双曲线的几何性质(1)
- 格式:ppt
- 大小:422.00 KB
- 文档页数:26
案例(二)——精析精练课堂 合作 探究重点难点突破知识点一双曲线的几何性质 (1)范围、对称性由标准方程12222=-b y a x 可得22a x ≥,当a x ≥时,y 才有实数值;对于y 的任何值,x 都有实数值。
这说明从横的方向来看,直线a x a x =-=,之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线。
双曲线不封闭,但仍称其对称中心为双曲线的中心。
(2)顶点顶点:()()0,,0,21a A a A -,特殊点:()()b B b B ,0,,021-。
实轴:21A A 长为a 2,a 叫做半实轴长;虚轴:21B B 长为b 2,b 叫做虚半轴长。
如右图所示,在双曲线方程12222=-by a x 中,令0=y 得a x ±=,故它与x 轴有两个交点()0,1a A -,()0,2a A ,且x 轴为双曲线12222=-b y a x 的对称轴,所以()0,1a A -与()0,2a A 其对称轴的交点,称为双曲线的顶点(一般而言,曲线的顶点均指与其对称轴的交点),而对称轴上位于两顶点间的线段21A A 叫做双曲线12222=-by a x 的实轴长,它的长是a 2。
在方程12222=-by a x 中,令0=x ,得22b y -=,这个方程没有实数根,说明双曲线和y y 轴没有交点。
但y 轴上的两个特殊点()()b B b B ,0,,021-,这两个点在双曲线中也有非常重要的作用把线段21B B 叫做双曲线的虚轴,它的长是b 2,要特别注意不要把虚轴与椭圆的短轴混淆。
双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异。
(3)渐近线如上图所示,过双曲线12222=-by a x 的两顶点21,A A ,作y 轴的平行线a x ±=,经过21,B B 作x 轴的平行线b y ±=,四条直线围成一个矩形,矩形的两条对角线所在直线方程是⎪⎭⎫⎝⎛=±±=0b y a x x a b y ,这两条直线就是双曲线的渐近线。
课 题:8.4双曲线的简单几何性质 (一)教学目的:1.使学生掌握双曲线的范围、对称性、顶点、渐近线等几何性质2.掌握标准方程中c b a ,,的几何意义3.并使学生能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题教学重点:双曲线的渐近线及其得出过程教学难点:渐近线几何意义的证明授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 内容分析:本节知识是讲完了双曲线及其标准方程之后,反过来利用双曲线的方程研究双曲线的几何性质 它是教学大纲要求学生必须掌握的内容,也是高考的一个考点 用坐标法研究几何问题,是数学中一个很大的课题,它包含了圆锥曲线知识的众多方面,这里对双曲线的几何性质的讨论以及利用性质来解题即是其中的一个重要部分坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基运动变化和对立统一的思想观点在第8章知识中得到了突出体现,我们必须充分利用好这部分教材进行教学利用图形启发引导学生理解渐近线的几何意义、弄通证明的关键;渐近线的位置、渐近线与双曲线张口之间的关系是学生学习离心率的概念、搞懂离心率与双曲线形状之间的关系的关键;要突破第二定义得出过程这个难点本节内容类似于“椭圆的简单的几何性质”,教学中也可以与其类比讲解,主要应指出它们的联系与区别 对圆锥曲线来说,渐近线是双曲线特有的性质,我们常利用它作出双曲线的草图,为说明这一点,教学时可以适当补充一些例题和习题 讲解完双曲线的渐近线后,要注意说明:反过来以1=±by ax 为渐近线的双曲线方程则是λ=-2222by ax对双曲线离心率进行教学时要指明它的大小反映的是双曲线的张口大小, 同椭圆一样,双曲线有两种定义,教材上以例3的教学来引出它,我们讲课时要充分注意到此例题与后面的定义在教学上的逻辑关系,突出考虑学生认知心理的变化规律本节分三个课时:第一课时主要讲解双曲线的范围、对称性、顶点、渐近线等几何性质,并补充一道变式例题;第二课时主要内容为离心率、教材中的例1、例2及一道变式例题;第三课时主要讲解教材中的例3、双曲线另一个定义、准线概念教学过程:一、复习引入:二、讲解新课:1.范围、对称性由标准方程12222=-by ax 可得22a x ≥,当a x ≥时,y 才有实数值;对于y 的任何值,x 都有实数值 这说明从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线双曲线不封闭,但仍称其对称中心为双曲线的中心 2.顶点顶点:()0,),0,(21a A a A - 特殊点:()b B b B -,0),,0(21实轴:21A A 长为2a, a 叫做半实轴长 虚轴:21B B 长为2b ,b 叫做虚半轴长讲述:结合图形,讲解顶点和轴的概念,在双曲线方程12222=-by ax 中,令y=0得a x ±=,故它与x 轴有两个交点()0,),0,(21a A a A -,且x 轴为双曲线12222=-by ax 的对称轴,所以()0,),0,(21a A a A -与其对称轴的交点,称为双曲线的顶点(一般而言,点间的线段21A A 叫做双曲线12222=-by ax 的实轴长,它的长是2a.在方程12222=-by ax 中令x=0得22b y -=,这个方程没有实数根,说明双曲线和Y 轴没有交点。
双曲线的几何性质
双曲线是几何学中非常有趣的一类曲线,它形状十分壮观,常被广泛应用到许多不同的领域,例如机械设计、工业设计和计算机图形学等。
双曲线之所以能受到人们的独特关注,是因为它具有着独特的几何性质,这些性质具体如下:
1、双曲线无论在何处取一点,边缘上总是相同的准则来决定它的方向,因此称之为曲线的确定性性质。
这种性质决定了双曲线的方向跟某一点的距离是固定的,任何时候对曲线做相同的位移等价于对某一点做相同的位移,因而看起来双曲线的每一段都是一模一样的。
2、双曲线的另一种性质是它的宽度性质。
在双曲线上确定一点,然后在此点向两方平行平移某一个距离,不可能让它离原点越来越远,如果再加上长度性质,可以发现双曲线不会变宽。
3、另外,双曲线是没有重复部分的,也就是说双曲线是一种不局限的曲线,具有无限性质,永远不会重复。
4、双曲线具有反射性,这就是说可以以一个定点作为基准点,以这个点左右对称地折叠,双曲线的两端点可以映射到另一条线上。
5、最后,双曲线的斜率具有渐变性质,斜率逐渐增加,直到极限是无穷大。
双曲线拥有非常独特的几何性质,而这些性质也使得双曲线在很多不同的领域有着重要的应用价值。
根据上述描述可以知道,双曲线不仅独特,而且还有多种优越的特性,有很大的实用价值。
双曲线的性质及计算方法在数学领域中,双曲线是一种重要的曲线形式,具有独特的性质和计算方法。
本文将介绍双曲线的定义、性质以及一些常见的计算方法。
一、双曲线的定义和基本性质双曲线是在平面直角坐标系中定义的曲线,其定义可以通过以下方程得到:(x^2 / a^2) - (y^2 / b^2) = 1 (当x>0时)(y^2 / b^2) - (x^2 / a^2) = 1 (当y>0时)其中,a和b为正实数,分别称为双曲线的半轴长度。
双曲线有两个分支,分别位于x轴上方和下方,对称于y轴。
1.1 双曲线的几何性质双曲线的几何性质使其在数学和物理的各种应用中扮演重要角色。
其中一些主要性质包括:(1)渐近线:双曲线有两条渐近线,分别与曲线的两个分支趋于平行。
这两条渐近线的方程为y = (b / a) * x 和 y = -(b / a) * x。
(2)顶点:双曲线的顶点位于原点,即(0,0)。
(3)焦点:双曲线有两个焦点,分别位于曲线的两个分支与x轴的交点。
焦点到原点的距离为c,满足c^2 = a^2 + b^2。
1.2 双曲线的方程变形通过对双曲线的方程进行一些变形和移动,可以得到不同形式的双曲线。
常见的方程变形有:(1)平移:通过加减常数的方式,可以将双曲线的位置移动到任意位置。
(2)旋转:通过变化坐标轴的方向,可以将双曲线旋转到倾斜的形态。
(3)缩放:通过乘以常数的方式,可以改变双曲线的尺寸。
二、双曲线的计算方法除了了解双曲线的性质,我们还需要了解一些常见的计算方法,以便在解决实际问题时能够应用这些方法。
2.1 双曲线的焦点和直线的关系双曲线的焦点对于计算和分析双曲线至关重要。
通过焦点和直线的关系,我们可以使用以下公式计算焦点坐标:对于双曲线的基本方程(x^2 / a^2) - (y^2 / b^2) = 1,焦点的坐标为(ae, 0)和(-ae, 0),其中e为焦点到原点的距离与半轴a的比值。