“鸡兔同笼”问题的解法把另外特殊的一种区分出来,再使用另外条件区分具有相同点的动物.【答案】犀牛只,羚羊只,孔雀只8612模块二、多个量的“鸡兔同笼”——变例【例 2】 食品店上午卖出每千克为20元、25元、30元的3种糖果共100千克,共收入2570元.已知其中售出每千克25元和每千克30元的糖果共收入了1970元,那么,每千克25元的糖果售出了多少千克?【考点】鸡兔同笼问题 【难度】3星 【题型】解答【关键词】假设思想方法【解析】 每千克25元和每千克30元的糖果共收入了1970元,则每千克20元的收入:元,25701970600-=所以卖出:千克,所以卖出每千克25元和每千克30克的糖果共千克,相6002030÷=1003070-=当于将题目转换成:卖出每千克25元和每千克30克的糖果共70千克,收入1970元,问:每千克25元的糖果售出了多少千克?转换成了最基本的鸡兔同笼问题.假设全是每千克元的,25(千克),所以30元的是千克,所以元的有:(千克)()()197025703025=44-⨯÷-44257044=26-关键:将三种以及更多的动物/东西,转化为两种最基本模型。
即:抓住转化后的“头”与“脚”。
【答案】千克26【巩固】 年春,我国南方遭受到重大雪灾,实验小学三年级一班的名同学给南方的灾区捐款元。
0842450其中有名同学每人捐元,其他同学捐元或元,则捐元的有 名,捐元的有 12510201020名。
【考点】鸡兔同笼问题 【难度】3星 【题型】填空【关键词】学而思杯,3年级,第8题,假设思想方法【解析】 由题意,(名)同学捐元或元,一共捐了(元),那么捐元的同4212=30-1020450125390-⨯=20学有:(人),捐元的有:(名)。
(3901030)(2010)9-⨯÷-=1030921-=【答案】名21【例 3】 某场足球赛赛前售出甲、乙、丙三类门票共400张,甲类票50元/张,乙类票40元/张,丙类票30元/张,共收入15500元,其中乙类、丙类门票张数相同.则甲类、乙类、丙类门票分别售出多少张?【考点】鸡兔同笼问题 【难度】3星 【题型】填空【关键词】希望杯,四年级,二试,第14题【解析】 鸡兔同笼问题,乙类、丙类门票张数相同,则可以看成价格为35元/张的同一类门票.容易得到甲类门票售出张,乙类、丙类各售出(400 -100)÷2=150张.()()40050400155005035100-⨯-÷-=【答案】甲门票售出张,乙和丙售出张100150【例 4】 有红、黄、绿种颜色的卡片共有张,其中红色卡片的两面上分别写有和,黄色卡片的两面310012上分别写着和,绿色卡片的两面上分别写着和.现在把这些卡片放在桌子上,让每张卡片写1323有较大数字的那面朝上,经计算,各卡片上所显示的数字之和为.若把所有卡片正反面翻转一234下,各卡片所显示的数字之和则变成.问黄色卡片有多少张?123【考点】鸡兔同笼问题 【难度】3星 【题型】解答【关键词】假设思想方法【解析】 开始的时候,黄色和绿色的卡片上都是,红色卡片上是.如果全部是红色卡片,那么数字之和为:32,比实际的少:.每增加一张黄色或绿色卡片,那么数字就会增加:2100200⨯=23420034-=.那么,黄色和绿色卡片之和:(张),红色卡片有:(张).321-=34134÷=1003466-=翻转过来后,红色和黄色卡片上都是,绿色卡片上是.红色卡片有张,剩下的绿色和黄色卡片1266上的数字之和为:.如果张卡片都是黄色的,那么这张卡片上的数字之和为:12316657-⨯=3434,比实际的少:.每增加一张绿色卡片,数字之和就会增加:,所以,13434⨯=573423-=211-=绿色卡片有:(张),黄色卡片有:(张).23123÷=342311-=【答案】张11【例 5】 商店出售大,中,小气球,大球每个3元,中球每个1.5元,小球每个1元.张老师用120元共买了55个球,其中买中球的钱与买小球的钱恰好一样多.问每种球各买几个?【考点】鸡兔同笼问题 【难度】3星 【题型】解答【关键词】假设思想方法【解析】 因为总钱数是整数,大,小球的价钱也都是整数,所以买中球的钱数是整数,而且还是3的整数倍.我们设想买中球,小球钱中各出3元.就可买2个中球,3个小球.因此,可以把这两种球看作一种,每个价钱是 (1.5×2+1×3)÷(2+3)=1.2(元).从公式可算出,大球个数是 (120-1.2×55)÷(3-1.2)=30(个).买中,小球钱数各是 (120-30×3)÷2=15(元). 可买10个中球,15个小球.【答案】大球个,中球个。
小球个301015【例 6】 从甲地至乙地全长45千米,有上坡路,平路,下坡路.李强上坡速度是每小时3千米,平路上速度是每小时5千米,下坡速度是每小时6千米.从甲地到乙地,李强行走了10小时;从乙地到甲地,李强行走了11小时.问从甲地到乙地,各种路段分别是多少千米【考点】鸡兔同笼问题 【难度】3星 【题型】解答【关键词】假设思想方法【解析】 把来回路程45×2=90(千米)算作全程.去时上坡,回来是下坡;去时下坡回来时上坡.把上坡和下坡合并成"一种"路程,根据例15,平均速度是每小时4千米.现在形成一个非常简单的"鸡兔同笼"问题.头数10+11=21,总脚数90,鸡,兔脚数分别是4和 5.因此平路所用时间是 (90-4×21)÷(5-4)=6(小时). 单程平路行走时间是6÷2=3(小时). 从甲地至乙地,上坡和下坡用了10-3=7(小时)行走路程是 45-5×3=30(千米). 又是一个"鸡兔同笼"问题.从甲地至乙地,上坡行走的时间是(6×7-30)÷(6-3)=4(小时). 行走路程是3×4=12(千米). 下坡行走的时间是7-4=3(小时).行走路程是6×3=18(千米).【答案】上坡千米,平路千米,下坡千米.121518【例 7】 在一次考试中有选择题、填空题和解答题三类题共道.选择题和填空题每题分,解答题每题22410分.这次考试总分是分,其中选择题和解答题的分值比填空题多分,这次考试有多少道选择1004题?多少道填空题?多少道解答题?【考点】鸡兔同笼问题 【难度】3星 【题型】解答【关键词】假设思想方法,希望杯【解析】 选择题和填空题的分值一样,可以归为一类。