七年级上册数学《解一元一次方程》 知识点整理
- 格式:doc
- 大小:33.50 KB
- 文档页数:3
第三章 一元一次方程知识点一 :一元一次方程的概念1.方程的定义:含有未知数的等式.①未知数;②等式. 2.一元一次方程的定义:只.含有一个..未知数(元),未知数的最高次数是.....1.,等号两边都是整式的方程叫一元一次方程. 一元一次方程的一般形式....:ax+b=0(a 、b 为常数,且a≠0,即末知数的系数一定不能为0). 3.方程的解:使方程等号左、右两边相等的未知数的值. 4.解方程:求方程的解的过程. 例题:1. (1)下列方程中是一元一次方程的是( )A .23x y =B .()7561x x +=-C .()21112x x +-= D .12x x-= (2)下列各式中,是一元一次方程的是( )A. 6x y -=B. 1223x x --= C. 34x - D. 21x x += 2.(1)已知2x1-m +4=0是一元一次方程,则m= ________.(2)已知方程04)2(1||=+--a xa 是一元一次方程,则=a __________(3)若2(21)30a x bx c +--=是关于x 的一元一次方程,则一定有( )A. 12a =-,0b ≠,c 为任意数 B. 12a =-,b 、c 为任意数 C. 12a =-,0,0b c ≠= D. 12a =,0,0bc =≠(4)若2(1)(1)30k x k x -+++=是关于x 的一元一次方程,求k 的值3.下列说法:①等式是方程; ②x=4是方程5x+20=0的解; ③x=-4和x=6都是方程│x-1│=5的解.其中说法 正确的是___ _.(填序号)4.(1)下列方程中,解为4的方程是( )A. 104x x =-B. 5(2)2(27)x x +=+C.62355y y -=+ D. 50.594x x =+ (2)已知4x =-是方程231x a x +=-的解,则a 的值是 5.根据条件列出方程(1)某数的2倍,再减去1等于5 (2)某数的3倍与它的12的和等于106.(1)买4本练习本和5支铅笔一共用了4.9元,已知铅笔每支0.5元,练习本每本多少元?若设练习本每本x 元,则可列方程为(2)一辆汽车从A 地到B 地后,用去了邮箱里的汽油的25%,还剩40升,邮箱里原有汽油多少升?若设邮箱里原有汽油x 升,可列方程为知识点二:等式的基本性质等式的性质1:等式两边都加(或减)同一个数(或式子),结果仍相等.即:如果a =b ,那么a ±c =b ±c等式的性质2:等式两边都乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果a =b ,那么ac =bc ;如果a =b (c ≠0),那么c a =cb 例题:1.(1)若a b =,则下列式子正确的有( )①22a b -=- ②1132a b =③3344a b -=- ④5151a b -=-. A.1个 B.2个 C.3个 D.4个(2)如果ma mb =,那么在下列变形中,不一定成立的是( )A. 11ma mb +=+B. 33ma mb -=-C. 1122ma mb -=- D. a b = (3)下列变形中,正确的是()A.若ac=bc ,那么a=bB.若cbc a =,那么a=b C.a =b ,那么a=b D.若a 2=b 2那么a=b (4)运用等式的性质进行变形,正确的是( )A.如果a b =,那么a c b c +=-;B.如果a bc c=,那么a b = C.如果a b =,那么a bc c= D.如果23a a =,那么3a = 2.(1)给出下面四个方程及其变形:①48020x x +=+=变形为;②x x x +=-=-75342变形为;③253215x x ==变形为;④422x x =-=-变形为;其中变形正确的是( ) A .①③④ B .①②④C .②③④D .①②③(2)下列各式的变形中,错误的是 ( )A. 260x +=变形为26x =-B.312x x +=-变形为322x x +=- C. 2(4)2x --=-变形为41x -= D. 1122x +-=变形为11x -+=3.用适当的数或式子填空,使所得结果仍是等式,并说明是根据等式的哪一条性质以及怎样变形的; (1)如果810x +=,那么10x =- (2)如果437x x =+,那么4x - =7 (3)如果38x -=,那么x = (3)如果123x =-,那么 =-6 4.完成下列解方程: (1)1343x -= 解:两边 ,根据 得13343x --= 于是13x -=两边 ,根据 得x =(2)5234x x -=+解:两边 ,根据 ,得 =3x+6 两边 ,根据 ,得2x=两边 ,根据 ,得x= 5.根据下列变形,填写过程及理由21100.10.2x -= 解:20101012x -=( ) 20510x -= ( )2015x = ( )34x = ( )6.利用等式的性质解下列方程并检验 (1)1262x += (2)1543x --= (3)328x -=-7.当x 为何值时,式子453x -与31x +的和等于9?8.列方程并求解:一个两位数,个位上的数字比十位上的数字大2,个位与十位上的数字之和是10,求这个两位数(提示,设个位上的数字为x )9.如果方程21x a x +=-的解是x=-4,求32a -的值10.等式2(2)10a x ax -++=是关于x 的一元一次方程,求这个方程的解知识点三:一元一次方程的解法(一般步骤、注意事项) 1.解方程的一般步骤:把含未知数的项归在方程的一边,把常数项归到方程的另一边,将方程化为最简的形式ax b =(0)a ≠,然后根据方程两边都除以a ,化为bx a=的形式。
新人教版七年级数学上册第三章《一元一次方程》应知应会知识点和题型总结一、方程定义【一元一次方程的认识】1.下列各式:①3x+2y=1②m-3=6③x/2+2/3=0.5④x 2+1=2⑤z/3-6=5z ⑥(3x-3)/3=4⑦5/x+2=1⑧x+5中,一元一次方程的个数是( )A.1 B.2 C.3 D.42.下列各式中是一元一次方程的是( )。
A.1232x y -=-B.2341x x x -=-C.1123y y -=+D.1226x x -=+ 3.下列方程①313262-=+x x ②4532x x =+③2(x+1)+3=x1 ④3(2x+5)-2(x-1)=4x+6.一元一次方程共有( )个. A.1 B.2 C.3 D.4【利用定义求参数】4.如果(m-1)x |m| +5=0是一元一次方程,那么m = .【列方程】5.根据“x 的3倍与5的和比x 的13多2”可列方程( )。
A 、3525x x +=- B 、3523x x +=+ C 、3(523x x +=-) D 、3(523x x +=+) 二、方程的解【方程解的应用】1.若x=1是方程k (x-2)=2的解,则k= .2.已知3是关于x 的方程mx+1=0的根,那么m=3.一个一元一次方程的解为2,请写出这个一元一次方程 .4.若关于x 的一元一次方程23132x k x k ---=的解是1x =-,则k 的值是()A .27B .1C .1311- D .0 5.已知方程3x 2x -9x+m=0的一个根是1,则m 的值是 。
6.方程2152x kx x -+=-的解为-1时,k 的值为( )。
A.10 B.-4 C.-6 D.-87.y=1是方程12()23m y y --=的解,求关于x 的方程(4)2(3)m x mx +=+的解。
8.已知x=-1是关于x 的方程328490x x kx -++=的一个解,求23159k k --5的值。
一元一次方程知识要点解析一、一元一次方程构成要素:1、是等式;2、含有未知数,且只能是一个;3、未知数的次数有且为“1”(一次整式),且次数不为“0”;二、一元一次方程的基本形式: ax = b三、一元方程的解:使方程中等号左右两边相等的未知数的值四、解方程的理论依据:等式的基本性质:性质(1):等式两边都加上(或减去)同一个数(或式子),结果仍相等.用式子形式表示为:如果a=b,那么a±c=b±c;性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.用式子形式表示为:如果a=b那么a×c=b×c,a÷c=b÷c(c≠0);五、解一元一次方程的基本步骤:注意:我们在解一元一次方程时,既要学会按部就班(严格按步骤) 地解方程,又要善于认真观察方程的结构特征,灵活采用解方程的一些技巧,随机应变(灵活打乱步骤)解方程,能达到事半功倍的效果。
对于一般解题步骤与解题技巧来说,前者是基础,后者是机智,只有真正掌握了一般步骤,才能熟能生巧。
解一元一次方程常用的技巧有:1)有多重括号,去括号与合并同类项可交替进行2)当括号内含有分数时,常由外向内先去括号,再去分母3)当分母中含有小数时,可用分数的基本性质化成整数4)运用整体思想,即把含有未知数的代数式看作整体进行变形六、实际问题与一元一次方程1、用一元一次方程解决实际问题的一般步骤是:1)审题,搞清已知量和待求量,分析数量关系. (审题,寻找等量关系)2)根据数量关系与解题需要设出未知数,建立方程;3)解方程;4) 检查和反思解题过程,检验答案的正确性以及是否符合题意.并作答2、用一元一次方程解决实际问题的典型类型1)数字问题:①:数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c则这个三位数表示为:abc,=++abc a b c10010(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c ≤9)②:用一个字母表示连续的自然数、奇数、偶数等规律数2)和、差、倍、分问题:关键词是“是几倍,增加几倍,增加到几倍,增加百分之几,增长率,哪个量比哪个量……”3)工程问题:工作总量=工作效率×工作时间,注意产品配套问题;4)行程问题:路程=速度×时间5)利润问题:商品利润=商品售价-商品成本价=商品利润率×商品成本价商品售价=商品成本价×(1+利润率)6)利息问题:①顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的单位时间数叫做期数,利息与本金的比叫做利率.利息的20%付利息税.②利息=本金×利率×期数,本息和=本金+利息,利息税=利息×税率(20%).7)几何问题:必须掌握几何图形的性质、周长、面积等计算公式,注意等积变形;8)优化方案问题9)浓度问题:溶液×浓度=溶质10)盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量11)年龄问题:抓住人与人的岁数是同时增长的12)增长率问题:原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量七、、思想方法(本单元常用到的数学思想方法小结)1)建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立方程的思想2)方程思想:用方程解决实际问题的思想就是方程思想.3)化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式.体现了化“未知”为“已知”的化归思想.4)数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.5)分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.一元一次方程一、本节学习指导本节我们要掌握一元一次方程的解法,需要多做一些练习题,本节有配套学习视频。
七年级上册《一元一次方程》知识点归纳第二章一元一次方程知识概念1.一元一次方程:只含有一个未知数,而且未知数的次数是1,而且含未知数项的系数不是零的整式方程是一元一次方程2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)3.一元一次方程解法的一样步骤:整理方程……去分母……去括号……移项……归并同类项……系数化为1……(查验方程的解)4.列一元一次方程解应用题:(1)读题分析法:…………多用于“和,差,倍,分问题”认真读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,而且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,取得方程(2)画图分析法:…………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的表现,认真读题,依照题意画出有关图形,使图形各部份具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是取得方程的基础11.列方程解应用题的经常使用公式:(1)行程问题:距离=速度·时刻(2)工程问题:工作量=工效·工时(3)比率问题:部份=全部·比率(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;()商品价钱问题:售价=定价·折,利润=售价-本钱,(6)周长、面积、体积问题:圆=2πR,S圆=πR2,长方形=2,S长方形=ab,正方形=4a,S正方形=a2,S环形=π,V长方体=ab,V正方体=a3,V圆柱=πR2h,V圆锥=初中数学知识点总结(初一)πR2h 本章内容是代数学的核心,也是所有代数方程的基础。
丰硕多彩的问题情境和解决问题的欢乐很容易激起学生对数学的乐趣,因此要注意引导学生从身旁的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探讨学习的进程中取得知识,提升能力,体会数学思想方式。
七年级数学一元一次方程知识点讲解①方程是含有未知数的等式。
②方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的整式方程叫做一元一次方程。
③注意判断一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;(系数中含字母时不能为零)3)经整理后方程中未知数的次数是 1.④解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
方程的解代入满足,方程成立。
⑤等式的性质:1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等)。
a=b得:a+(-)c=b+(-) c 2)等式两边同时乘以或除以同一个不为零的数,等式不变。
a=b得:a×c=b×c或a÷c=b÷c(c≠0)注意:运用性质时,一定要注意等号两边都要同时+、-、×、÷;运用性质2时,一定要注意0这个数。
⑥解一元一次方程一般步骤:去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个步骤不一定完全用上,或有些步骤还需要重复使用. 因此,解方程时,要根据方程的特点,灵活选择方法. 在解方程时还要注意以下几点:⑴去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号; 注意:去分母(等式的基本性质)与分母化整(分数的基本性质)是两个概念,不能混淆;⑵去括号:遵从先去小括号,再去中括号,最后去大括号不要漏乘括号的项;不要弄错符号(连着符号相乘);⑶移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(以=为界限),移项要变号;⑷合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式.⑸系数化1:(两边同除以未知数的系数)把方程化成ax=b(a≠0)的形式,字母及其指数不变系数化成 1 在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒(一步一步来)。
七年级数学上册第三章一元一次方程笔记重点大全单选题1、我国古代数学著作《增删算法统宗》记载“绳索量牵”问题;“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长1托;如果将绳索对半折后再去量竿,就比竿短1托.设绳索长x 托,则符合题意的方程是( )A .2x =(x -1)-1B .2x =(x +1)+1C .12x =(x +1)+1D .12x =(x -1)-1 答案:D解析:设绳索长x 托,则竿长(x −1)托,根据“用绳索去量竿,绳索比竿长1托;如果将绳索对半折后再去量竿,就比竿短1托”,即可得出关于x 的一元一次方程,此题得解.解:设绳索长x 托,则竿长(x -1)托,依题意,得:12x =(x −1)−1. 故选:D .小提示:本题考查了由实际问题抽象出一元一次方程以及数学常识,找准等量关系,正确列出一元一次方程是解题的关键.2、三个连续奇数之和为15,则它们之积为( )A .15B .21C .105D .−105答案:C解析:设这三个连续奇数为:2n-1,2n+1,2n+3,根据它们的和为15,可建立方程,解出即可得出答案.设这三个连续奇数为:2n-1,2n+1,2n+3,依题意得:2n-1+2n+1+2n+3=15,解得:n=2,则这三个奇数为:3,5,7.所以3×5×7=105.故选C小提示:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.3、下列变形正确的是()B.由5-(x+1)=0 ,得5-x=-1A.由5x=2,得x=52=1,得−x+1=5C.由3x=7x,得3=7D.由−x−15答案:D解析:根据等式的基本性质,逐项判断即可.解:∵5x=2,∴x=2,5∴选项A不符合题意;∵5﹣(x+1)=0,∴5﹣x﹣1=0,∴5﹣x=1,∴选项B不符合题意;∵在等式的左右两边要同时除以一个不为零的数,所得等式仍然成立,而3x=7x中的x是否为零不能确定,∴3=7不成立,∴选项C不符合题意;∵−x−15=1,∴−(x−1)=5,∴−x+1=5,∴选项D符合题意.故选:D.小提示:此题主要考查了等式的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子),结果仍得等式.(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.4、下列运用等式的性质对等式进行的变形中,错误的是()A.若a=b,则ac=bc B.若a(x2+1)=b (x2+1),则a=bC.若a=b,则ac =bcD.若x=y,则x-3=y-3答案:C解析:利用等式的性质对每个式子进行变形即可找出答案.解:A、a=b,等式两边都乘以c,得到ac=bc,正确;B、a(x2+1)=b (x2+1),等式两边同时除以(x2+1),得到a=b,正确;C 、a =b ,等式两边同时除以c ,c 为零时不成立,故错误;D 、x =y ,等式两边都减3,得到x -3=y -3,正确.故选:C .小提示:本题主要考查等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式.5、若代数式3x −7和6x +13互为相反数,则x 的值为( )A .23B .32C .−32D .−23 答案:D解析:根据相反数的定义,列出关于x 的一元一次方程,即可求解.∵3x −7和6x +13互为相反数,∴3x −7+6x +13=0,解得:x =−23,故选D .小提示:本题主要考查相反数的定义以及一元一次方程,掌握解一元一次方程,是解题的关键.6、若方程(m −1)x |m−2|−8=0是关于x 的一元一次方程,则m =( )A .1B .2C .3D .1或3答案:C解析:根据一元一次方程的定义解答.解:由题意得|m−2|=1,m−1≠0,解得m=3,故选:C.小提示:此题考查了一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1的方程是一元一次方程.7、下列各式中,是方程的是()A.x−2y3B.14﹣5=9C.a>3bD.x=1答案:D解析:根据方程的定义:含有未知数的等式叫方程可得答案.A、没有等号,故不是方程,故此选项错误;B、等式中没有未知数,不是方程,故此选项错误;C、是不等式,不是方程,故此选项错误;D、符合方程的定义,是方程,故此选项正确;故选D.小提示:此题主要考查了方程,关键是掌握方程定义.8、古埃及人的“纸草书”中记载了一个数学问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,若设这个数是x,则所列方程为()A.23x+17x+x=33B.23x+12x+17x=33C.23x+12x+17x+x=33D.x+23x+17x−12x=33答案:C 解析:根据题意列方程23x+12x+17x+x=33.解:由题意可得23x+12x+17x+x=33.故选C小提示:本题考查了一元一次方程的应用,找等量关系是解题的关键.填空题9、一群学生参加夏令营活动,男生戴白色帽子,女生戴红色帽子,休息时他们坐在一起,大家发现了一个有趣的现象:每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色帽子数量是红色的2倍.根据信息,这群学生共有______人.答案:7解析:设其中的男生有x人,根据每位男生看到白色与红色的安全帽一样多,可以表示出女生有(x-1)人.再根据每位女生看到白色的安全帽是红色的2倍列方程求解.设男生有x人,则女生有(x−1)人,根据题意得x=2(x−1−1)解得x=4x−1=3.4+3=7人.故答案为7.小提示:此题考查一元一次方程的应用,解题关键在于列出方程.10、当x=__________时,3x+1的值与2(3–x)的值互为相反数.答案:-7解析:利用互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.解:∵3x+1的值与2(3﹣x)的值互为相反数∴3x+1+2(3-x)=0,去括号得:3x+1+6-2x=0,移项合并得:x=-7,故答案是:-7小提示:考查了解一元一次方程,其步骤为:去分母;去括号;移项合并;将未知数系数化为1即可.11、将下列方程移项:(1)方程2x−1=3x+4移项后得_________________;(2)方程32x+1=12x−4移项后得____________.答案:2x−3x=4+132x−12x=−4−1解析:根据等式的性质进行移项变换即可.解:(1)对于方程:2x−1=3x+4,由等式性质①可得:2x−3x−1+1=3x−3x+4+1,∴原方程移项得:2x−3x=4+1;(2)对于方程:32x+1=12x−4,由等式性质①可得:32x−12x+1−1=12x−12x−4−1,∴原方程移项得:32x−12x=−4−1;所以答案是:2x−3x=4+1;32x−12x=−4−1.小提示:本题考查一元一次方程移项变化,理解等式的基本性质是解题关键.12、轮船从A地顺流开往B地所用的时间比逆流由B地开往A地少2小时,已知轮船在静水中的速度为20千米/时,水流的速度为4千米/时,若设A、B两地相距x千米,可列方程为__________________.答案:x20−4−x20+4=2解析:根据顺流的速度=静水中的速度+水速,逆流的速度=静水中的速度-水速,然后根据等量关系:逆流用的时间-顺流用的时间=2,时间=距离÷速度,即可列出分式方程.设甲乙两地相距x千米,则有x 20−4−x20+4=2所以答案是:x20−4−x20+4=2小提示:本题考查了分式方程的应用,根据题中等量关系即可列出分式方程;必须熟练掌握生活中基本公式,顺流的速度=静水中的速度+水速,逆流的速度=静水中的速度-水速,时间=距离÷速度.13、关于x的方程mx2m﹣1+(m﹣1)x-2=0如果是一元一次方程,则其解为_____.答案:x=2或x=−2或x=-3.解析:利用一元一次方程的定义判断即可.解:∵关于x的方程mx2m﹣1+(m﹣1)x﹣2=0如果是一元一次方程,(1)当2m﹣1=1,即m=1,即x﹣2=0解得:x=2,(2)当m=0时,−x−2=0,解得:x=−2(3)当2m-1=0,即m=12时,方程为12−12x−2=0解得:x=-3,故答案为x=2或x=-2或x=-3.小提示:此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.解答题14、一建筑公司在一次施工中,需要从工地运出80吨土方,现出动大、小不同的两种类型汽车,其中大型汽车比小型汽车多8辆,大型汽车每次可以运土方5吨,小型汽车每次可以运土方3吨.如果把这些土方全部运完,问需要大、小不同的两种类型汽车各多少辆?答案:大型汽车13辆,小型汽车5辆.解析:设小型汽车x辆,则大型汽车(x+8)辆,根据题意列出一元一次方程进行求解.设小型汽车x辆,则大型汽车(x+8)辆,根据题意得5(x+8)+3x=80解得,x=5大型汽车5+8=13(辆)答:大型汽车13辆,小型汽车5辆.小提示:此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系列方程求解.15、解下列方程:(1)9x=5x−2;(2)x+23−1=2−x6.答案:(1)x=-12;(2)x=43.解析:(1)方程移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.(1)解:移项得:9x-5x=-2,合并得:4x=-2,系数化为1得:x=-12;(2)解:去分母得:2(x+2)-6=2-x,去括号得:2x+4-6=2-x,移项得:2x+x=2-4+6,合并得:3x=4,.解得:x=43小提示:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,未知数系数化为1.11。
苏科版七年级数学上册第四章 一元一次方程知识点归纳一、一元一次方程的概念:只含有一个未知数(元)且未知数的指数是1(次)的方程叫做一元一次方程。
一般形式:ax+b=0(a≠0)注意:未知数在分母中时,它的次数不能看成是1次。
如x x=+31,它不是一元一次方程。
二、解一元一次方程方程的解:能使方程左右两边相等的未知数的值叫做方程的解。
解方程:求方程的解的过程叫做解方程。
等式的性质:(1)等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式;(2)等式两边都乘或除以同一个不等于0的数,所得结果仍是等式。
移项移项:方程中的某些项改变符号后,可以从方程的一边移到另一边,这样的变形叫做移项。
移项的依据:(1)移项实际上就是对方程两边进行同时加减,根据是等式的性质1;(2)系数化为1实际上就是对方程两边同时乘除,根据是等式的性质2。
移项的作用:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并。
注意:移项时要跨越“=”号,移过的项一定要变号。
解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、未知数的系数化为1。
注意:去分母时不可漏乘不含分母的项。
分数线有括号的作用,去掉分母后,若分子是多项式,要加括号。
解下列方程:(1)x x 2434-=-;(2))9(76)20(34x x x x --=--;(3)3136521--=+-+x x x ;(4)35.0102.02.01.0=+--x x用方程解决问题列一元一次方程解应用题的基本步骤:审清题意、设未知数(元)、列出方程、解方程、写出答案。
关键在于抓住问题中的有关数量的相等关系,列出方程。
解决问题的策略:利用表格和示意图帮助分析实际问题中的数量关系实际问题的常见类型:行程问题:路程=时间×速度,时间=速度路程,速度=时间路程 (单位:路程——米、千米;时间——秒、分、时;速度——米/秒、米/分、千米/小时) 工程问题:工作总量=工作时间×工作效率,工作总量=各部分工作量的和利润问题:利润=售价-进价,利润率=进价利润,售价=标价×(1-折扣) 等积变形问题:长方体的体积=长×宽×高;圆柱的体积=底面积×高;锻造前的体积=锻造后的体积利息问题:本息和=本金+利息;利息=本金×利率。
七年级数学上册《一元一次方程》知识点七年级数学上册《一元一次方程》知识点在现实学习生活中,很多人都经常追着老师们要知识点吧,知识点就是学习的重点。
相信很多人都在为知识点发愁,下面是店铺帮大家整理的七年级数学上册《一元一次方程》知识点,希望能够帮助到大家。
七年级数学上册《一元一次方程》知识点1【第一部分】知识点分布1、一元一次方程的解(重点)2、一元一次方程的应用(难点)3、求解一元一次方程及其在实际问题中的应用(考点)【第二部分】关于一元一次方程一、一元一次方程(1)含有未知数的等式是方程。
(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。
(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。
(5)求出使方程左右两边的值相等的未知数的值,叫做方程的解。
(6)求方程的解的过程,叫做解方程。
二、等式的性质(1)用等号“=”表示相等关系的式子叫做等式。
(2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a±c=b±c.(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。
如果a=b,那么ac=bc;如果a=b且c≠0,那么(4)运用等式的性质时要注意三点:①等式两边都要参加运算,并且是作同一种运算;②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;③等式两边不能都除以0,即0不能作除数或分母。
三、一元一次方程的解1、解一元一次方程——合并同类项与移项(1)合并同类项的依据:乘法分配律。
合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近x=a (a 常数)的形式。
(2)把等式一边的某项变号后移到另一边,叫做移项。
(3)移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a(a是常数)的形式。
七年级上册数学一元一次方程知识点(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如学习资料、英语资料、学生作文、教学资源、求职资料、创业资料、工作范文、条据文书、合同协议、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of practical sample essays, such as learning materials, English materials, student essays, teaching resources, job search materials, entrepreneurial materials, work examples, documents, contracts, agreements, other essays, etc. Please pay attention to the different formats and writing methods of the model essay!七年级上册数学一元一次方程知识点一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。
一、概述一元一次方程是初中数学中的重要内容之一,对于七年级学生来说,掌握一元一次方程的解法是非常重要的。
本文将从理论知识、解题方法以及实例演练等方面对七年级上册数学一元一次方程的解法进行详细介绍,希望能够帮助广大学生更好地理解和掌握这一知识点。
二、理论知识1. 一元一次方程的定义一元一次方程是指只含有一个未知数,并且未知数的最高次数为1的方程。
一元一次方程的一般形式可以表示为ax+b=0,其中a和b是已知数,x是未知数。
2. 一元一次方程的解法解一元一次方程的基本原理是利用等式的性质,通过一系列的运算将方程化简成求解未知数的形式。
常用的解方程方法包括加减消元法、配方法、分式法等。
三、解题方法1. 加减消元法加减消元法是解一元一次方程最常用的方法之一。
其基本思想是通过对方程两边同时进行加减等操作,最终将未知数的系数化简为1,从而求得未知数的值。
2. 配方法配方法是一种比较灵活的解题方法,其核心思想是通过在方程两边进行加减乘除等操作,使得方程的形式更加简洁,便于求解未知数。
3. 分式法当一元一次方程中含有分式形式时,分式法是一种有效的解题方法。
通过对方程进行化简,将方程转化为一般形式,然后采用常规的解方程方法求解未知数。
四、实例演练1. 例题1求解方程2x+3=11。
解:我们可以采用加减消元法,首先将等式两边减去3,得到2x=8,然后再除以2,得到x=4。
因此方程的解为x=4。
2. 例题2求解方程4(x-2)=20。
解:这道题可以采用配方法,首先将4乘以括号内的每一项,得到4x-8=20,然后加上8,得到4x=28,最后再除以4,得到x=7。
因此方程的解为x=7。
五、总结一元一次方程是初中数学中的重要内容,掌握一元一次方程的解法对于学生来说是非常必要的。
本文从理论知识、解题方法以及实例演练等方面对七年级上册数学一元一次方程的解法进行了详细介绍,希望能够帮助学生更好地掌握这一知识点。
在学习过程中,学生们还需多加练习,不断巩固解题方法,提高解题能力。
一元一次方程
一、本节学习指导
本节我们要掌握一元一次方程的解法,需要多做一些练习题,一元一次方程是方程中的基础,我们必须要学会这种解题思维,以后的学习中还会涉及方程组、高次方程等.
二、知识要点
1、一元一次方程
(1)、含有未知数的等式是方程。
(2)、只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。
(3)、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
(4)、列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。
(5)、求出使方程左右两边的值相等的未知数的值,叫做方程的解。
(6)、求方程的解的过程,叫做解方程。
2、等式的性质
(1)、用等号“=”表示相等关系的式子叫做等式。
(2)、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a±c=b±c.
(3)、等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。
如果a=b,那么ac=bc;
如果a=b且c≠0,那么:
(4)、运用等式的性质时要注意三点:
①等式两边都要参加运算,并且是作同一种运算;
②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;
③等式两边不能都除以0,即0不能作除数或分母。
2、解一元一次方程--合并同类项与移项
(1)、合并同类项的依据:乘法分配律。
合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近x=a(a是常数)的形式。
(2)、把等式一边的某项变号后移到另一边,叫做移项。
(3)。
移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a(a是常数)的形式。
3、解一元一次方程--去括号与去分母
(1)、方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。
(2)、顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。
(3)、工作总量=工作效率×工作时间。
(4)、工作量=人均效率×人数×时间。
4、例:
解:去分母(方程两边同乘各分母的最小公倍数)得,↓
5(3x+1)-10×2=(3x-2)-2(2x+3)
去括号得,↓
15x+5-20=3x-2-4x-6
移项得,↓
15x-3x+4x=-2-6-5+20
合并同类项得,↓
16x=7
系数化为1得,↓
x=7/16。
三、经验之谈:
本节知识点中我们要特别注意三点,一、带有分数的一元一次方程去分母时,等式两边每一项都要乘以公倍数。
二、带有括号的一元一次方程去括号时,一定要看清括号前的符号。
三、移向后记得变号。
本文由索罗学院整理。