第二篇热力学第二定律(1)
- 格式:ppt
- 大小:1.46 MB
- 文档页数:60
第二章热力学第二定律一、单选题1) 理想气体绝热向真空膨胀,则()A. ∆S = 0,∆W = 0B. ∆H = 0,∆U = 0C. ∆G = 0,∆H = 0D. ∆U =0,∆G =02) 对于孤立体系中发生的实际过程,下式中不正确的是()A. W = 0B. Q = 0C. ∆S > 0D. ∆H = 03) 理想气体经可逆与不可逆两种绝热过程,则()A. 可以从同一始态出发达到同一终态。
B. 不可以达到同一终态。
C. 不能确定以上A、B中哪一种正确。
D. 可以达到同一终态,视绝热膨胀还是绝热压缩而定。
4) 1mol,100℃及p∅下的水向真空蒸发为p∅,373K的水蒸汽,过程的△A为( )K JA. 0B. 0.109C.-3.101D.40.675) 对于封闭体系的热力学,下列各组状态函数之间的关系中正确的是:()(A) A > U; (B) A < U; (C) G < U; (D) H < A。
6) 将氧气分装在同一气缸的两个气室内,其中左气室内氧气状态为p1=101.3kPa,V1=1dm3,T1=273.2K;右气室内状态为p2=101.3kPa,V2=1dm3,T2=273.2K;现将气室中间的隔板抽掉,使两部分气体充分混合。
此过程中氧气的熵变为: ( )A. ∆S >0B. ∆S <0C. ∆S =0D. 都不一定7)1mol理想气体向真空膨胀,若其体积增加到原来的10倍,则体系、环境和孤立体系的熵变分别为( )J·K-1A. 19.14, -19.14, 0B. -19.14, 19.14, 0C. 19.14, 0, 19.14D. 0 , 0 , 08) 1 mol,373 K,p∃下的水经下列两个不同过程变成373 K,p∃下的水蒸汽,(1) 等温等压可逆蒸发,(2) 真空蒸发,这两个过程中功和热的关系为:( )(A) W1> W2Q1> Q2(B) W1< W2Q1> Q2(C) W1= W2Q1= Q2(D) W1> W2Q1< Q29)封闭系统中, W'= 0,恒温恒压下的化学反应可用( )计算系统的熵变.A. ΔS=Q/T;B. ΔS=ΔH/T;C. ΔS=(ΔH-ΔG)/TD. ΔS=nRln( V2/V1)10) 理想气体经历等温可逆过程,其熵变的计算公式是:( )A. ∆S =nRT ln(p1/p2)B. ∆S =nRT ln(V2/V1)C. ∆S =nR ln(p2/p1)D. ∆S =nR ln(V2/V1)11) 固体碘化银(AgI)有α和β两种晶型,这两种晶型的平衡转化温度为419.7K,由α型转化为β型时,转化热等于6462J·mol-1,由α型转化为β型时的熵变∆S 应为:( ) J·K-1A. 44.1B. 15.4C. -44.1D. -15.412) dA= -SdT-PdV适用的过程是()。
第二章热力学第二定律一、思考题1. 任意体系经一循环过程△U,△H,△S,△G,△F 均为零,此结论对吗?2. 判断下列说法是否正确并说明原因(1) 夏天将室内电冰箱门打开,接通电源,紧闭门窗(设墙壁、门窗均不传热),可降低室温。
(2) 可逆机的效率最高,用可逆机去拖动火车,可加快速度。
(3) 在绝热封闭体系中发生一个不可逆过程从状态I→II,不论用什么方法体系再也回不到原来状态I。
(4) 封闭绝热循环过程一定是个可逆循环过程。
3. 将气体绝热可逆膨胀到体积为原来的两倍。
此时体系的熵增加吗?将液体绝热可逆地蒸发为气体时,熵将如何变化?4. 熵增加原理就是隔离体系的熵永远增加。
此结论对吗?5. 体系由平衡态A 变到平衡态B,不可逆过程的熵变一定大于可逆过程的熵变,对吗?6. 凡是△S > 0 的过程都是不可逆过程,对吗?7. 任何气体不可逆绝热膨胀时其内能和温度都要降低,但熵值增加。
对吗?任何气体如进行绝热节流膨胀,气体的温度一定降低,但焓值不变。
对吗?8. 一定量的气体在气缸内(1) 经绝热不可逆压缩,温度升高,△S > 0(2) 经绝热不可逆膨胀,温度降低,△S < 0两结论对吗?9. 请判断实际气体节流膨胀过程中,体系的△U、△H、△S、△F、△G中哪些一定为零?10. 一个理想热机,在始态温度为T2的物体A 和温度为T1的低温热源R 之间可逆地工作,当 A 的温度逐步降到T1时,A 总共输给热机的热量为Q2,A 的熵变为△S A,试导出低温热源R 吸收热量Q1的表达式。
11. 在下列结论中正确的划√,错误的划×下列的过程可应用公式△S = nR ln(V2/ V1) 进行计算:(1) 理想气体恒温可逆膨胀(2) 理想气体绝热可逆膨胀(3) 373.15K 和101325 Pa 下水的汽化(4) 理想气体向真空膨胀12. 请判断在下列过程中,体系的△U、△H、△S、△F、△G 中有哪些一定为零?(A) 苯和甲苯在常温常压下混合成理想液体混合物;(B) 水蒸气经绝热可逆压缩变成液体水;(C) 恒温、恒压条件下,Zn 和CuSO4溶液在可逆电池中发生置换反应;(D) 水蒸气通过蒸气机对外作功后恢复原状;(E) 固体CaCO3在P⊖分解温度下分解成固体CaO 和CO2气体。
热力学第二定律不被推翻全文共四篇示例,供读者参考第一篇示例:热力学第二定律是热力学中的一个基本规律,它指出了自然界中热能传递的方向性,即热量从高温物体传递到低温物体。
这个定律是热力学的重要基石,对于研究能量转化和热力学系统的性质具有重要意义。
热力学第二定律的基本表述是:自然界中任何封闭系统的总熵不可能减少,即系统的混乱度不会自发性地下降。
这个定律由克劳修斯于19世纪提出,被认为是维持自然界秩序的重要原则之一。
在实际应用中,热力学第二定律被用来解释许多实际问题,例如热机效率、热平衡的达成等。
热力学第二定律的一个重要结果是热机效率的限制。
根据卡诺热机的工作原理,我们知道了达到绝对零度温度是不可能的,这意味着所有的热机都会有一定的效率限制,即卡诺效率。
这个效率极限是由热力学第二定律所确定的,它告诉我们不可能创造一个百分之百的能效热机。
除了热机效率的限制,热力学第二定律还可以解释为什么自然界中能量转化总是朝着不可逆的方向进行。
对于一个封闭系统来说,熵的增加说明了系统中的混乱度增加,这意味着系统的能量将会转化成不可利用的形式,例如热量。
这样的过程是不可逆的,因为热力学第二定律告诉我们,系统的混乱度不会减少,能量转化总是朝着熵增的方向进行。
在过去的几个世纪中,人类通过不懈的努力和探索,对热力学第二定律进行了广泛的研究和验证。
许多实验结果和理论计算都证实了这个定律的正确性,从而奠定了热力学的基础。
虽然有一些争议和质疑,例如气体分子的微观运动和量子力学的影响等,但总体上热力学第二定律依然被认为是热力学中不可推翻的基本规律之一。
热力学第二定律是热力学中的一个重要定律,它揭示了自然界中能量转化的方向性和限制性。
通过研究和实践,我们可以更好地理解热力学系统的行为和性质,从而为能源利用和环境保护等问题提供指导和解决方案。
热力学第二定律的重要性和不可推翻性将继续引领着热力学领域的发展和探索。
第二篇示例:热力学第二定律是热力学中的重要定律之一,它揭示了自然界中的一种普遍趋势,即热量不会从低温物体自发地传递到高温物体,而是相反的过程。
第二章热力学第二定律一. 选择题:1. 理想气体绝热向真空膨胀,则( )(A) △S = 0,W = 0 (B) △H = 0,△U = 0(C) △G = 0,△H = 0 (D) △U = 0,△G = 02. 熵变△S 是(1) 不可逆过程热温商之和(2) 可逆过程热温商之和(3) 与过程无关的状态函数(4) 与过程有关的状态函数以上正确的是((A) 1,2 (B) 2,3 (C) 2 (D) 4 3. 对于孤立体系中发生的实际过程,下式中不正确的是:()(A) W = 0 (B) Q = 0 (C) △S > 0(D) △H = 04. 理想气体经可逆与不可逆两种绝热过程()(A) 可以从同一始态出发达到同一终态(B) 不可以达到同一终态(C) 不能断定(A)、(B) 中哪一种正确(D) 可以达到同一终态,视绝热膨胀还是绝热压缩而定5. P⊖、273.15K 水凝结为冰,可以判断体系的下列热力学量中何者一定为零?(A) △U (B) △H (C) △S (D) △G6. 在绝热恒容的反应器中,H2和Cl2化合成HCl,此过程中下列各状态函数的变化值哪个为零?( )(A) △r U m(B) △r H m(C) △r S m(D) △r G m7. 在绝热条件下,用大于气筒内的压力,迅速推动活塞压缩气体,此过程的熵变为:( ) (A) 大于零(B) 等于零(C) 小于零(D) 不能确定8. H2和O2在绝热钢瓶中生成水的过程:()(A) △H = 0 (B) △U = 0 (C) △S = 0(D) △G = 09. 在270K,101.325kPa 下,1mol过冷水经等温等压过程凝结为同样条件下的冰,则体系及环境的熵变应为:( )(A) △S体系< 0 ,△S环境< 0 (B) △S体系< 0 ,△S 环境> 0 (C) △S体系> 0 ,△S环境< 0(D) △S体系> 0 ,△S环境> 010. 1mol 的单原子理想气体被装在带有活塞的气缸中,温度是300K,压力为1013250Pa。
四、概念题(一) 填空题1.在高温热源T 1和低温热源T 2之间的卡诺循环, 其热温熵之和()1212Q Q T T +=。
循环过程的热机效率()η=。
2.任一不可逆循环过程的热温熵之和可以表示为()0Q T δ⎛⎫ ⎪⎝⎭⎰ 不可逆。
3.在绝热密闭的刚性容器中发生某一化学反应,此过程的()sys 0S ∆;()amb0S ∆。
4.系统经可逆循环后,S ∆( )0, 经不可逆循环后S ∆( )。
(填>,=,<)。
5.某一系统在与环境300K 大热源接触下经历一不可逆循环过程,系统从环境得到10kJ 的功,则系统与环境交换的热()Q =;()sys S ∆=;()amb S ∆=。
6.下列过程的△U 、△H 、△S 、△G 何者为零?⑴ 理想气体自由膨胀( );⑵ H 2(g )和Cl 2(g )在绝热的刚性容器中反应生成HCl (g )的过程( );⑶ 在0 ℃、101.325 kPa 下水结成冰的相变过程( )。
⑷ 一定量真实气体绝热可逆膨胀过程( )。
⑸ 实际气体节流膨胀过程( )。
7.一定量理想气体与300K 大热源接触做等温膨胀,吸热Q =600kJ,对外所做功为可逆功的40%,则系统的熵变()S ∆=。
8. 1 mol O 2(p 1,V 1,T 1)和1 mol N 2(p 1,V 1,T 1)混合后,总压为2 p 1,总体积为V 1,温度为T 1,此过程的△S ( )0(填>,<或=,O 2和N 2均可看作理想气体)。
9.热力学第三定律用公式表示为:()()*m S =。
10. 根据 d G =-S d T+V d p 可知任一化学反应的(1)r m ΔTG p ⎛⎫∂= ⎪∂⎝⎭( ); (2)r m ΔPG T ∂⎛⎫= ⎪∂⎝⎭( ); (3)r m ΔPV T ∂⎛⎫= ⎪∂⎝⎭( )。
11.某理想气体在500 K 、100 kPa 时,其m TS p ⎛⎫∂= ⎪∂⎝⎭ ( )(要求填入具体数值和单位)。
第二章 热力学第二定律练习题一、判断题(说法正确否):1.自然界发生的过程一定是不可逆过程。
2.不可逆过程一定是自发过程。
3.熵增加的过程一定是自发过程。
4.绝热可逆过程的∆S = 0,绝热不可逆膨胀过程的∆S > 0,绝热不可逆压缩过程的∆S < 0。
5.为了计算绝热不可逆过程的熵变,可以在始末态之间设计一条绝热可逆途径来计算。
6.由于系统经循环过程后回到始态,∆S = 0,所以一定是一个可逆循环过程。
7.平衡态熵最大。
8.在任意一可逆过程中∆S = 0,不可逆过程中∆S > 0。
9.理想气体经等温膨胀后,由于∆U = 0,所以吸的热全部转化为功,这与热力学第二定律矛盾吗?10.自发过程的熵变∆S > 0。
11.相变过程的熵变可由T H S ∆=∆计算。
12.当系统向环境传热时(Q < 0),系统的熵一定减少。
13.一切物质蒸发时,摩尔熵都增大。
14.冰在0℃,pT H S ∆=∆>0,所以该过程为自发过程。
15.自发过程的方向就是系统混乱度增加的方向。
16.吉布斯函数减小的过程一定是自发过程。
17.在等温、等压下,吉布斯函数变化大于零的化学变化都不能进行。
18.系统由V 1膨胀到V 2,其中经过可逆途径时做的功最多。
19.过冷水结冰的过程是在恒温、恒压、不做其他功的条件下进行的,由基本方程可得∆G = 0。
20.理想气体等温自由膨胀时,对环境没有做功,所以 -p d V = 0,此过程温度不变,∆U = 0,代入热力学基本方程d U = T d S - p d V ,因而可得d S = 0,为恒熵过程。
21.是非题:⑴“某体系处于不同的状态,可以具有相同的熵值”,此话对否? ⑵“体系状态变化了,所有的状态函数都要变化”,此话对否? ⑶ 绝热可逆线与绝热不可逆线能否有两个交点?⑷ 自然界可否存在温度降低,熵值增加的过程?举一例。
⑸ 1mol 理想气体进行绝热自由膨胀,体积由V 1变到V 2,能否用公式:⎪⎪⎭⎫⎝⎛=∆12ln VV R S计算该过程的熵变?22.在100℃、p 时,1mol 水与100℃的大热源接触,使其向真空容器中蒸发成 100℃、p 的水蒸气,试计算此过程的∆S 、∆S (环)。
热力学第二定律具体内容:热力学第二定律是热力学定律之一,是指热永远都只能由热处转到冷处.热力学第二定律是描述热量的传递方向的分子有规则运动的机械能可以完全转化为分子无规则运动的热能;热能却不能完全转化为机械能.此定律的一种常用的表达方式是,每一个自发的物理或化学过程总是向著熵(entropy)增高的方向发展.熵是一种不能转化为功的热能.熵的改变量等于热量的改变量除以绝对温度.高、低温度各自集中时,熵值很低;温度均匀扩散时,熵值增高.物体有秩序时,熵值低;物体无序时,熵值便增高.现在整个宇宙正在由有序趋于无序,由有规则趋于无规则,宇宙间熵的总量在增加.克劳修斯表述不可能把热量从低温物体传到高温物体而不引起其他变化.开尔文表述不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响.开尔文表述还可以表述成:第二类永动机不可能造成.若要简捷热能不能完全转化为机械能,只能从高温物体传到低温物体。