14.3.1提公因式法练习题
- 格式:doc
- 大小:245.50 KB
- 文档页数:6
14.3因式分解14.3.1提公因式法课前预习要点感知多项式的各项中都含有公共的因式叫做这个多项式的________.如果一个多项式的各项含有公因式,把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做________.预习练习1-1多项式8a3b2+12a3bc-4a2b中,各项的公因式是( )A.a2b B.4a2b C.-4a2b2D.-a2b1-2(南宁中考)因式分解:ax+ay=________.当堂训练知识点1因式分解的定义1.下列式子是因式分解的是( )A.(x+1)(x-1)=x2-1B.2a+4=2(a+1)C.a2+2a=a(a+2)D.x2+3x+2=x(x+3)+2知识点2用提公因式法分解因式2.用提公因式法分解因式:(1)3x3+6x4;(2)4a3b2-10ab3c;(3)-3ma3+6ma2-12ma;(4)6p(p+q)-4q(p+q).课后作业3.(河北中考)下列等式从左到右的变形,属于因式分解的是( )A.a(x-y)=ax-ayB.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3D.x3-x=x(x+1)(x-1)4.(威海中考)若m-n=-1,则(m-n)2-2m+2n的值是( )A.3 B.2 C.1 D.-15.(来宾中考)分解因式:x3-2x2y=________.6.将下列各式分解因式:(1)x(x-y)+y(y-x);(2)(a2-ab)+c(a-b);(3)4q(1-p)3+2(p-1)2.挑战自我7.△ABC的三边长分别为a,b,c,且a+2ab=c+2bc,请判断△ABC是等边三角形、等腰三角形还是直角三角形?说明理由.参考答案要点感知 公因式 提公因式法预习练习1-1 B 1-2 a(x +y)当堂训练1.C 2.(1)原式=3x 3(1+2x). (2)原式=2ab 2(2a 2-5bc). (3)原式=-3ma(a 2-2a +4). (4)原式=2(p +q)(3p -2q).课后作业3.D 4.A 5.x 2(x -2y) 6.(1)原式=x(x -y)-y(x -y)=(x -y)(x -y)=(x -y)2. (2)原式=a(a -b)+c(a -b)=(a +c)(a -b). (3)原式=4q(1-p)3+2(1-p)2=2(1-p)2(2q -2pq +1).挑战自我7.△ABC 是等腰三角形.理由:∵a +2ab =c +2bc ,∴(a -c)+2b(a -c)=0.∴(a -c)(1+2b)=0.故a =c 或1+2b =0.显然b ≠-12,故a =c.∴此三角形为等腰三角形.可以编辑的试卷(可以删除)学习提示:1、通过练习发现不足。
14.3.1提公因式法一、单选题1.在3257x x x k +++中,若有一个因式为(2)x +,则k 的值为( )A .2B .2-C .6D .6- 【答案】A【分析】根据因式分解的意义可设()()322572x x x k x x mx n +++=+++,再利用整式乘法计算()()22x x mx n +++后得()()32222x m x n m x n +++++,即可根据因式分解与整式乘法的关系求解.【详解】设()()322572x x x k x x mx n +++=+++, ∵()()22x x mx n +++ 322222x mx nx x mx n =+++++()()32222x m x n m x n =+++++3257x x x k =+++,∴25m ,27n m +=, 2k n =,解得3m =,1n =,2k =.故选:A .【点评】本题考查了因式分解的意义,掌握因式分解与整式乘法的关系是解题的关键.2.下列各式由左边到右边是因式分解且分解结果正确的是( )A .()3a 43a 12-=-B .()()24x 94x 34x 3-=+-C .()22x 4x 4x 2-+=-D .()3224a 6a 2a 2a 2a 3a ++=+ 【答案】C【分析】根据因式分解的意义求解即可.【详解】A 、()34312a a -=-是整式的乘法,故A 不符合题意;B 、()()2492323x x x -=+-,原式分解不正确,故B 不符合题意;C 、()22442x x x -+=-,分解正确,故C 符合题意;D 、()3224622231a a a a a a ++=++,原式分解不正确,故D 不符合题意;故选:C .【点评】本题考查了因式分解的意义,利用因式分解是把一个多项式转化成几个整式积的形式.3.下列从左到右是因式分解的是( ).A .(a +b )(a -b )=a 2-b 2B .(a +b )2 =a 2+2ab +b 2C .(x +2)(x -5)=x 2-3x +10D .x 2+2x -15=(x -3)(x +5) 【答案】D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误;B 、是整式的乘法,故B 错误;C 、是整式的乘法,故C 错误;D 、符合因式分解,故D 正确;故选:D .【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式,注意因式分解与整式乘法的区别.4.下列等式中,从左到右的变形正确的是( )A .()22242x x x ++=+B .()()2444x x x -=+-C .()222244x y x xy y +=++D .()()2x 2x 3x 6+-=-【答案】C【分析】分别对各选项进行变形,然后对照进行判断即可得到答案.【详解】A 、()22241+3x x x ++=+,原选项变形错误,故不符合题意;B 、()()2422x x x -=+-,原选项变形错误,故不符合题意;C 、()222244x y x xy y +=++,原选项变形正确,故符合题意;D 、2(2)(3)6x x x x +=---,原选项变形错误,故不符合题意;故选:C .【点评】此题主要考查了整式的乘法和因式分解,熟练掌握运算法则是解答此题的关键.5.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( ) A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解【答案】D 【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算.【详解】①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解;所以①是乘法运算,②因式分解.故选:D .【点评】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义. 6.下列各式由左边到右边的变形中,是分解因式的为( )A .2105525x x x x x -=⋅-B .()a x y ax ay +=+C .()22442x x x -+=-D .()()2163443x x x x x -+=-++ 【答案】C【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义解答.【详解】A 、2105525x x x x x -=⋅-,不是分解因式;B 、()a x y ax ay +=+,不是分解因式;C 、()22442x x x -+=-,是分解因式;D 、()()2163443x x x x x -+=-++,不是分解因式; 故选:C .【点评】此题考查多项式的分解因式,熟记定义及分解因式后式子的特点是解题的关键.7.下列各式从左到右的变形中,属于分解因式的是( )A .a (m+n )=am+anB .10x 2﹣5x =5x (2x ﹣1)C .x 2﹣16+6x =(x+4)(x ﹣4)+6xD .a 2﹣b 2﹣c 2=(a ﹣b )(a+b )﹣c 2【答案】B【分析】根据分解因式的定义逐个判断即可.【详解】A .等式由左到右的变形属于整式乘法,不属于分解因式,故本选项不符合题意;B .等式由左到右的变形属于分解因式,故本选项符合题意;C .等式由左到右的变形不属于分解因式,故本选项不符合题意;D .等式由左到右的变形不属于分解因式,故本选项不符合题意;故选:B .【点评】此题考查了因式分解的定义.掌握其定义是解答此题的关键.8.(﹣2)2019+(﹣2)2020等于( )A .﹣22019B .﹣22020C .22019D .﹣2【答案】C【分析】直接提取公因式(−2)2019,进而计算得出答案.【详解】(−2)2019+(−2)2020=(−2)2019×(1−2)=22019.故选:C .【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.二、填空题目9.多项式39x -,29x -与269x x -+的公因式为______.【答案】3x -【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【详解】因为3x ﹣9=3(x ﹣3),x 2﹣9=(x +3)(x ﹣3),x 2﹣6x +9=(x ﹣3)2,所以多项式3x ﹣9,x 2﹣9与x 2﹣6x +9的公因式为(x ﹣3).故答案:3x -.【点评】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.10.已知22()()24x my x ny x xy y -+=+-,则22m n mn -的值为______.【答案】8.-【分析】由22()()24x my x ny x xy y -+=+-可得()222224,x n m xy mny x xy y +--=+-可得:2,4,n m mn -=-=-即2,4,m n mn -=-=再把22m n mn -分解因式,再整体代入求值即可.【详解】 22()()24x my x ny x xy y -+=+-,222224,x nxy mxy mny x xy y ∴+--=+-()222224,x n m xy mny x xy y ∴+--=+-2,4,n m mn ∴-=-=-2,4,m n mn ∴-=-=∴ ()22m n m n mn mn =--()428.=⨯-=-故答案为:8.-【点评】本题考查的是整式的乘法,多项式的恒等,因式分解的应用,掌握以上知识是解题的关键. 11.多项式22y y m ++因式分解后有一个因式是(1)y -,则m =_______.【答案】3-【分析】由于x 的多项式y 2+2y+m 分解因式后有一个因式是(y-1),所以当y=1时多项式的值为0,由此得到关于m 的方程,解方程即可求出m 的值.【详解】∵多项式y 2+2y+m 因式分解后有一个因式为(y-1),∵当y=1时多项式的值为0,即1+2+m=0,解得m=-3.故答案为:-3.【点评】本题考查了因式分解的意义,有公因式时,要先考虑提取公因式;注意运用整体代入法求解. 12.已知x 2-3x -1=0,则2x 3-3x 2-11x +1=________.【答案】4【分析】根据x 2-3x -1=0可得x 2-3x =1,再将所求代数式适当变形后分两次整体代入即可求得值.【详解】∵x 2-3x -1=0,∴x 2-3x =1,∴3223111x x x --+=223132611x x x x -+-+=()22233111x x x x x -+-+将x 2-3x =1代入原式=221113x x x +-+=23)13(x x -+将x 2-3x =1代入原式=314+=,故答案为:4.【点评】本题考查代数式求值,因式分解法的应用.解决此题的关键是掌握“降次”思想和整体思想.三、解答题13.仔细阅读下面例题:例题:已知二次三项式25x x m ++有一个因式是x +2,求另一个因式以及m 的值.解:设另一个因式px +n ,得25x x m ++=(x +2)(px +n ),对比等式左右两边x 的二次项系数,可知p =1,于是25x x m ++=(x +2)(x +n ).则25x x m ++=2x +(n +2)x +2n ,∴n +2=5,m =2n ,解得n =3,m =6,∴另一个因式为x +3,m 的值为6依照以上方法解答下面问题:(1)若二次三项式2x ﹣7x +12可分解为(x ﹣3)(x +a ),则a = ;(2)若二次三项式22x +bx ﹣6可分解为(2x +3)(x ﹣2),则b = ;(3)已知代数式23x +2x +kx ﹣3有一个因式是2x ﹣1,求另一个因式以及k 的值.【答案】(1)-4;(2)-1;(3)另一个因式为2x +x +3,k 的值为5.【分析】(1)仿照题干中给出的方法计算即可;(2)仿照题干中给出的方法计算即可;(3)设出另一个因式为(2ax bx c ++),对比两边三次项系数可得a =1,再参照题干给出的方法计算即可.【详解】(1)∵2(3)()33x x a x x ax a -+=-+-=2(3)3x a x a +--=2712x x -+.∴a ﹣3=﹣7,﹣3a =12,解得:a =﹣4.(2)∵2(23)(2)2346x x x x x +-=+--=226x x --.=226x bx +-.∴b =﹣1.(3)设另一个因式为(2ax bx c ++),得32223(21)()x x kx x ax bx c ++-=-++.对比左右两边三次项系数可得:a =1.于是32223(21)()x x kx x x bx c ++-=-++.则3232232232222(21)(2)x x kx x x bx bx cx c x b x c b x c ++-=-+-+-=+-+--.∴﹣c =﹣3,2b ﹣1=1,2c ﹣b =k .解得:c =3,b =1,k =5.故另一个因式为23x x ++,k 的值为5.【点评】本题以阅读材料给出的方法为背景考查了因式分解、整式乘法、合并同类项等知识,熟练掌握以上知识是解题关键.14.解答下列各题:(1)计算:()()()22x 12x 52x 5+-+-(2)分解因式:()225m 2x y 5mn --. 【答案】(1)426x +;(2)()()5m 2x y+n 2x y n ---【分析】(1)利用完全平方公式和平方差公式分别计算前后两部分,然后进行加减运算即可;(2)先提取公因式5m ,再利用平方差公式计算.【详解】(1)原式2241=4425x x x +++-=426x +(2)原式()22=5m 2x y n -⎡⎤-⎣⎦()()=5m 2x y+n 2x y n ---【点评】本题考查整式的混合运算和因式分解,解题的关键是熟练掌握完全平方公式和平方差公式的法则. 15.将下列各式因式分解:(1)324x xy -;(2)(x ﹣y )2x +6xy (y ﹣x )+9(x ﹣y )2y .【答案】(1)x (x+2y )(x-2y );(2)(x ﹣y )2(3)x y -.【分析】(1)先提取公因式x ,后变形成为22(2)x y -,用平方差公式分解即可;(2)先将6xy (y ﹣x )变形为-6xy (x﹣y),后提取公因式,再用完全平方公式分解即可.【详解】(1)324x xy -=22(4)x x y -=22[(2)]x x y -=x (x+2y )(x-2y );(2)(x ﹣y )2x +6xy (y ﹣x )+9(x ﹣y )2y=(x ﹣y )2x -6xy (x ﹣y )+9(x ﹣y )2y=(x ﹣y )(2x -6xy +92y )=(x ﹣y )2(3)x y -.【点评】本题考查了提取公因式法,平方差公式法,完全平方公式法分解因式,熟练掌握先提后套用公式分解因式是解题的关键.16.我们常利用数形结合思想探索整式乘法的一些法则和公式.类似地,我们可以借助一个棱长为a 的大正方体进行以下探索:(1)在大正方体一角截去一个棱长为()<b b a 的小正方体,如图1所示,则得到的几何体的体积为________;(2)将图1中的几何体分割成三个长方体①、②、③,如图2所示,∵BC a =,AB a b =-,CF b =,∴长方体①的体积为()ab a b -.类似地,长方体②的体积为________,长方体③的体积为________;(结果不需要化简)(3)将表示长方体①、②、③的体积相加,并将得到的多项式分解因式的结果为________;(4)用不同的方法表示图1中几何体的体积,可以得到的等式为________.(5)已知4a b -=,2ab =,求33a b -的值.【答案】(1)33a b -;(2)()2b a b -,()2a a b -;(3)()+ab a b -()2b a b -()2+a a b -()()22a b a ab b =-++;(4)()()3322a b a b a ab b -=-++;(5)88.【分析】(1)由大的正方体的体积为3,a 截去的小正方体的体积为3,b 从而可得答案;(2)由,,ED OD b DM a b ===-,,GH HJ a HN a b ===-利用长方体的体积公式直接可得答案; (3)提取公因式-a b ,即可得到答案;(4)由(1)(3)的结论结合等体积的方法可得答案;(5)利用()2222,a b a b ab +=-+先求解22,a b + 再利用()()3322a b a b a ab b -=-++,再整体代入求值即可得到答案.【详解】(1)由大的正方体的体积为3,a 截去的小正方体的体积为3,b所以截去后得到的几何体的体积为:33,a b -故答案为:33.a b -(2),,ED OD b DM a b ===-由长方体的体积公式可得:长方体②的体积为()2b a b -,,,GH HJ a HN a b ===-所以长方体③的体积为()2,aa b - 故答案为:()2b a b -,()2.a a b -(3)由题意得:()+ab a b -()2b a b -()2+a a b -()()22.a b a ab b =-++故答案为:()+ab a b -()2b a b -()2+a a b -()()22.a b a ab b =-++(4)由(1)(3)的结论,可以得到的等式为:()()3322.a b a b a ab b -=-++故答案为:()()3322.a b a b a ab b -=-++(5) 4a b -=,2ab =,()222216420,a b a b ab ∴+=-+=+=()()3322a b a b a ab b -=-++,()33420288.a b ∴-=⨯+=【点评】本题考查的是完全平方公式的变形,提公因式分解因式,代数恒等式的几何意义,掌握利用不同的方法表示同一个几何体的体积得到代数恒等式,以及应用得到的恒等式解决问题是解题的关键. 17.已知7,12a b ab -==-(1)求22ab a b -的值(2)求22a b +的值【答案】(1)84;(2)25.【分析】(1)先提取公因式ab -将所求式子因式分解为()ab a b --,再将已知式子的值代入即可得; (2)利用完全平方公式进行变形求值即可得.【详解】(1)7,12a b ab -==-,()22ab a b ab a b ∴-=--,()127=--⨯,84=;(2)7,12a b ab -==-,()249a b ∴-=,22249a b ab ∴+-=,()2221249a b ∴+-⨯-=,2225a b ∴+=.【点评】本题考查了利用因式分解和完全平方公式进行变形求值,熟练掌握因式分解的方法和完全平方公式是解题关键.18.设333201720182019x y z ==,322222x mx nx x mx n =+++++,且=.求111x y z++的值. 【答案】1.【分析】由322222x mx nx x mx n =+++++,可得000x y z >>>,,,令333201720182019x y z k ===,由=变形得=可得2111111x y z x y z ⎛⎫++=++ ⎪⎝⎭因式分解11111110x y z x y z ⎛⎫⎛⎫++++-= ⎪⎪⎝⎭⎝⎭,由000x y z >>>,,,1110x y z ++>,可得1111x y z ++=. 【详解】∵322222x mx nx x mx n =+++++,∴000x y z >>>,,,或,,x y z 一正,两负,333201720182019x y z ==说明x ,y ,z 同号,∴000x y z >>>,,,令333201720182019x y z k ===,=++,=+,=+,111x y z ⎛⎫=++ ⎪⎝⎭,111x y z=++, ∴2111111x y z x y z ⎛⎫++=++ ⎪⎝⎭, ∴11111110x y z x y z ⎛⎫⎛⎫++++-= ⎪⎪⎝⎭⎝⎭, ∵000x y z >>>,,,1110x y z++>, ∴1111x y z++=. 【点评】本题考查立方根条件求值问题,掌握立方根的性质,巧秒恒等变形使实际问题简化,利用等式两边平方,因式分解求出代数式的值是解题关键.19.已知5x y +=,4xy =,求下列各式的值.(1)x y -;(2)33x y xy +.【答案】(1)3±;(2)68【分析】(1)根据完全平方公式的变形公式(x ﹣y )2=(x+y)2﹣4xy 进行求解即可;(2)利用完全平方公式求解x 2+y 2,再将所求代数式因式分解,进而代入数值即可求解.【详解】(1)∵5x y +=,4xy =,∴(x ﹣y )2=(x+y)2﹣4xy=52﹣4×4=9,∴x ﹣y=±3;(2)∵(x+y )2= x 2+y 2+2xy ,∴x 2+y 2=52﹣2×4=17,∴33x y xy +=xy(x 2+y 2)=4×17=68.【点评】本题考查代数式求值、完全平方公式、平方根、因式分解、有理数的混合运算,熟记完全平方公式,灵活运用公式是解答的关键.20.仔细阅读下面的例题:例题:已知二次三项式25x x m ++有一个因式是2x +,求另一个因式及m 的值.解:设另一个因式为x n +,得25(2)()x x m x x n ++=++,则225(2)2x x m x n x n ++=+++,25n ∴+=,2m n =,解得3n =,6m =,∴另一个因式为3x +,m 的值为6.依照以上方法解答下列问题:(1)若二次三项式254x x -+可分解为(1)()x x a -+,则a =________;(2)若二次三项式226x bx +-可分解为(23)(2)x x +-,则b =________;(3)已知二次三项式229x x k +-有一个因式是21x -,求另一个因式以及k 的值.【答案】(1)4-;(2)1-;(3)另一个因式为5x +,k 的值为5.【分析】(1)将(1)()x x a -+展开,根据所给出的二次三项式即可求出a 的值;(2)(2x +3)(x ﹣2)展开,可得出一次项的系数,继而即可求出b 的值;(3)设另一个因式为(x +n ),得2x 2+9x ﹣k =(2x ﹣1)(x +n ),可知2n ﹣1=9,﹣k =﹣n ,继而求出n 和k 的值及另一个因式.【详解】(1)∵(1)()x x a -+=x 2+(a ﹣1)x ﹣a =254x x -+,∴a ﹣1=﹣5,解得:a =﹣4;故答案是:﹣4(2)∵(2x +3)(x ﹣2)=2x 2﹣x ﹣6=2x 2+bx ﹣6,∴b =﹣1.故答案是:﹣1.(3)设另一个因式为(x+n),得2x2+9x﹣k=(2x﹣1)(x+n),则2x2+9x﹣k=2x2+(2n﹣1)x﹣n,∴2n﹣1=9,﹣k=﹣n,解得n=5,k=5,∴另一个因式为x+5,k的值为5.【点评】本题考查因式分解的意义,解题关键是对题中所给解题思路的理解,同时要掌握因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.祝福语祝你考试成功!。
提公因式法(1)(一)课堂练习 一、填空题1.把一个多项式___________________也叫做把这个多项式_______。
2. (1)x 2-5xy_________ (2)-3m 2(4)-4a 3b 2-12ab 33. (3)9m 3+27m 2(5)2a 3b-4a 2b 2+2ab 3(7)21a 2-a=21a( ) 二、选择题1.(A)m(a+b)=ma+mb (B)x 2(C)x 22. (A)8a 2b 3c=2a 2·2b 3·2c (B)x 2(C)(x-y)2=x 2-2xy+y 2(D)3x 33.下列各式因式分解错误的是 ( (A)8xyz-6x 2y 2(C)a 2b 2-41ab 3=41ab 2(4a-b) (D)-a 2+ab-ac=-a(a-b+c)4.多项式-6a 3b 2-3a 2b 2+12a 2b 3因式分解时,应提取的公因式是 ( ) (A)3ab (B)3a 2b 2(C)- 3a 2b (D)- 3a 2b 25.把下列各多项式分解因式时,应提取公因式2x 2y 2的是 ( )(A)2x 2y 2-4x 3y (B)4x 2y 2-6x 3y 3+3x 4y 4(C)6x 3y 2+4x 2y 3-2x 3y 3(D)x 2y 4-x 4y 2+x 3y 36.把多项式-axy-ax 2y 2+2axz 提公因式后,另一个因式是 ( )(A)y+xy 2-2z (B)y-xy 2+2z (C)xy+x 2y 2-2xz (D)-y+xy 2-2z7.如果一个多项式4x 3y-M 可以分解因式得4xy(x 2-y 2+xy) ,那么M 等于 ( )(A)4xy 3+4x 2y 2 (B)4xy 3-4x 2y 2 (C)-4xy 3+4x 2y 2 (D)-4xy 3-4x 2y 22-b 2②x 2+2x-3=x(x+2)-3 ③( ) 个 2n 2(6)-4m 4n+16m 3n-28m 2n a n -a n+2+a 3n×199.7+7.5×199.7-1.8×199.7 3的值。
八年级上册数学第十四章 14.3因式分解 测试卷知识要点一:提公因式法1.下列变形是因式分解的是( ) A .a ²-b ²-1=(a+b)(a-b)-1 B .ax ²+x+b ²=x(ax+1)+b ² C .(a+2)(a-2)=a ²-4 D .4x ²-9=(2x+3)(2x-3)2.分解因式6xyz - 4x ²y ²z ²+ 2xz ²时,应提取的公因式是( ) A .xyz B .2x C .2z D .2xz 3.将21a ²b-ab ²提公因式后,另一个因式是( )A. a+2bB.-a+2bC.-a-b D .a- 2b4.下列因式分解中,是利用提公因式法分解的是( ) A. a ²-b ²= (a+b) (a-b) B.a ²-2ab+b ²= (a-b)² C.ab+ac=a (b+c) D.a ²+2ab+b ²= (a+b)²5.若a+b=4,ab=2,则3a ²b+3ab ²的值是( ) A .24 B .18 C .12 D .86.多项式x ²+x ⁶提取公因式x ²后的另一个因式是( ) A .x ⁴ B .x³ C .x ⁴+1 D .x³+17.若△ABC 的三边a ,b ,c 满足a ²+ b ²+ c ²=ac+ bc+ab ,则△ABC 是( )A .锐角三角形B .等腰三角形C .等边三角形D .直角三角形 8.分解因式:3x ²y-6xy +x=_____;3x³-6x ²+ 12x=_____.9.请写出含有公因式3m ²n ,且次数为5的两个多项式,分别为_____、_____. 10.若多项式ax+B 运用提公因式法分解因式的结果为a(x -y),则B 等于_____. 11.计算:5×3⁴+9×3⁴-12×3⁴=_____.12.已知a=49,6=109,则ab - 9a 的值为_____. 13.将下列式子因式分解:(1) (x+2y)² - 2xy -x ²; (2) 3xy ²+21x ²y-39xy.14.化简3a ²b (2ab³-a ²b³-1)+2(ab)⁴+a .3ab ,并求出当a= -1,b=2时原式的值.15.已知x ²+4x-1=0,求2x ⁴+ 8x³-4x ²-8x+1的值.16.已知关于x 的二次三项式2x ²+mx+n 因式分解的结果为(2x -3)(x+21),求m ,n 的值.知识要点二:公式法17.在下列各式中,不能用平方差公式分解因式的是()A. -x²+y²B.-1-m²C.a²-9b² D.4m²-118.下列各式中不是完全平方式的是()A.x²-10x+25 B.a²+a+41C.4n²+n+4 D.9m²+6m+119.下列四个多项式,能因式分解的是()A.a²+b²B.a²-a+2C.a²+3bD.(x+y)²-420.若x为任意有理数,则多项式-41x²+x-1的值()A.一定为负数B.一定为正数C.不可能为正数D.不可能为负数21.若n为任意整数,则(n+7)²-n²一定能被______整除()A.7 B.14 C.7或14 D.7的倍数22.下列因式分解不正确的是()A.2x³-2x= 2x (x²-1) B.mx²-6mx+ 9m= m(x -3)²C.3x²-3y²=3 (x+y)(x-y) D.x²-2xy+y²= (x-y)²23.若9x²-kx+4是一个完全平方式,则k=_____.24.已知x²+6xy+9y²+∣y-1∣=0,则x+y=_____.25.若x²+x+m=(x- n)²,则m=_____,n=_____.26.如果x+y=-3,x-y=6,则代数式2x²-2y²的值为_____.27.若9x²-M= (3x+y-1)(3x-y+1),则M=_____.28.分解因式:4+12 (a-b)+9(a-b)²=_____.29.因式分解:(1) 8a³ - 2a(a+1)²; (2) m²-4n²+4n -1.30.已知x-y=1,xy=2,求x³y-2x²y²+ xy³的值.31.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4= 2²- 0²,12 = 4²- 2²,20=6²- 4²,因此4,12,20都是这种“神秘数”.(1) 28和2016这两个数是“神秘数”吗?试说明理由.(2)试说明神秘数能被4整除.(3)两个连续奇数的平方差是神秘数吗?试说明理由.32.当a,b为何值时,多项式a²+b²- 4a+6b+18有最小值?并求出这个最小值.33.已知x-1=5,求代数式(x+1)²-4(x+1)+4的值.参考答案1.D2.D3.A4.C5.A6.C7.C8.x(3xy-6y+1) 3x(x²-2x+4)9. 3m⁴n+3m²n 6m²n³-3m²n(答案不唯一)10. -ay 11. 162 12. 490013.(1)原式=(x+2y)²-x(x+2y)=(x+2y)(x+2y-x)=2y(x+ 2y);(2)原式=3xy(y+7x - 13).14.原式= 6a³b⁴-3a⁴b⁴ - 3a²b+2a⁴b⁴+ 3a²b=a³b⁴(6 -a).当a= -1, b-2时,原式=(-1)³×2⁴×【6 -(-1)】- 16×7=-112.15.∵x²+4x-1=0,∴x²+4x=1.∴2x⁴+ 8x³- 4x²-8x+1=2x²(x²+4x) -4(x²+4x) +8x+1=2x²·1 -4×1+8x+1= 2x²+8x -3 =2(x²+4x)-3=2×1-3=-1.16.因为2x²+mx+n=(2x-3)(x+ 21) =2x²-2x-23,所以m= -2, n= 23-.17.B 18.C 19.D 20.C 21.A 22.A23.±12 24.-2 25.4121-26.-3627.(y-1)²28.(2+3a - 3b)²29.(1)原式=2a[4a²- (a+1)²]=2a(3a+1)(a-1);(2)原式=m²- (4n²-4n+1)=m²-(2n -1)²= (m - 2n +1) (m+2n -1).30.x³y-2x ²y ²+ xy³= xy(x ² - 2xy+ y ²)= xy(x-y)²=2×1²=2. 31.(1)是.理由如下: ∵28=8²- 6², 2016= 505² - 503² ∴28是“神秘数”;2016是“神秘数”. (2)“神秘数”是4的倍数.理由如下:(2k+2)² - (2k)²= (2k+2 - 2k) (2k+2+2k)= 2(4k+2)=4(2k+1), ∴“神秘数”是4的倍数.(3)设两个连续的奇数为2k+1,2k -1,则(2k+1)²-(2k-1)²=8k ,而由(2)知“神秘数”是4的倍数,但不是8的倍数,所以两个连续的奇数的平方差不是“神秘数”. 32.a ²+b ²-4a+6b+18=(a ²- 4a+4)+(b ²+6b+9) +5=(a-2)²+(b+3)²+5,∴当a=2,b= -3时,a ²+b ²-4a+6b+18有最小值5.33.原式=[(x+1)-2]²-(x-1)²,当x-1=5时,原式=52)5( .。
人教版八年级数学上册《14.3.1 提公因式法》基础测试1. 下列各式从左到右的变形是因式分解的是( ) A.()222312x x x ++=++ B.()()22x y x y x y +-=-C.()222x xy y x y xy-+=-+D.()222x y x y -=-2. 下列各式从左到右的变形中,属于因式分解的是( ) A.()a x y ax ay-=-B.()22121x x x x ++=++C.()()21343x x x x ++=++D.()()311x x x x x -=+-3. 多项式284nnx x -的公因式是( )A.4nx B.21n x - C.41n x - D.12n x -4. 多项式1124n n a a -+-的公因式是M ,则M 等于( )A.12n x- B.2na - C.12n a-- D.12n a+-5. 分解因式22422x y xy xy -+-的结果是( ) A.()221xy x y --+B.()22xy x y -+C.()221xy xy y -+-D.()221xy x y -+-6.把多项式()()232x y y x ---分解因式正确的是( )A. ()()322x y x y ---B. ()()322x y x y --+C. ()()322x y x y -+-D. ()()322y x x y -+-7. 已知m 为有理数,则整式()22211m m m --+的值( )A.不是负数B.恒为负数C.恒为正数D.不等于08.把多项式321640x x y -+提出个公因式28x -后,另一个因式是 .9. 因式分解:(1)()()()23223;a b a b a --+-(2)()()()2232;x y x y x y -+--(3)()()()()()()23332312357.a b x b a x a b x -+-----•+10. 若3,25,ab a b =--=则222a b ab -的值是( )A.-15B.15C.2D.-811. 设681×2019-681×2018=a ,2015×2016-2013×2018=b ,=c ,则a ,b ,c 的大小关系是( ) A.b<c<a B.a<c<b C.b<a<c D.c<b<a 12. 化简:()()()299111...1a a a a a a a ++++++++= .13.先化简,再求值:()()22,a ab a b +-+其中3, 5.a b ==14. 如图,长和宽分别为,a b 的长方形的周长为10,面积为6,求22a b ab +的值.参考答案1. 答案:D解析:A选项,()222312x x x++=++不是因式分解,错误:B选项,()()22x y x y x y+-=-不是因式分解,错误C选项,()222x xy y x y xy-+=-+不是因式分解,错误;D选项,()222x y x y-=-是因式分解,正确故选D.2. 答案:D解析:A、C选项中的变形是整式乘法,不是因式分解B选项中变形结果是()2x x+与1的和,不是因式分解;D选项中()()()32111,x x x x x x x-=-=+-是因式分解故选D.3. 答案:A解析:()284=421n n n nx x x x--∴,公因式是4n x.4. 答案:A解析:()111224=212,n n na a a a-+---故选A.5. 答案:A解析:()22422=221.x y xy xy xy x y-+---+故选A.6. 答案:B解析:()()()()()()2232=32322.x y y x x y x y x y x y------=--+故选B.7. 答案:A解析:原式=()()()2222211=10m m m m----≥,即不是负数.8. 答案:25x y-解析:()()3221640825.x x y x x y-+÷-=-9. 答案:【解】()()()()()()()()()()()123223=23232322232.a b a b aa b a b aa ab ba a b--+-----=---=--()()()()()()()22232=23252.x y x y x y x y x y x y y x y -+---+-+=-()()()()()()()()()()()()()()()()()()()()()32333231235723323312357=2333157235325.a b x b a x a b x a b x a b x a b x a b x x x a b x b a x -+-----•+=-++----•+-++--+⎡⎤⎣⎦=---=-+10. 答案:A 解析:()223,25,223515.ab a b a b ab ab a b =--=∴-=-=-⨯=-11. 答案:A 解析:()68120196812018=68120192018=681a =⨯-⨯⨯-,2015b =⨯()()()201512015220153+--⨯+22=20152015201532015220156+--⨯+⨯+()=20151326=6⨯-++,c =======b c a ∴<<,故选A.12. 答案:()1001a +解析:原式=()()()()()29821111...11a a a a a a a a a ⎡⎤+++++++++=+⎣⎦()()()()2973111...1=1a a a a a a a a ⎡⎤+++++++++⎣⎦()()()()296100111...1=...=1.a a a a a a a a ⎡⎤+++++++++⎣⎦ 13. 答案:【解】原式=()()()()222.a b a a b a b a b a b +--=+-=-当3,5a b ==时,原式=2235=16.--14. 答案:【解】∵长和宽分别为,a b 的长方形的周长为10,面积为6,a b ∴+=5,ab =6,()225630.a b ab ab a b ∴+=+=⨯=。
人教版 八年级数学上册 第14.3.1用提公因式法因式分解练习题(含答案)1. 把下列各式因式分解(1)-+--+++a x abx acx ax m m m m 2213(2)a a b a b a ab b a ()()()-+---32222解:-+--=--+++++a x abx acx ax ax ax bx c x m m m m m 221323()(2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当n 为自然数时,()()()()a b b a a b b a n n n n -=--=----222121;,是在因式分解过程中常用的因式变换。
解:a a b a b a ab b a ()()()-+---32222 )243)((]2)(2))[(()(2)(2)(222223b b ab a b a a b b a a b a b a a b a ab b a a b a a ++--=+-+--=-+-+-=2. 利用提公因式法简化计算过程例:计算1368987521136898745613689872681368987123⨯+⨯+⨯+⨯ 解:原式)521456268123(1368987+++⨯==⨯=987136813689873. 在多项式恒等变形中的应用例:不解方程组23532x y x y +=-=-⎧⎨⎩,求代数式()()()22332x y x y x x y +-++的值。
解:()()()()()()()223322233253x y x y x x y x y x y x x y x y +-++=+-+=+- 把2x y +和53x y -分别为3和-2带入上式,求得代数式的值是-6。
4. 在代数证明题中的应用例:证明:对于任意自然数n ,323222n n n n ++-+-一定是10的倍数。
分析:首先利用因式分解把代数式恒等变形,接着只需证明每一项都是10的倍数即可。
《14.3因式分解(第1课时)》测试与评价本课时的主要内容是提公因式法分解因式.以下题目分为三个水平等级:水平1(用★☆☆表示):运用基本知识、基本技能就能解决的题目;水平2(用★★☆表示):灵活运用基本知识、基本技能,并要具备一定的运算能力和推理能力才能解决的题目;水平3(用★★★表示):综合运用基本知识、基本技能、方法技巧,并要具备一定的运算能力和推理能力才能解决的题目.一、选择题1.下列变形不属于分解因式的是( ).A.x2-1=(x+1)(x-1) B.x2+x+14=(x+12)2C.2a5-6a2=2a2(a3-3) D.3x2-6x+4=3x(x-2)+4考查目的:本题考查分解因式的概念.水平等级:★☆☆解析:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式.显然,选项D不属于分解因式.答案:D.2.下列多项式中,能用提取公因式法分解因式的是( ).A.x2+2x B.x2―y C.x2+y2D.x2―xy+y2考查目的:本题考查提取公因式法分解因式.水平等级:★☆☆解析:纵观四个选项,只有A选项中含有公因式x,其它三个选项中均不含有公因式.答案:A.3.多项式―3x2y+6xy2―3xy提公因式 3xy后另一个多项式为( ).A.x+2y B.x+2y―1 C.x―2y D.x―2y+1考查目的:本题考查提取公因式法分解因式.水平等级:★☆☆解析:利用提取公因式法分解因式可得:―3x2y+6xy2―3xy=―3xy(x―2y+1).答案:D.4.把多项式a 2(x -2)+a (2-x )分解因式等于( ).A .(x -2)(a 2+a )B .(x -2)(a 2-a )C .a (x -2)(a -1)D .a (x -2)(a +1)考查目的:本题考查提取公因式法分解因式.水平等级:★☆☆解析:利用提取公因式法分解因式可得:a 2(x -2)+a (2-x )= a (x -2)(a -1). 答案:C .二、填空题5.-6m 3n 2+12m 2n 3-3m 2n 2的公因式是_________.考查目的:本题考查确定公因式.水平等级:★☆☆解析:由公因式的定义可知,原式各项的公因式为-3m 2n 2.答案:-3m 2n 2.6.5a (x -y )-10a (y -x )的公因式是____________.考查目的:本题考查确定公因式.水平等级:★☆☆解析:由公因式的定义可知,原式的公因式为5a (x -y ).答案:5a (x -y ).三、解答题7.分解因式:(1)a 2-2a ; (2)xy y x 632-;(3)9a 4x 2-18a 3x 3-36a 2x 4;(4)m m m 2616423-+-. 考查目的:本题考查提取公因式法分解因式.水平等级:★☆☆解析:先确定各多项式的公因式,再利用提取公因式法分解因式.答案:解:(1)原式=a (a -2);(2)原式=3xy (x -2) ;(3)原式=9a 2x 2 (a 2-2ax -4x 2);(4)原式=)1382(22+--m m m .8.分解因式:(1)2x (a -b )-5y (a -b ); (2)7ab (m +n )+21bc (m +n );(3)3)3(22+--a a ; (4)))(())((q p n m q p n m -+-++. 考查目的:本题考查提取公因式法分解因式.水平等级:★★☆解析:先确定各多项式的公因式,再利用提取公因式法分解因式.本题中各多项式的公因式均为多项式,注意运用整体思想解决问题.答案:解:(1)原式=(a-b)(2x-5y);(2)原式=7b(m+n) (a+3c);(3)原式=(a-3)(2a-6-1)=(a-3)(2a-7);(4)原式=(m+n) (p+q-p+q)=2q(m+n).。
提公因式法测试时间:60分钟总分:100一、选择题(本大题共10小题,共30.0分)1.多项式①2①2−①,①(①−1)2−4(①−1)+4,①(①+1)2−4①(①+1)+4,①−42−1+4①;分解因式后,结果含有相同因式的是()A. ①①B. ①①C. ①①D. ①①2.多项式12①①3①+8①3①的各项公因式是()A. 4①2B. 4abcC. 2①①2D. 4ab3.①4−①4和①2+①2的公因式是()A. ①2−①2B. ①−①C. +①D. ①2+①24.计算(−2)100+(−2)99的结果是()A. 2B. −2C. −299D. 2995.将下列多项式因式分解,结果中不含有因式①+1的是()A. ①2−1B. ①2+①C. ①2+①−2D. (①+2)2−2(①+2)+16.把(①−①)3−(①−①)2分解因式的结果为()A. (①−①)2(①−①+1)B. (①−①)2(①−①−1)C. (①−①)2(①+①)D. (①−①)2(①−①−1)7.下列多项式中,能用提取公因式法分解因式的是()A. ①2−①B. ①2+2①C. 2+①2D. ①2−①①+①2第1页/共14页8.将3(①−①)−9①(①−①)因式分解,应提的公因式是()A. 3①−9①B. 3①+9①C. ①−①D. 3(①−①)9.把多项式(①+1)(①−1)+(①−1)提取公因式(①−1)后,余下的部分是()A. ①+1B. 2mC. 2D. ①+210.把①①+3+①①+1分解因式得()A. ①①+1(①2+1)B. ①①(①3+①)C.①(①①+2+①) D. ①①+1(①2+①)二、填空题(本大题共10小题,共30.0分)11.已知①+①=10,①①=16,则①2①+①①2的值为______ .12.若+①=10,①①=1,则①3①+①①3=______ .13.若①+①=3,①①=6,则①①2+①2①的值为______ .14.计算21×3.14+79×3.14的结果为______ .15.已知①+①=3,①①=2,则①2①+①①2=______ .16.分解因式:①2+①=______ .17.分解因式:①2+2①=______.18.因式分解①(①−3)2+①(3−①)2=______ .19.若①−①=3,①①=−2,则2①2①−2①①2+1的值为______ .20.计算9999×9999+9999=_______ .三、计算题(本大题共4小题,共24.0分)21.分解因式:(1)3①−12①2(2)①2−4①①+4①2(3)①2(①−2)−①(2−①)(4)(2+4①2)2−16①2①2.22.分解因式:(1)15①2−5①(2)(①2+1)2−4①2(3)①2−2①①+①2−1(4)4①3①2−12①2①2+8①①2.23.计算:(1)(−①①)2⋅3①2①÷9①4①2;(2)①(①−1)+2①(①+1)−3①(2①−5).第3页/共14页24.计算与化简:(1)3(①−①)2−(2①+①)(−①+2①)(2)已知2①−①=8,①①=3,求2①2①+8①2①2−①①2的值.四、解答题(本大题共2小题,共16.0分)25.分解因式:2①(①−①)2−8①2(①−①)26.简便计算:1.992+1.99×0.01.第5页/共14页答案和解析【答案】1. A2. D3. D4. D5. C6. B7. B8. D9. D10. A11. 16012. 813. 1814. 31415. 616. ①(①+1)17. ①(①+2)18. (①−3)2(①+①)19. −1120. 9999000021. 解:(1)原式=3①(1−4①);(2)原式=(①−2①)2;(3)原式=①2(①−2)+①(①−2)=①(①−2)(①+1);(4)原式=(①2+4①2+4①①)(①2+4①2−4①①)=(①+2①)2(①−2①)2.22. 解:(1)原式=5(3①−1);(2)原式=(①2+1+2①)(①2+1−2①)=(①+1)2(①−1)2;(3)原式=(①−①)2−1=(①−①+1)(①−①−1);(4)原式=4①①2(①2−3①+2)=4①①2(①−1)(①−2).23. 解:(1)原式=①2①2⋅3①2①⋅429①=2①332.(2)原式=①2−①+2①2+2①−6①2+15①=−3①2+16①.24. 解:(1)原式=3(①2−2①①+①2)−(4①2−①2)=3①2−6①①+3①2−4①2+①2=−①2−6①+4①2;(2)当2①−①=8、①①=3时,原式=①①(2①+8①①−)=3×(8+8×3)=96.25. 解:2①(①−①)2−8①2(①−①)=2①(①−①)[(①−①)+4①]=2①(①−①)(5①−①).26. 解:1.992+1.99×0.01=1.99×(1.99+0.01)=3.98.【解析】1. 解:①2①2−①=①(2①−1);①(①−1)2−4(①−1)+4=(①−3)2;①(①+1)2−4①(①+1)+4无法分解因式;①−4①2−1+4①=−(4①2−4①+1)=−(2−1)2.所以分解因式后,结果中含有相同因式的是①和①.第7页/共14页故选:A.根据提公因式法和完全平方公式把各选项的多项式分解因式,然后再找出结果中含有相同因式的即可.本题主要考查了提公因式分解因式和利用完全平方公式分解因式,熟练掌握公式结构是求解的关键.2. 解:12①①3①+8①3①=4①①(3①2①+2①2),4ab是公因式,故选:D.根据公因式定义,对各选项整理然后即可选出有公因式的项.此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“−1”.3. 解:∵①4−①4=(①2+①2)(①2−①2)=(①2+①2)(①−①)(①+①).∴①4−①4和①2+①2的公因式是①2+①2,故选D.将原式分解因式,进而得出其公因式即可.此题主要考查了公因式,正确分解因式是解题关键.4. 解:原式=(−2)99[(−2)+1]=−(−2)99=299,故选:D.根据提公因式法,可得负数的奇数次幂,根据负数的奇数次幂是负数,可得答案.本题考查了因式分解,提公因式法是解题关键,注意负数的奇数次幂是负数,负数的偶数次幂是正数.5. 【分析】先把各个多项式分解因式,即可得出结果.本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.【解答】解:①.∵①2−1=(①+1)(①−1),B.①2+①=①(①+1),C.2+①−2=(①+2)(①−1),D.(①+2)2−2(①+2)+1=(①+2−1)2=(①+1)2,∴结果中不含有因式①+1的是选项C.故选C.6. 解:原式=(①−①)3−(①−①)2=(①−①)2(①−①−1),故选B原式变形后,提取公因式即可得到结果.此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.7. 解:A、不符合要求,没有公因式可提,故本选项错误;B、2+2①可以提取公因式x,正确;C、不符合要求,没有公因式可提,故本选项错误;D、不符合要求,没有公因式可提,故本选项错误;故选B.根据找公因式的要点提公因式分解因式.要明确找公因式的要点:(1)公因式的系数是多项式各项系数的最第9页/共14页大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.8. 【分析】此题考查了因式分解−提取公因式法,熟练掌握分解因式的方法是解本题的关键.原式变形后,找出公因式即可.【解答】解:将3①(①−①)−9①(①−①)=3①(①−①)+9①(−①)因式分解,应提的公因式是3(①−①).故选D.9. 解:(①+1)(①−1)+(①−1),=(①−1)(①+1+1),=(①−1)(①+2).故选D.先提取公因式(①−1)后,得出余下的部分.先提取公因式,进行因式分解,要注意①−1提取公因式后还剩1.10. 解:①①+3+①①+1=①①+1(①2+1).故选:A.直接找出公因式,进而提取公因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.11. 解:∵①+①=10,①①=16,∴①2①+①①2=①①(①+①)=10×16=160.故答案为:160.首先提取公因式xy,进而将已知代入求出即可.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12. 解:当①+①=10,①①=1时,①3①+①①3=①①(①2+①2)=①①[(①+①)2−2①①]=1×(102−2×1)=8,故答案为:8.将①+①、xy代入①3①+①①3=①①[(①+①)2−2①①]中计算即可得.本题主要考查代数式的求值,熟练掌握提公因式和完全平方公式是解题的关键.13. 解:∵①+①=3,①①=6,∴①①2+2①=①①(①+①)=3×6=18.故答案为:18.直接利用提取公因式法分解因式,进而将已知代入求出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14. 解:原式=3.14×(21+79)=100×3.14=314.第11页/共14页故答案为314.先提公因式3.14,再计算即可.本题考查了因式分解−提公因式法,因式分解的方法还有公式法,掌握平方差公式和完全平方公式是解题的关键.15. 解:∵①+①=3,①①=2,∴①2①+①①2=①①(①+①)=6.故答案为:6.首先将原式提取公因式ab,进而分解因式求出即可.此题主要考查了提取公因式法分解因式,正确找出公因式再分解因式是解题关键.16. 解:①2+①=①(①+1).故答案为:①(①+1).直接提取公因式分解因式得出即可.此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.17. 解:原式=①(①+2)故答案为:①(①+2)根据提取公因式法即可求出答案.本题考查因式分解,解题的关键是熟练运用提取公因式法,本题属于基础题型.18. 解:原式=①(−3)2+①(①−3)2=(①−3)2(①+①).故答案为:(①−3)2(①+①).直接提取公因式(①−3)2即可.此题主要考查了提公因式法分解因式,关键是正确找出公因式.19. 解:∵2①2①−2①①2+1=2①①(①−①)+1将①−①=3,①①=−2代入得:原式=2①①(①−①)+1=2×(−2)×3+1=−11.故答案为:−11.直接提取公因式2mn,进而将已知代入求出即可.此题主要考查了提取公因式法的应用以及代数式求值,正确找出公因式是解题关键.20. 解:9999×9999+9999=9999(9999+1)=99990000.故答案为:99990000.提取公因式9999后即可确定正确的答案.本题考查了因式分解的知识,解题的关键是能够确定公因式,难度不大.21. (1)原式提取公因式即可得到结果;(2)原式利用完全平方公式分解即可;(3)原式变形后,提取公因式即可得到结果;(4)原式利用完全平方公式及平方差公式分解即可.此题考查了因式分解−运用公式法,熟练掌握平方差公式是解本题的关键.22. (1)原式提取公因式即可;(2)原式利用平方差公式化简,再利用完全平方公式分解即可;(3)原式前三项利用完全平方公式分解,再利用平方差公式分解即第13页/共14页可;(4)原式提取公因式,再利用十字相乘法分解即可.此题考查了因式分解−运用公式法,以及提公因式法,熟练掌握因式分解的方法是解本题的关键.23. (1)先计算乘方、除法转化为乘法,再约分即可得;(2)先计算乘法,再合并同类项即可得.本题主要考查整式和分式的运算,解题的关键是熟练掌握分式的乘除运算和整式的混合运算顺序和运算法则.24. (1)先计算乘方和乘法,再去括号、合并同类项即可得;(2)将已知等式的值代入原式=①①(2①+8①①−①),计算可得.本题主要考查整式的运算与因式分解,解题的关键是掌握完全平方公式和平方差公式及提公因式法因式分解的能力.25. 直接找出公因式,进而提取公因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.26. 直接提取公因式1.99,进而计算得出答案.此题主要考查了提取公因式,正确找出公因式是解题关键.。
人教版八年级上册因式分解专项练习-提公因式法(含答案)1.请把下列各式分解因式(1)x(x-y)-y(y-x) (2)-12x3+12x2y-3xy2(3)(x+y)2+mx+my (4)a(x-a)(x+y)2-b(x-a)2(x+y)(5)15×(a-b)2-3y(b-a)(6)(a-3)2-(2a-6)(7)(m+n)(p-q)-(m+n)(q+p)2.因式分解:(1)3x2﹣6xy+x;(2)﹣4m3+16m2﹣28m;(3)18(a﹣b)2﹣12(b﹣a)3.3.因式分解:-2m3+8m2-12m;4.用提公因式法分解多项式:3223048x y x yz -+5.分解因式:(1)−4ab −8b 2+10b (2)2(n −m)2−m(m −n)(3)15y(a −b)2−3y(b −a) (4)6(m −n)3−12(n −m)2(5)x 2+3x +1=0,求2x 2010+6x 2009+2x 2008的值 6.分解因式:3210()5()ab a b b b a ---7.把下列各式分解因式:(1)4x 3-6x 2; (2)2a 2b+5ab+b ; (3)6p(p+q)-4q(p+q);(4) (x -1)2-x+1; (5)-3a 2b +6ab 2-3ab.8.把下列各式分解因式:(1)236x y xy - (2)2332525x y x y -(4)3241626m m m -+- (4)22(3)3a a --+(5)23()2()m x y y x --- (6)2318()12()b a b a b ---(7)1532223520x y x y x y +- (8)6x(x+y)-4y(x+y)(8)()()()a x a b a x c x a -+--- (10)()()()()m n p q m n p q ++-+-9.把下列各式分解因式:(1)a(b -c)+c -b ; (2)15b(2a -b)2+25(b -2a)2.10.()()x x y y y x ---11.把下列各式分解因式:(1)2x 2-xy ; (2)-4m 4n +16m 3n -28m 2n.12.分解因式① -49a 2bc -14ab 2c+7ab ①(2a+b)(2a -3b)-8a(2a+b)13.分解因式:a(x +y -z)-b(z -x -y)-c(x -z +y).14.因式分解:(y ﹣x )(a ﹣b ﹣c )+(x ﹣y )(b ﹣a ﹣c )15.因式分解:12a 2b(x -y)-4ab(y -x).16.因式分解: 53242357a b c a b c a bc +-17.因式分解:26()2()()x y x y x y +-+-18.计算:(1)a (a+b )﹣b (a ﹣b ); (2)(x ﹣2y )(2y+x )+(2y+x )2﹣2x (x+2y )19.因式分解(1)-3x 2+6xy -3y 2 (2)a 2(x -y)+16(y -x)20.用提取公因式法将下列各式分解因式:(1)6xyz-3xz2;(2)x4y-x3z;(3)x(m-x)(m-y)-m(x-m)(y-m).参考答案1.(1)(x-y)(x+y);(2)-3x(2x-y)2;(3)(x+y)(x+y+m);(4)(x-a)(x+y)(ax+ay-bx+ab);(5)3(a-b)(5ax-5bx+y);(6)(a-3)(a-5);(7)-2q(m+n)【解析】试题分析:(1)运用提取公因式法因式分解即可;(2)运用提取公因式法因式分解即可,注意先提取负号;(3)先分组,提公因式,再利用整体法运用提取公因式法因式分解即可;(4)运用提取公因式法因式分解即可,注意整体思想的应用;(5)根据a-b与b-a互为相反数,利用整体法提取公因式法因式分解即可;(6)运用提取公因式法因式分解即可;(7)运用提取公因式法因式分解即可,注意符号变化.试题解析:(1)x(x-y)-y(y-x)=(x-y)(x+y)(2)-12x3+12x2y-3xy2=-3x(4x2-4xy+y2)=-3x(2x-y)2(3)(x+y)2+mx+my=(x+y)2+m(x+y)=(x+y)(x+y+m)(4)a(x-a)(x+y)2-b(x-a)2(x+y)=(x-a)(x+y)[a(x+y)-b(x-a)]=(x-a)(x+y)(ax+ay-bx+ab)(5)15x(a-b)2-3y(b-a)=15x(a-b)2+3y(a-b)=3(a-b)(5ax-5bx+y);(6)(a-3)2-(2a-6)=(a-3)2-2(a-3)=(a-3)(a-5);(7)(m+n)(p-q)-(m+n)(q+p)=(m+n)(p-q-q-p)=-2q(m+n)2.(1)x(3x﹣6y+1);(2)﹣4m(m2﹣4m+7);(3)6(a﹣b)2(3+2a﹣2b).【解析】【分析】(1)利用提取公因式法分解因式得出即可;(2)利用提取公因式法分解因式得出即可;(3)利用提取公因式法分解因式得出即可. 【详解】(1)解:3x 2﹣6xy+x=x (3x ﹣6y+1)(2)解:﹣4m 3+16m 2﹣28m=﹣4m (m 2﹣4m+7)(3)解:18(a ﹣b )2﹣12(b ﹣a )3=6(a ﹣b )2(3+2a ﹣2b ) 【点睛】考查因式分解,熟练掌握提取公因式法是解题的关键. 3.-2m(m 2-4m+6) 【解析】 【分析】直接运用提公因式法.即提出公因式-2m 即可. 【详解】解:-2m 3+8m 2-12m=-2m (m 2-4m+6) 【点睛】本题考核知识点:因式分解. 解题关键点:找出公因式. 4.()2658x y xy z --【解析】试题分析:根据提公因式法--因式分解,确定公因式后提取公因式即可. 试题解析:()32223048658x y x yz x y xy z -+=--.5.(1)-2b (2a+4b -5);(2)(n -m )(2n -m );(3)3y (a -b )[5a -5b+1];(4)6(n -m )2(m -n -2);(5)0 【解析】【分析】(1)直接提取公因式﹣2b 分解即可;(2)首先把m −n 变为−(m −n),再提取公因式n -m 分解即可; (3)首先把b −a 变为−(a -b ),再提取公因式a -b 分解即可;(4)首先把6(m −n)3变为−6(n −m)3,再提取公因式6(n −m)2分解即可;(5)首先把2x 2010+6x 2009+2x 2008变为2x 2008(x 2+3x +1) ,再把x 2+3x +1=0代入即可; 【详解】(1)−4ab −8b 2+10b = -2b (2a+4b -5);(2)2(n −m)2−m (m −n )=2(n −m )2+m (n −m )=(n -m )(2n -m );(3)15y(a −b)2−3y (b −a )=15y (a −b )2+3y (a −b )=3y (a −b )[5a −5b )+1] (4)6(m −n)3−12(n −m)2=6(m −n)3−12(m −n)2=6(m −n)2(m −n −2) (5)2x 2010+6x 2009+2x 2008=2x 2008(x 2+3x +1)=0 【点睛】本题主要考查了提取公因式法分解因式,正确找出公因式是解题关键. 6.225()(221)b a b a ab --- 【解析】分析:提取公因式法进行因式分解即可. 详解:原式()()32105,ab a b b a b =---()()2521.b a b a a b ⎡⎤=---⎣⎦ ()()225221.b a b a ab =---点睛:本题主要考查因式分解,常见的因式分解的方法有:提取公因式法,公式法,十字相乘法.注意:分解一定要彻底.7.(1)2x 2(2x -3);(2)b(2a 2+5a+1);(3)2(p+q)(3p -2q);(4)(x -1)(x -2);(5)-3ab(a -2b +1). 【解析】 【分析】(1)直接利用提取公因式法,提取公因式2x 2,进而分解因式得出答案; (2)直接利用提取公因式法,提取公因式b ,进而分解因式得出答案; (3)直接利用提取公因式法,提取公因式2(p +q ),进而分解因式得出答案; (4)直接利用提取公因式法,提取公因式(x ﹣1),进而分解因式得出答案. (5)直接利用提取公因式法,提取公因式﹣3ab ,进而分解因式得出答案. 【详解】(1)原式=222223x x x ⋅-⋅=22(23)x x -; (2)原式= b •2a 2+ b •5a + b •1=b (2a 2+5a +1); (3)原式=2(p +q )•3p -2(p +q )•2q =2(p +q )(3p -2q ); (4)原式=(x -1)2-(x -1)=(x -1)(x -1-1)= (x -1)(x -2);(5)原式=-3ab •a +(-3ab )•(-2b )+(-3ab )•1=-3ab (a -2b +1). 【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题的关键.8.(1)3xy(x -2); (2)225(5)x y y x -; (3)22(2813m m m --+); (4)3)(27)a a --(; (5)()(322)x y m x y --+; (6)26()(52a b b a --);(7) 225314)x y xy y +-(;(8)2(x+y)(3x -2y); (9)()()x a a b c ---; (10)2()q m n +.试题分析:都利用提公因式法分解因式即可.试题解析:(1)原式=3xy(x -2);(2)原式=()2255x y y x -;(3)原式=22(2813m m m --+);(4)()3)27a a =--原式(; (5)原式=()()322x y m x y --+;(6)原式=()26(52a b b a --);(7)原式= 225314)x y xy y +-(;(8)原式=2(x+y)(3x -2y);(9)原式=()()x a a b c ---;(10)原式=()2q m n +.9.(1)(b -c)(a -1)(2) 5(2a -b)2(3b +5)【解析】试题分析:(1)先确定公因式是(b -c ),将公因式(b -c )提到括号外,可得(b -c )(a -1) , (2)先确定公因式是5(2a -b )2,将公因式5(2a -b )2提到括号外,可得5(2a -b )2(3b +5).试题解析:(1)原式=a (b -c )-(b -c )=(b -c )(a -1),(2)原式=15b (2a -b )2+25(2a -b )2=5(2a -b )2(3b +5).10.()()x y x y -+试题分析:后一项变号后,提取公因式(x-y)即可.试题解析:解:原式=x(x-y)+y(x-y)=(x-y)(x+y).11.(1) x(2x-y)(2)-4m2n(m2-4m+7)【解析】试题分析:(1)先确定公因式,将公因式提到括号外,括号里为原多项式中每一项除以公因式所得结果, (2)先确定公因式,将公因式提到括号外,括号里为原多项式中每一项除以公因式所得结果.试题解析:(1)原式=x(2x-y),(2)原式=-4m2n(m2-4m+7).12.①-7ab(7ac+2bc-1);①-3(2a+b)2【解析】试题分析:本题考查了因式分解.①直接用提公因式-7ab即可;①把(2a+b)作为一个整体提取.①原式=-7ab(7ac+2bc-1)①原式=(2a+b)(2a-3b-8a)=(2a+b)(-6a-3b)=-3(2a+b) 213.(x+y-z)(a+b-c)【解析】试题分析:先确定公因式(x+y-z),提公因式可得: (x+y-z) (a+b-c),试题解析:原式=a(x+y-z)+b(x+y-z)-c(x+y-z)=(x+y-z) (a+b-c).14.2(y﹣x)(a﹣b)【解析】试题分析:先提取公因式(y-x)后,再提取公因式2即可.试题解析:原式=(y ﹣x )(a ﹣b ﹣c )﹣(y ﹣x )(b ﹣a ﹣c )=(y ﹣x )(a ﹣b ﹣c ﹣b+a+c )=2(y ﹣x )(a ﹣b ).15.4ab(x -y)(3a+1)【解析】【分析】直接提取公因式4ab (x -y ),即可求得答案.【详解】原式=12a 2b(x -y)+4ab(x -y)=4ab(x -y)(3a+1)【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.16.a 3bc (a 2b 2c+5ab -7)【解析】【分析】根据题意提取公因式即可.【详解】解:原式=322(57)a bc a b c ab +-【点睛】本题主要考查提取公因式,根据每个字母的最低次数提取即可.17.4(x +y )(x +2y ).【解析】首先提公因式2(x+y),再整理括号里面的3(x+y)﹣(x﹣y),再提公因式2即可.【详解】原式=2(x+y)[3(x+y)﹣(x﹣y)]=2(x+y)(2x+4y)=4(x+y)(x+2y).【点睛】本题考查了提公因式法分解因式,关键是公因式提取要彻底.18.(1)a2+b2;(2)0.【解析】【分析】(1)(2)按照先去括号,后合并同类项的步骤化简即可;【详解】解:(1)原式=a2+ab﹣ab+b2=a2+b2(2)法一:原式=x2﹣4y2+x2+4xy+4y2﹣2x2﹣4xy=(x2+x2﹣2x2)+(﹣4y2+4y2)+(4xy﹣4xy)=0法二:原式=(x+2y)(x﹣2y+2y+x﹣2x)=(x+2y)×0=0本题考查平方差公式、完全平方公式、提公因式等知识,解题的关键是灵活运用所学知识解决问题,记住平方差公式、完全平方公式.19.(1)−3(x−y)2(2)(x−y)(a−4)(a+4)【解析】试题分析:(1)先提取公因式-3,再对余下的多项式利用完全平方公式继续分解;(2)先提取公因式(x-y),再对余下的多项式利用完全平方公式继续分解.试题解析:(1)原式= −3(x2−2xy+y2)= −3(x−y)2(2)原式=a2(x−y)−16(x−y)=(x−y)(a2−16)=(x−y)(a−4)(a+4)【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.20.(1) 3xz(2y-z);(2) x3(xy-z);(3)-(m-x)2(m-y).【解析】【分析】分别提取公因式3xz,x3,(m-x)(m-y)即可得答案,注意符号.【详解】解:(1)6xyz-3xz2=3xz(2y-z).(2)x4y-x3z=x3(xy-z).(3)x(m-x)(m-y)-m(x-m)(y-m)=x(m-x)(m-y)-m(m-x)(m-y)=(m-x)(m-y)(x-m)=-(m-x)2(m-y).【点睛】本题考查的知识点是提公因式,解题的关键是熟练的掌握提公因式.。
14.3.1提公因式法(1)一、填空题1.把下列各多项式的公因式填写在横线上。
(1) x 2-5xy _________ (2) -3m 2+12mn _________ (3) 12b 3-8b 2+4b _________(4)-4a 3b 2-12ab 3 __________ (5) -x 3y 3+x 2y 2+2xy _________ 2.在括号内填入适当的多项式,使等式成立。
(1)-4ab-4b=-4b( ) (2)8x 2y-12xy 3=4xy( ) (3)9m 3+27m 2=( )(m+3)(4)-15p 4-25p 3q=( )(3p+5q) (5)2a 3b-4a 2b 2+2ab 3=2ab( ) (6)-x 2+xy-xz=-x( ) (7)21a 2-a=21a( ) 二、选择题1.下列各式从左到右的变形是因式分解的是 ( )(A)m(a+b)=ma+mb (B)x 2+3x-4=x(x+3)-4 (C)x 2-25=(x+5)(x-5) (D)(x+1)(x+2)=x 2+3x+2 2.下列各等式从左到右的变形是因式分解的是 ( )(A)8a 2b 3c=2a 2·2b 3·2c (B)x 2y+xy 2+xy=xy(x+y) (C)(x-y)2=x 2-2xy+y 2 (D)3x 3+27x=3x(x 2+9) 3.下列各式因式分解错误的是 ( )(A)8xyz-6x 2y 2=2xy(4z-3xy) (B)3x 2-6xy+x=3x(x-2y) (C)a 2b 2-41ab 3=41ab 2(4a-b) (D)-a 2+ab-ac=-a(a-b+c) 4.多项式-6a 3b 2-3a 2b 2+12a 2b 3因式分解时,应提取的公因式是 ( )(A)3ab (B)3a 2b 2 (C)- 3a 2b (D)- 3a 2b 25.把下列各多项式分解因式时,应提取公因式2x 2y 2的是 ( )(A)2x 2y 2-4x 3y (B)4x 2y 2-6x 3y 3+3x 4y 4 (C)6x 3y 2+4x 2y 3-2x 3y 3 (D)x 2y 4-x 4y 2+x 3y 36.把多项式-axy-ax 2y 2+2axz 提公因式后,另一个因式是 ( )(A)y+xy 2-2z (B)y-xy 2+2z (C)xy+x 2y 2-2xz (D)-y+xy 2-2z7.如果一个多项式4x 3y-M 可以分解因式得4xy(x 2-y 2+xy) ,那么M 等于 ( )(A)4xy 3+4x 2y 2 (B)4xy 3-4x 2y 2 (C)-4xy 3+4x 2y 2 (D)-4xy 3-4x 2y 28. 下列各式从左到右的变形:①(a+b)(a-b)=a 2-b2②x 2+2x-3=x(x+2)-3 ③x+2=x1(x 2+2x) ④a 2-2ab+b 2=(a-b)2是因式分解的有 ( ) (A)1个 (B)2个 (C)3个 (D)4个 三、计算题1.把下列各式分解因式(1)9m 2n-3m 2n 2 (2)4x 2-4xy+8xz (3)-7ab-14abx+56aby(4)6x 4-4x 3+2x 2 (5)6m 2n-15mn 2+30m 2n 2 (6)-4m 4n+16m 3n-28m 2n(7)x n+1-2x n-1(8)-2x 2n +6x n (9)a n -a n+2+a 3n(1)9×10100-10101(2)4.3×199.7+7.5×199.7-1.8×199.7四、解答题1.已知a+b=2,ab=-3求代数式2a 3b+2ab 3的值。
2.如果哥哥和弟弟的年龄分别为x 岁、y 岁,且x 2+xy=99,求出哥哥、弟弟的年龄。
3.如图1为在边长为a 的正方形的一角上挖去一个边长为b 的小正方形(a>b),把余下的部分可以剪拼成一个如图2的矩形。
由两个图形中阴影部分面积,可以得到一个分解因式的等式,这个等式是_______________________4.求证:257-512能被120整除。
5.计算:2002×20012002-2001×200220026.已知x 2+x+1=0,求代数式x 2006+x 2005+x 2004+…+x 2+x+1的值。
14.3.1提公因式法(2)一、填空题1. 在横线上填入“+”或“-”号,使等式成立。
(1) a-b=______(b-a) (2) a+b=______(b+a) (3) (a-b)2=______(b-a)2(4) (a+b)2=______(b+a)2 (5) (a-b)3=______(b-a)3 (6) (-a-b)3=______(a+b)32. 多项式6(x-2)2+3x(2-x)的公因式是______________ 3. 5(x-y)-x(y-x)=(x-y)·_____________ 4. a(b-c)+c-b=(b-c)·_____________ 5. p(a-b)+q(b-a)=(p-q)·_____________ 6. 分解因式a(a-1)-a+1=_______________ 7. x(y-1)-(____________)=(y-1)(x+1)图2图1bb8.分解因式:(a-b)2(a+b)+(a-b)(a+b)2=(__________)(a-b)(a+b) 二、选择题1.下列各组的两个多项式,没有公因式的一组是 ( )(A)ax-bx 与by-ay (B)6xy+8x 2y 与-4x-3 (C)ab-ac 与ab-bc (D)(a-b)3x 与(b-a)2y 2.将3a(x-y)-9b(y-x)分解因式,应提取的公因式是 ( ) (A)3a-9b (B)x-y (C)y-x (D)3(x-y) 3.下列由左到右的变形是因式分解的是 ( )(A)4x+4y-1=4(x+y)-1 (B)(x-1)(x+2)=x 2+x-2 (C)x 2-1=(x+1)(x-1) (D)x+y=x(1+xy ) 4.下列各式由左到右的变形,正确的是 ( )(A)-a+b=-(a+b) (B)(x-y)2=-(y-x)2 (C)(a-b)3=(b-a)3(D)(x-1)(y-1)=(1-x)(1-y)5.把多项式m(m-n)2+4(n-m)分解因式,结果正确的是 ( )(A)(n-m)(mn-m 2+4) (B)(m-n)(mn-m 2+4) (C)(n-m)(mn+m 2+4) (D)(m-n)(mn-m 2-4) 6.下列各多项式,分解因式正确的是 ( )(A) (x-y)2-(x-y)=(x-y)(x-y)2 (B) (x-y)2-(x-y)=(x-y)(x-y)=(x-y)2(C) (x-y)2-(x-y)=(x-y)(x-y-1) (D) a 2(a-b)-ab(b-a)=a(a-b)(a-b)=a(a-b)27.如果m(x-y)-2(y-x)2分解因式为(y-x)·p 则p 等于 ( )(A)m-2y+2x (B)m+2y-2x (C)2y-2x-m (D)2x-2y-m 三、分解因式1. 3xy(a-b)2+9x(b-a)2. (2x-1)y 2+(1-2x)2y3. a 2(a-1)2-a(1-a)24. ax+ay+bx+by5. 6m(m-n)2-8(n-m)36. 15b(2a-b)2+25(b-2a)37. a 3-a 2b+a 2c-abc 8. 4ax+6am-20bx-30bm四、解答题 1.当x=21,y=-31时,求代数式2x(x+2y)2-(2y+x)2(x-2y)的值。
2.化简求值(2x+1)2(3x-2)-(2x+1)(2-3x)2-x(2-3x)(1+2x),其中x=233.如图甲,在正方形ABCD 中,点E 、F 分别为边BC 、CD 的中点,AF 、DE 相交于点G , 则可得结论:①AF=DE ,②AF ⊥DE 。
(不需要证明)(1)如图乙,若点E 、F 不是正方形ABCD 的边BC 、CD 的中点,但满足CE=DF 。
则上面的结论①、②是否仍然成立?(请直接回答“成立”或“不成立”)(2)如图丙,若点E 、F 分别在正方形ABCD 的边CB 的延长线和DC 的延长线上,且CE=DF ,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,说明理由。
4.如图1,已知△ABC 中,AB=BC=1,∠ABC=90°,把一块含30°角的直角三角板DEF 的直角顶点D 放在AC 的中点上(直角三角板的短直角边为DE ,长直角边为DF ),将直角三角板DEF 绕D 点按逆时针方向旋转. (1)在图1中,DE 交AB 于M ,DF 交BC 于N .①证明DM=DN ;②在这一旋转过程中,直角三角板DEF 与△ABC 的重叠部分为四边形DMBN ,请说明四边形DMBN 的面积是否发生变化?若发生变化,请说明是如何变化的?若不发生变化,求出其面积;(2)继续旋转至如图2的位置,延长AB 交DE 于M ,延长BC 交DF 于N ,DM=DN 是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)继续旋转至如图3的位置,延长FD 交BC 于N ,延长ED 交AB 于M ,DM=DN 是否仍然成立?请写出结论,不用证明.E图2图3C图丙GGA A AB B BCD DEFEE FG图甲图乙CDF5.已知:等边△ABC 和点P ,设点P 到△ABC 三边AB 、AC 、BC 的距离分别为h 1、h 2、h 3,△ABC 的高为h .“若点P 在一边BC 上(如图一),此时h 3=0,可得结论:h 1+h 2+h 3=h ” .请直接应用上述信息解决下列问题:当点P 在△ABC 内(如图二)以及点P 在△ABC 外(如图三)这两种情况时,上述结论是否成立?若成立?请予以证明;若不成立,h 1、h 2、h 3与h 之间又有怎样的关系,请直接写出你的猜想,选择一种情况进行证明.CBAP E FH 图一CBAP EF H 图二D C BAPEFH 图三D6.在ABC △中,AB AC =,点D 是直线BC 上一点(不与B C 、重合),以AD 为一边在AD 的右侧..作ADE △,使AD AE DAE BAC =∠=∠,,连接CE .(1)如图1,当点D 在线段BC 上,如果90BAC ∠=°,则BCE ∠= 度; (2)设BAC α∠=,BCE β∠=.①如图2,当点D 在线段..BC 上移动,则αβ,之间有怎样的数量关系?请说明理由;②当点D 在直线..BC 上移动,则αβ,之间有怎样的数量关系?请在备用图中画出图形,写出你的结论, 并证明.AEEAC CD B B图1 图2 AA备用图备用图7.已知点A(1,2),B(5,5),C(5,2),问是否存在点E,使△ACE和△ACB全等,若存在,求出所有点的坐标。