PCB板制作流程
- 格式:pdf
- 大小:156.98 KB
- 文档页数:3
pcb板的制作工艺流程
《PCB板制作工艺流程》
PCB板(Printed Circuit Board)是电子产品中不可或缺的一部分,它负责连接和支持电子元件。
下面是PCB板制作的基本工艺流程:
1. 设计布局:首先,根据电子产品的要求,通过计算机辅助设计软件(CAD)来设计PCB板的布局。
这个过程包括确定电路的连接、元件的布置和线路的走向等。
2. 制作底板:在底板上涂覆一层薄膜,然后通过曝光、显影、蚀刻等工艺来制作出PCB板的底层线路。
3. 印刷元件:将电子元件按照设计要求印刷到PCB板上,这包括焊接点、导线和其他需要的元件。
4. 焊接元件:通过烙铁或者自动焊接机来将元件和线路焊接在一起,确保良好的连接。
5. 镀金层:为了增强PCB板的导电性能和耐腐蚀性能,需要对PCB板进行金属镀金处理。
6. 检验测试:对制作完成的PCB板进行功能性测试和安全性检验,以确保其可靠性和稳定性。
7. 制成成品:经过检验合格的PCB板最后形成成品,可以进
行包装和出货。
整个PCB板的制作流程是一个复杂的过程,需要精密的设备和精细的技术。
随着电子产品的不断发展和更新,PCB板的制作工艺也在不断改进和完善,以满足市场不断变化的需求。
PCB板的工艺制作流程PCB板(Printed Circuit Board)的工艺制作流程如下:1. 设计:根据电路原理图和参数要求,采用电子设计自动化(EDA)软件进行电路设计,并生成PCB板图。
2. 制版:根据PCB板图进行制版,常用的制版方式包括光刻法、激光成像法、电子束曝光法等。
3. 蚀刻:将制版后的铜层覆盖在玻璃纤维(或其他材料)上,然后使用化学药品将不需要的部分腐蚀掉,形成电路图案。
4. 镀金:将铜层表面镀上一层金属,以增强其导电性能。
5. 打孔:按照电路图中需要插入元件的位置,在板上打孔。
6. 涂印:将文字、符号等印刷在PCB板上,并进行编号、分类等标记。
7. 焊接:将元器件焊接到PCB板上,通常采用波峰焊接、手工焊接等方法。
8. 测试:对PCB板进行功能测试以验证其电性能和可靠性。
9. 包装:将已经测试合格的PCB板进行包装和标记。
10. 发货:最后,已经制造完成的PCB板会根据客户的要求进行发货,这个过程中需要确保货物的准确性和及时性。
以上步骤是PCB板制作的基本流程,实际生产中可能会根据企业的具体情况和需要进行一些调整。
同时,每个步骤中都有具体的质量标准和操作规范,需要严格把控,以确保产品的质量。
每个步骤的详细描述如下:1. 设计:这是PCB制作的首要步骤。
在这个阶段,设计师需要理解电路的工作原理,并使用电子设计自动化(EDA)软件绘制电路图。
然后,他们将这个电路图转化为一个可以用于生产的光绘文件。
2. 制版:制版的过程涉及到将电路图从EDA软件转移到实际的PCB上。
这个过程通常使用光刻法或激光成像法。
3. 蚀刻:在这个阶段,未被抗蚀剂保护的铜将被化学药品溶解,留下所需的电路图案。
4. 镀金:这个步骤主要是为了提高电路的导电性能和耐氧化性能。
5. 打孔:在这个阶段,工人需要根据电路图在PCB板上打孔,这些孔将用于将元件安装在PCB板上。
6. 涂印:这个步骤包括将文字、符号等印在PCB板上。
2023-11-08•pcb制作概述•pcb设计•pcb制作的前期准备•pcb制作过程•pcb制作完成后的处理目•pcb制作中的注意事项及常见问题•pcb制作的发展趋势及未来展望录01 pcb制作概述pcb基本概念Printed Circuit BoardPCB是印刷电路板,是一种用于将电子器件连接在一起的基板,通常由绝缘材料制成。
电路板组成PCB通常由导电层、绝缘层和支撑层组成,其中导电层用于传输电信号,绝缘层用于隔离导电层,支撑层则用于支撑整个电路板。
设计电路图制作裸板光绘与刻板将铜箔粘贴在绝缘材料上,形成导电层。
使用光绘机将电路图绘制在铜箔上,形成电路图形。
03pcb制作流程简介02 01根据产品需求,使用EDA设计软件绘制电路图。
通过蚀刻工艺将不需要的铜箔去除,形成所需的电路图形。
蚀刻与去膜在电路导线上沉积一层锡/金,以提高导电性能和耐腐蚀性。
沉锡/金在电路板上涂抹阻焊剂,以防止焊接时短路。
印阻焊剂对电路板进行成型和钻孔加工,以满足实际应用需求。
成型与钻孔pcb制作流程简介实现电子设备的小型化和高效化PCB是实现电子设备内部器件连接的关键部件,其制作质量直接影响到电子设备的性能和可靠性。
pcb制作的重要性保障电子设备的稳定性和安全性PCB的制作质量直接关系到电子设备的稳定性和安全性,因为一旦出现短路或信号干扰等问题,就可能导致设备故障或损坏。
提升电子设备的品质和降低成本优秀的PCB制作工艺可以提高电子设备的品质和性能,同时降低制作成本和时间成本,提高市场竞争力。
02 pcb设计03优化板型结构PCB设计应优化板型结构,提高电路板的机械强度、电气性能和散热性能。
pcb设计基本原则01确保电路功能正常PCB设计应确保电路的功能正常,满足原始电路设计的要求。
02减少信号干扰为了减少信号干扰,PCB设计应尽量选择低噪声的器件,同时避免器件之间的相互干扰。
pcb设计流程PCB检查与优化对设计好的PCB进行检查,确保没有错误和不合理的地方,并进行优化改进。
PCB制板全流程1.原理图设计:在进行PCB制板之前,需要先进行电路原理图的设计。
原理图设计是根据电路功能需求,通过使用相关的设计软件绘制出电路的连接关系和元器件的布局,并进行检查和修改,确保电路设计的正确性。
2.PCB布局设计:完成原理图设计后,需要进行PCB布局设计。
布局设计是将原理图中的电路元件放置在PCB板上,并进行线路的布线。
在布局设计中,需要考虑电路元件之间的距离、布局的紧凑性、信号和电源线的布线,以及散热和阻抗控制等因素。
3.PCB绘制:在完成布局设计后,需要对PCB进行绘制。
绘制是通过使用PCB设计软件,根据布局设计中的元器件位置和线路布线,绘制出具体的PCB板的形状、尺寸和线路连接。
同时,还需加入丝印、焊盘等必要的标记和焊盘。
4. PCB制板文件生成:完成PCB绘制后,需要生成相应的制板文件。
制板文件包括设计文件、加工文件和钻孔文件等。
设计文件通常为Gerber格式,用于指导制板厂商加工制板;加工文件用于指导PCB板上元器件的焊接;钻孔文件用于指导制板厂商进行孔的钻孔。
5.PCB板材选择:在制板文件生成之后,需要选择适合的PCB板材。
根据电路的性能要求和应用环境,选择合适的基材和层压板结构。
常用的PCB板材有玻璃纤维、陶瓷、聚酰亚胺等,不同的材料具有不同的特性,选择合适的材料有利于提高电路的性能和可靠性。
6.制板厂加工:在选择好PCB板材后,将制板文件提交给制板厂进行加工。
制板厂根据制板文件进行PCB板的切割、背面钻孔、内层线路铜箔腐蚀、图形化刻蚀、外层线路镀铜、丝印等工艺处理。
制板厂还会进行严格的质量控制,确保制作出的PCB板符合质量要求。
7.组件贴装:制板完成后,需要进行电子元器件的贴装。
贴装是将预先选定好的电子元器件通过自动贴装机或手动贴装机精确地焊接到PCB板的焊盘上。
根据电路设计要求,分为表面贴装技术(SMT)和插件贴装技术(THT),方法有差异。
8.焊接:完成电子元器件的贴装后,需要进行焊接。
PCB板生产流程PCB板(Printed Circuit Board,印刷电路板)是电子设备的重要组成部分,它作为电子元器件间连接的主要平台,承载着电子设备的信号传输和电源供应等功能。
PCB板的生产流程可以分为设计、制版、堆叠、钻孔、镀膜、曝光、蚀刻、压线、测试和组装等多个步骤。
下面将详细介绍PCB板的生产流程。
1.设计:PCB板生产的第一步是根据电子设备的功能和需求进行设计。
设计师使用电路设计软件将电路连接和布局规划在PCB板上,确定电路板上元器件的位置和信号传输路径。
2.制版:设计师将设计好的PCB板图纸输出成底版,然后通过光刻技术将设计好的电路图案和排线传导图案转移到电路板表面,形成底板。
3.堆叠:堆叠是将多层电路板叠在一起形成复合板。
多层板可以提高电路板的密度,同时也可以提高电路板的抗干扰能力。
堆叠时需要注意各层之间的信号和电源的分布。
4.钻孔:在制作PCB板时,需要在准确的位置上钻出连接跳线和焊盘的孔,以便连接元器件和导线。
通常使用数控钻床或激光钻孔机进行钻孔。
5.镀膜:在PCB板的表面镀上一层金属,一方面可以保护电路和导线不被氧化,另一方面也可以提高焊接接触度。
常用的金属材料包括镍和金。
6.曝光:将底板上覆盖的感光层用光来曝光,以暴露出底板上的图案和线路。
曝光后的感光层会发生物理或化学变化,形成图案和线路。
7.蚀刻:通过化学蚀刻的方式将没有被曝光的感光层经过蚀刻去除,露出底板上的铜层。
经过蚀刻后,就可以形成PCB板上的电路图案和导线。
8.压线:在PCB板的金属层上覆盖一层焊盘,用于连接元器件和电路板。
焊盘会通过一种叫做压铜的工艺来形成。
9.测试:通过对PCB板的电气特性进行测试,确保电路板的质量和性能符合要求。
测试中会检查电路板的连通性、阻抗匹配等参数。
10.组装:将元器件、电阻、电容等进行焊接,完成整个电路板的组装。
组装时需要将元器件与焊盘进行精确定位,在连接之后进行焊接。
以上就是PCB板生产的基本流程。
pcb制作流程PCB制作流程一般包括原理图设计、布局设计、制作工艺、生产制作、质检测试五个阶段,下面详细介绍这个过程。
第一步:原理图设计原理图设计是PCB制作流程的第一步。
在这一阶段,设计工程师会根据电气原理图来设计PCB的电路连接。
选择合适的元器件,并完成连接线路的设计。
第二步:布局设计布局设计是指根据原理图设计结果来进行器件的布局和定位。
在这一阶段,设计工程师会根据电路连接的需要,决定元器件的位置和方向,并进行布线。
同时也要考虑板子的大小、形状等因素。
第三步:制作工艺制作工艺是指为了完成PCB制作需要准备的工艺和设备。
首先需要将原理图和布局设计转换为电脑可识别的文件格式,并进行相关参数的设置。
然后,要利用光刻、腐蚀等工艺将设计好的电路图形图案转移到PCB基板上。
最后使用丝印工艺为PCB板子标识元器件的位置和符号。
第四步:生产制作生产制作是指根据制作工艺的要求进行PCB板的实际制作。
首先将已经设计好的电路图形图案转移到PCB基板上,然后利用腐蚀工艺除去不需要的金属材料。
接下来进行丝印工艺,为PCB板子进行标识。
最后进行钻孔、插件、接插件等工艺。
第五步:质检测试质检测试是指对制作好的PCB板进行质量检查和测试。
主要包括外观检查、性能测试、电路连接测试等。
通过对PCB板的检查和测试,来确保其符合设计的要求和标准。
总结:整个PCB制作流程包括原理图设计、布局设计、制作工艺、生产制作、质检测试五个阶段,每个阶段都会对PCB板的质量和性能进行相关的操作和检查。
通过这个流程,可以生产出满足电路连接需求的高质量PCB板。
注:内容参考自个人对有关知识的了解,并结合相关资料整理而成,仅供参考。
pcb板的制作工艺流程PCB板的制作工艺流程主要包括设计、图纸输出、制版、清洁、切割、穿孔、化学镀铜、焊盘打码、防咬边、插孔、压敏点、贴片、铆接、测试等一系列步骤。
首先, PCB板的制作从设计阶段开始。
设计师根据客户的需求和产品的要求,使用CAD软件绘制出设计图纸。
设计图纸包括电路连接、元器件布局等详细信息。
接下来,设计图纸要通过图纸输出设备输出到感光胶膜上。
感光胶膜是一种特殊的薄膜,能够在光的作用下进行曝光和固化。
设计图纸上的元件和连接会在感光胶膜上变成显影图案。
然后,使用感光胶膜对铜板进行制版。
铜板是一个基础材料,通过加工和蚀刻可以制作出PCB板。
把感光胶膜贴在铜板上,然后用紫外线照射进行曝光,固化感光胶膜,最后使用化学溶液将未固化的胶膜蚀刻掉,留下铜板上的图案。
制版完成后,需对裸板进行清洁处理,以去除杂质和化学残留物。
清洗时需要用一种特殊的溶液浸泡,然后用水冲洗干净,并保证干燥。
接下来,开始进行切割和穿孔。
根据PCB板的尺寸要求,使用特定的工具对板材进行切割,使其符合设计要求。
然后使用穿孔机将孔洞打在板上,以便后续焊接元器件时能够正常连接。
然后是化学镀铜的过程,将铜板浸入镀铜槽中,经过一段时间的化学反应,使铜板表面镀上一层薄薄的铜,以保护电路和提高导电性能。
接下来,对PCB板进行焊盘打码和防咬边处理。
焊盘打码是在PCB板的焊盘上喷码,用于标识焊盘的功能和位置。
防咬边是为了防止焊接时不小心将板边上的导线断开。
然后进行插孔和压敏点的加工。
插孔是为了安装插脚元器件时使用,需要根据元器件尺寸和位置进行精确加工。
压敏点是为了实现PCB板的机械支撑和悬空安装,在板上特定位置打压小孔。
接下来是贴片和铆接。
根据设计图纸的布局,将SMT元器件粘贴在PCB板上,然后通过烘烤机将元器件与PCB板焊接在一起。
对于大型元器件和连接器,还可以采用铆接的方式固定在PCB板上。
最后,对PCB板进行测试和检验。
使用专门的仪器和设备对PCB板进行电气测试,以确保其连接和性能符合设计要求。
pcb制版工艺流程PCB制版工艺流程PCB(Printed Circuit Board)即印刷电路板,是电子元器件的重要载体。
在电子产品中起着连接和支撑电子元器件的作用。
下面是PCB 制版工艺流程的详细介绍。
一、设计与布局首先,需要进行PCB设计和布局。
这个过程中需要考虑到布线、元器件封装、信号完整性等因素。
可以使用专业的PCB设计软件进行设计和布局,如Altium Designer、PADS等。
二、生成Gerber文件完成设计后,需要将其转换为Gerber文件格式,以便进行制板。
Gerber文件包括各层的图形信息和钻孔信息等。
可以使用CAM软件生成Gerber文件。
三、制作光阻膜在制板之前,需要先制作光阻膜。
光阻膜是一种覆盖在铜箔上的透明胶片,用于保护铜箔表面,并且可以通过曝光和显影来形成电路图案。
具体步骤如下:1. 在干净的玻璃板上涂上一层均匀的光敏涂料。
2. 将玻璃板放入紫外线曝光机中,并将Gerber文件导入曝光机中。
3. 曝光机会根据Gerber文件中的图形信息控制紫外线的强度和时间,将图案转移到光阻膜上。
4. 将光阻膜放入显影液中,显影液会将未曝光的部分去除,留下电路图案。
5. 最后,用清水冲洗干净光阻膜,并晾干备用。
四、制作钢网钢网是用来印刷焊膏的,需要根据元器件封装的大小和间距来制作。
具体步骤如下:1. 根据PCB设计文件中的元器件布局信息,在计算机上绘制出钢网图形。
2. 将绘制好的钢网图案输出到透明胶片上。
3. 在钢网板上涂上一层感光胶,并将透明胶片放置在感光胶表面。
4. 将钢网板放入曝光机中进行曝光。
曝光机会控制紫外线的强度和时间,将透明胶片上的图形转移到感光胶表面。
5. 将钢网板放入显影液中进行显影。
显影液会将未曝光部分去除,留下需要印刷焊膏的图形。
6. 最后,用清水冲洗干净钢网板,并晾干备用。
五、制板制板是PCB制作的核心步骤,需要根据Gerber文件和光阻膜制作出电路图案。
PCB制作流程范文PCB(Printed Circuit Board)制作是电子产品制造的关键步骤之一,它为电子元器件提供了支撑和连接,并将各个电子元器件之间的信号传递。
下面将介绍PCB制作的主要流程。
1. 设计电路:首先,需要根据电子产品的要求和功能设计电路。
使用EDA(Electronic Design Automation)软件,如Altium Designer、OrCAD等,绘制电路图。
电路图是一个图形化的表示,它显示了电子元器件之间的连接和信号传递路径。
2.PCB布局:根据电路图,将电子元件放置在PCB上。
考虑到元件之间的电路连接、信号传递和散热等因素,需要合理安排元件的位置和布局。
布局时还需考虑到最佳电路布线路径,以减少电路板上的电磁干扰和串扰。
3.PCB布线:通过连接元件之间的电路路径,建立电路连通性。
在布线过程中,需要仔细处理信号线和电源线的走向,避免交叉和干扰。
对于高速和高频信号,还需要注意信号完整性和差分信号匹配等问题。
布线可以手动完成,也可以使用自动布线工具辅助实现。
4. 软件联调:在PCB布线完成后,需要进行软硬件联调。
这是为了验证电路的功能和连通性,确保电路正常工作。
软硬件联调通常使用仿真软件进行,比如Protel、PADS等。
5. 生成Gerber文件:完成软硬件联调后,需要将PCB布图导出为Gerber文件。
Gerber文件是专用于PCB制造的格式,包含了PCB板的各个层的信息,如元器件布局、布线路径、焊盘位置等。
供应商将根据Gerber文件进行后续的制造工艺。
6. 制造PCB:根据Gerber文件,将PCB板制造出来。
制造过程包括以下几个步骤:a. 制造基板:根据Gerber文件制作出基板,通常使用FR-4(玻璃纤维-环氧树脂)材料,这种材料具有良好的绝缘性能和机械强度。
b.镀铜:在基板上镀上一层铜薄膜,这是为了提供导电性,使得电路能够传导电流。
c.图案化:利用光刻技术将铜薄膜上特定区域的涂层去除,形成电路图案。
PCB制板全流程PCB(Printed Circuit Board)制板是电子产品制造中重要的一环,它是连接各个电子元件的载体,实现电路的功能。
下面是一个关于PCB制板全流程的说明,包括设计、布局、制作和装配等过程。
第一步:PCB设计PCB设计是整个制板流程的第一步,它是根据电子产品的功能和要求进行的。
PCB设计需要用到设计软件,例如Altium Designer、Eagle等。
设计师首先要根据产品的功能要求进行电路原理图的设计,确定电路的连接方式和信号流动路径。
然后将原理图转换为PCB布局图,确定电路板的大小和形状,并将各个元件布置在布局图上。
最后,设计师进行连线的规划,确保各个元件之间能够顺利连接并满足电路的要求。
第二步:PCB布局PCB布局是指将设计好的布局图转换为具体的电路板布局,包括元件的位置和大小等。
布局过程中需要考虑到电路板的尺寸和形状,尽量减少元件之间的干扰和信号噪音。
在布局过程中,设计师还要考虑热量分布和散热等因素,确保电路板的稳定性和可靠性。
第三步:PCB绘制PCB绘制是将布局好的电路板图纸转换为具体可制作的PCB板。
这一过程通常通过自动化的电路板绘制机器实现。
通过绘图机器,将电路板上的布局转换为具体的导线路径和元件位置,并同时添加金属层、绝缘层和其他元件。
第四步:PCB制作PCB制作是将绘制好的电路板进行实际制造的过程。
通常这个过程包括以下几个步骤:1.剥离:将心电图覆盖在PCB板上的保护层去掉,暴露出导线轨迹。
2.钻孔:根据电路图中的孔洞位置,使用钻孔机精确地在PCB板上钻孔。
3.材料加工:将电路板上的材料进行精确切割,以适应电路板的尺寸和形状。
4.冲孔:根据需求,在电路板上冲压孔洞,以供电路连接和安装元件。
5.镀金:在电路板上的导线上涂覆一层金属,以提高导电性能和稳定性。
6.印刷:使用丝网印刷技术,将焊膏印刷到电路板上,以便焊接元件。
7.焊接:将电子元件焊接到电路板上,以完成电路连接。
PCB板制作流程首先:PCB(印刷电路板)的原料是什么呢?大家知道有种东西叫"玻璃纤维"吧,这种材料我们在日常生活中随处可见,比如防火布、防火毡的核心就是玻璃纤维,玻璃纤维很容易和树脂相结合,我们把结构紧密、强度高的玻纤布浸入树脂中,硬化就得到了隔热绝缘、不易弯曲的PCB 基板了--如果把PCB板折断,边缘是发白分层,足以证明材质为树脂玻纤。
然后呢?光是绝缘板我们可不能传递电信号,于是需要在表面覆铜。
所以我们把PCB板也称之为覆铜基板。
在工厂里,常见覆铜基板的代号是FR-4,这个在各家板卡厂商里面一般没有区别,所以我们可以认为大家都处于同一起跑线上,当然,如果是高频板卡,最好用成本较高的覆铜箔聚四氟乙烯玻璃布层压板。
覆铜工艺很简单,一般可以用压延与电解的办法制造,所谓压延就是将高纯度(>99.98%)的铜用碾压法贴在PCB基板上--因为环氧树脂与铜箔有极好的粘合性,铜箔的附着强度和工作温度较高,可以在260℃的熔锡中浸焊而无起泡。
这个过程颇像擀饺子皮,不过饺子皮可是很薄很薄的喔,最薄可以小于1mil(工业单位:密耳,即千分之一英寸,相当于0.0254mm)呢!如果饺子皮这么薄的话,下锅肯定漏馅!所谓电解铜个在初中化学已经学过,CuSo4电解液能不断制造一层层的"铜箔",这个更容易控制厚度,时间越长铜箔越厚!通常厂里对铜箔的厚度有很严格的要求,一般在0.3mil和3mil之间,有专用的铜箔厚度测试仪检验其品质。
像古老的收音机和业余爱好者用的PCB上覆铜特别厚,比起电脑板卡工厂里品质差了很远。
为什么要让铜箔这么薄呢?主要是基于两个理由:一个是均匀的铜箔可以有非常均匀的电阻温度系数,介电常数低,这样能让信号传输损失更小,这和电容要求不同,电容要求介电常数高,这样才能在有限体积下容纳更高的容量,电容为什么比铝电容个头要小,归根结底是介电常数高啊!其次,薄铜箔通过大电流情况下温升较小,这对于散热和组件寿命都是有很大好处的,数字集成电路中铜线宽度最好小于0.3cm也是这个道理。
制作精良的PCB成品板非常均匀,光泽柔和(因为表面刷上阻焊剂),这个用肉眼能看出来,不过老实说光看覆铜基板能看出好坏的人还真不多,除非你是厂里经验丰富的品检。
有朋友问了,对于一块全身包裹了铜箔的PCB基板,我们如何才能在上面安放组件,实现组件--组件间的信号导通而非整块板的导通呢?那我要问一句了,你有没有看到一块主板表面都是铜的--回答当然是:没有!!板上都是弯弯绕绕的铜线,电信号就是通过铜线来传递的,那么答案很简单,把铜箔蚀掉不用的部分,留下铜线部分不就OK了?好,那么这一步是如何完成的呢?好的,我们需要涉及一个概念:那就是"线路底片"或者称之为"线路菲林",我们将板卡的线路设计用光刻机印成胶片,然后把一种主要成分对特定光谱敏感而发生化学反应的感光干膜覆盖在基板上,干膜分两种,光聚合型和光分解型,光聚合型干膜在特定光谱的光照射下会硬化,从水溶性物质变成水不溶性而光分解型则正好相反。
好,这里我们就用光聚合型感光干膜先盖在基板上,上面再盖一层线路胶片让其曝光,曝光的地方呈黑色不透光,反之则是透明的(线路部分)。
光线通过胶片照射到感光干膜上--结果怎么样了?凡是胶片上透明通光的地方干膜颜色变深开始硬化,紧紧包裹住基板表面的铜箔,就像把线路图印在基板上一样,接下来我们经过显影步骤(使用碳酸钠溶液洗去未硬化干膜),让不需要干膜保护的铜箔露出来,这称作脱膜(Stripping)工序。
接下来我们再使用蚀铜液(腐蚀铜的化学药品)对基板进行蚀刻,没有干膜保护的铜全军覆没,硬化干膜下的线路图就这么在基板上呈现出来。
这整个过程有个叫法叫"影像转移",它在PCB制造过程中占非常重要的地位。
接下来自然是制作多层板啦!按照上述步骤制作只是单面板,即使两面加工也是双面板而已,但是我们常常可以发现自己手中的板卡是四层板或者六层板(甚至有8 层板),这究竟是怎么制造出来的呢?有了上面的基础,我们明白其实不难,做两块双面板然后"粘"起来就行啦!比如我们做一块典型的四层板(按照顺序分1~4层,其中1/4是外层,信号层,2/3是内层,接地和电源层),先呢分别做好1/2和3/4(同一块基板),然后把两块基板粘一块不就OK了?不过这个粘结剂可不是普通的胶水,而是软化状态下的树脂材料,它首先是绝缘的,其次很薄,与基板粘合性良好。
我们称之为PP材料,它的规格是厚度与含胶(树脂)量。
当然,一般四层板和六层板我们是看不出来的,因为六层板的基板厚度比较薄,即使要用两层PP三块双面基板,也未见得比一层PP两块双面基板的四层板能增加多少厚度--板卡的厚度都有一定规范,否则就插不进各种卡槽中了。
说到这里,读者又会产生疑问,那个多层板之间信号不是要导通吗?现在PP是绝缘材料,如何实现层与层之间的互联?别急,我们在粘结多层板之前还需要钻孔!钻了孔可以将电路板上下位置相应铜线对起来,然后让孔壁带铜,那么不是相当于导线将电路串联起来了吗?这种孔我们称之为导通孔(Plating hole,简称PT孔,我喜欢叫扑通孔,呵呵)。
这些孔需要钻孔机钻出来,现代钻孔机能钻出很小很小的孔和很浅的孔,一块主板上有成百上千个大小迥异深浅不一的孔,我们用高速钻孔机起码要钻一个多小时才能钻完。
钻完孔后,我们再进行孔电镀(该技术称之为镀通孔技术,Plated-Through-Hole technology,PTH),让孔导通。
孔也钻了,里外层都通了,多层板粘好了,是不是完事了呢?我们的回答是No,因为主板生产需要大量进行焊接,如果直接焊接,会产生两个严重后果:一、板卡表面铜线氧化,焊不上;二、搭焊现象严重--因为线与线之间的间距实在太小了啊!所以我们必须在整个PCB基板外面再包上一层装甲--这就是防焊漆,也就是俗称阻焊剂的的东东,它对液态的焊锡不具有亲和力,并且在特定光谱的光照射下会发生变化而硬化,这个特性和干膜类似,我们看到的板卡颜色,其实就是防焊漆的颜色,如果防焊漆是绿色,那么板卡就是绿色,相应五颜六色怎么来的大家都清楚了吧?最后大家不要忘了网印、金手指镀金(对于显卡或者PCI等插卡来说)和质检,测试PCB是否有短路或是断路的状况,可以使用光学或电子方式测试。
光学方式采用扫描以找出各层的缺陷,电子测试则通常用飞针探测仪(Flying-Probe)来检查所有连接。
电子测试在寻找短路或断路比较准确,不过光学测试可以更容易侦测到导体间不正确空隙的问题。
总结一下,一家典型的PCB工厂其生产流程如下所示:下料→内层制作→压合→钻孔→镀铜→外层制作→防焊漆印刷→文字印刷→表面处理→外形加工。
至此,整个PCB制造流程已经全面介绍完毕,下面我们就结合图片来参观精英鑫华宝讯厂--迄今为止国内最大的PCB板制造基地之一。
这是对PCB做中检,如果不合格可是要返工的哦!看工人一丝不苟的样子,要经过目检和工具检测两大关,结合探针,能检查出线路板的通断。
室内温度必须保持在24±2℃、相对湿度40%~65%,这是为了保证PCB基板和底片的尺寸稳定。
因为板子和底片的组成材料都是有机高分子材料,对温湿度十分敏感。
只有整个生产过程中都在相同的温湿度下,才能保证板子和底片不会发生涨缩现象,所以现在的PCB工厂中生产区都装有中央空调控制温湿度。
如果超过温度极限,这个东东兼起报警器的作用。
这个仪器叫AOI(Automatic Optical Inspection,自动光学检验),比较高级,除了高倍放大外,AOI能进行裸板外观品质测试。
AOI是集光学、计算机图形识别、自动控制多学科于一身的高技术产品,它的内部存有上百种板面缺陷的图样特征。
工作时操作人员先将待检板固定在机台上,AOI会用激光定位器精确定位CCD镜头来扫描全板面。
将得到的图样抽象出来与缺欠图样比对,以此来判断PCB的线路制作是否有问题。
像常见的线路缺口、短断路、蚀刻不全等都可以凭借AOI找出来。
AOI 可以指出问题类型以及在板子上的位置。
核心是它的分析软件。
AOI技术的世界领跑者是以色列人,之所以这样据说是因为以色列处于阿拉伯各国环视之中,戒备心理极强,所以其雷达图像识别技术首屈一指(怕人家偷袭嘛),在20世纪70~80年代微电子技术大发展时,电子工业越来越需要一种高精度的外观检验装置,以色列抓住机遇军品转民品大大地赚了一票。
这种单价在30万美元以上的设备早期被认为是PCB工厂品管严格的象征,由于采用AOI后可有效地提高成品率,防止产品报废,对于多层板生产还是十分合算的,所以现在AOI设备也是PCB厂的必备装置了。
压膜和对片,这张照片不大清楚,内部用UV紫外线爆光这就是专门用来曝光的万级无尘室,曝光机完成影像转移工作,为什么要在无尘室内进行呢?原因是灰尘会折射光线,这必然会导致转移到干膜上的线路图失真。
更为严重的是灰尘颗粒会粘在板面上阻挡光照造成杂质断路或短路。
那么无尘室的灯光是黄色的,这又是为了什么?原来感光干膜对黄光不敏感,不会曝光,这和照相底片不能暴露在阳光下而在暗室的小绿灯下却没事是一个道理这是在第二道成检,必须把表面清理干净,检查是否脱膜和线路过分细,如果PCB出厂就来不及了。
这就是多钻头精密数控钻床,一排排整齐列兵演出非常有气势。
平面精度高达±3mil左右,这个东东国内售价单台就价值百万人民币!看PCB厂有没有实力主要就看有多少台钻床了,一般称得上大厂的起码有百台以上。
这个“小小"车间就拥挤着46台,但这只是宝讯的一小部分而已!每块主板根据孔的多少在钻孔,越精细的孔所花时间越多,通常有数百孔的主板要加工足一个小时!所以孔径是个个兼辛苦啊!看看显示器上加工精度,三维座标精确到小数点后三位(单位mm),数控机床精度非常高,工人采用了人工装夹的方法,自然有一定误差,但机床完全数控,误差取决于机器本身的精度,在设计时PCB布线需要考虑到这一点。
钻头使用不久就需检测(是几次我需要再做进一步了解),因为磨损的钻头严重影响其寿命和钻孔精度,使用程度都用不同颜色表示。
很科学合理。