色谱法测定固体催化剂表面积
- 格式:docx
- 大小:25.92 KB
- 文档页数:5
bet容量法测定固体比表面积大学物理的许多实验之一是Bet容量法测定固体比表面积,其目的是确定一种固体材料中单位体积内分子在液体相中可以比其在固态中更多地暴露出表面积。
Bet容量法按照贝特(Bet)公式来确定介观结构的毛细参数,然后根据毛细参数来测定比表面积。
贝特公式的原理是当一种物质以液态形式存在时,它的孔隙越大,其物质的比表面积就会越大。
一般来说,用Bet容量法测定固体比表面积的实验包括以下步骤:首先,将样品在气相色谱(GC)中测定它的型号;其次,将样品移植到实验室中,利用毛细仪移植,或者在实验室中用手工单元滤空测定样品的孔径大小;然后,以固体温度为30°C,以温度补偿形式测定样品的比表面积和孔径大小,将温度补偿的值与刚才测出的型号值比较,若相等则测定固体比表面积完成。
贝特公式除了用于测定固体比表面积外,还可用于测定液体和气体比表面积。
在液态和气态中,物质的分子随着温度的升高而扩散,使空隙得以增大,从而增加了比表面积。
因此,贝特公式用于测定液体和气体比表面积,实验步骤与测定固体比表面积步骤基本相同,不同的是在液态时,样品的毛细参数不会受温度的影响,而在气态时,它们会受温度影响。
贝特公式是一项重要的技术,可克服传统技术在不同温度下测量比表面积的困难。
它的计算公式简洁,可以精确地获得比表面积的数值,因此可以帮助我们对固体材料的孔径大小和比表面积有更好的理解。
贝特容量法测定固体比表面积在催化剂研究、催化剂反应机理研究、活性中间体制备及其分离纯化、金属表面复合物研究等方面都有着重要应用。
它可以帮助我们更轻松地理解固体材料的构造及其相关反应。
总之,Bet容量法对测定固体比表面积具有重要意义,它能够帮助我们更好地理解固体材料的孔径大小和比表面积。
除了测定固体比表面积外,贝特容量法还可用于测定液体和气体比表面积,同时也有着重要应用前景。
物理实验报告固体比表面的测定――B E T法 Revised as of 23 November 2020物理实验报告《固体比表面的测定――BET法》一,实验目的:1.学会用BET法测定活性碳的比表面的方法.2.了解BET多分子层吸附理论的基本假设和BET法测定固体比表面积的基本原理3. 掌握 BET法固体比表面的测定方法及掌握比表面测定仪的工作原理和相关测定软件的操作.二,实验原理气相色谱法是建立在BET多分子层吸附理论基础上的一种测定多孔物质比表面的方式,常用BET公式为:)-1 + P (C-1)/ P0 VmC上式表述恒温条件下,吸附量与吸附质相对压力之间的关系.式中V是平衡压力为P时的吸附量,P0为实验温度时的气体饱和蒸汽压,Vm是第一层盖满时的吸附量,C为常数.因此式包含Vm和C两个常数,也称BET二常数方程.它将欲求量Vm与可测量的参数C,P联系起来.上式是一个一般的直线方程,如果服从这一方程,则以P/[V(P0-P)]对P/ P0作图应得一条直线,而由直线得斜率(C-1)/VmC和直线在纵轴上得截据1/VmC就可求得Vm.则待测样品得比表面积为:S= VmNAσA/ (22400m)其中NA为阿伏加德罗常数;m为样品质量(单位:g); σm为每一个被吸附分子在吸附剂表面上所占有得面积,σm的值可以从在液态是的密堆积(每1分子有12个紧邻分子)计算得到.计算时假定在表面上被吸附的分子以六方密堆积的方式排列,对整个吸附层空间来说,其重复单位为正六面体,据此计算出常用的吸附质N2的σm=.现在在液氮温度下测定氮气的吸附量的方法是最普遍的方法,国际公认的σm的值是.本实验通过计算机控制色谱法测出待测样品所具有的表面积.三,实验试剂和仪器比表面测定仪,液氮,高纯氮,氢气.皂膜流量计,保温杯.四:实验步骤(一)准备工作1,按逆时针方向将比表面测定仪面板上氮气稳压阀和氢气稳压阀旋至放松位置(此时气路处于关闭状态).2,将氮气钢瓶上的减压阀按逆时针方向旋至放松位置(此时处于关闭状态),打开钢瓶主阀,然后按顺时针方向缓慢打开减压阀至减压表压力为,同法打开氢气钢瓶(注意钢瓶表头的正面不许站人,以免万一表盘冲出伤人).3,按顺时针方向缓慢打开比表面仪面板上氮气稳压阀和氢气稳压阀至气体压力为.4,将皂膜流量计与仪器面板上放空1口连接,将氮气阻力阀下方的1号拉杆拉出,测量氮气的流速,用氮气阻力阀调节氮气的流速为9ml/min,然后将1号拉杆推入.5,将皂膜流量计与仪器面板上放空2口连接,将氢气阻力阀下方的2号拉杆拉出,测量氢气的流速,用氢气阻力阀调节氢气的流速为36ml/min,然后将2号拉杆推入.6,打开比表面测定仪主机面板上的电源开关,调节电流调节旋钮至桥路电流为120mA,启电脑,双击桌面上Pioneer图标启动软件.观察基线.(二)测量工作1,将液氮从液氮钢瓶中到入保温杯中(液面距杯口约2cm,并严格注意安全),待样品管冷却后,用装有液氮的保温杯套上样品管,并将保温杯固定好.观察基线走势,当出现吸附峰,然后记录曲线返回基线后,击调零按钮和测量按钮,然后将保温杯从样品管上取下,观察脱附曲线.当桌面弹出报告时,选择与之比较的标准参数,然后记录(打印)结果(若不能自动弹出报告,则击手切按钮,在然后在谱图上选取积分区间,得到报告结果).重复该步骤平行测量三次,取平均值为样品的比表面积. 您正浏览的文章由范文大全网整理,版权归原作者、原出处所有。
实验十六流动吸附色谱法测定催化剂的比表面积实验十六流动吸附色谱法测定催化剂的比表面积一( 实验目的1(明确固体催化剂比表面积测试的意义。
2(熟悉装置,了解吸附原理,掌握测试方法。
3(掌握流动吸附色谱法计算面积的方法——B?E?T计算法。
二(实验原理测定表面积是根据气体吸附理论来进行的,吸附量的测定方法有静态的BET法(重量法、容量法)和流动的气相色谱法,色谱法的特点是不需要真空装置,方法简单、迅速、安全。
该法所用的流动气体是一种吸附质与一种惰性气体的混合物,通常采用氮气作为吸附质,氦气作载气。
由于条件限制,本实验采用氮气作吸附质,氢气作载气,氮气、氢气以一定比例混合,达到一定的相对压力,然后流经样品,当样品放入盛有液氮的保温瓶里冷却时,样品对混合气中的氮气发生物理吸附,而不吸附氢气,吸附气体量与试样表面积成正比,当吸附达到平衡时,除去液氮,温度升高。
氮气又从样品声脱附而出,混合气体的浓度变化用热导池检测器记录下来,由脱附峰与已知的一定氮气量出的标准峰面积比(直接标定),即可计算出此氮气分压下的吸附量。
按照B?E?T式计算单分子层饱和吸附量,从而求出催化剂表面积。
三( 实验装置实验装置如图16-1所示:图16-1 流动吸附色谱法测定催化剂比表面积流程示意图1—氮气、氢气钢瓶;2—减压阀;3—净化器;4—稳流阀;5—转子流量计;6—混合器;7—1号冷阱;8—热导池;9—恒温箱;10—标准六通阀;11—2号冷阱;12—皂沫流量计;13—平衡电桥;14—XWC—100型电子电位差计;四( 操作步骤1(样品称量样品经110?干燥后,装入样品管,精确称取0.0300~0.0800克(根据样品表面积大小而异),然后把它装到测定仪的样品管接口上(为防止药品进入仪器,管口用药棉堵上)。
2(测试液氮的饱和蒸汽压Ps。
由于每次实验时温度和大气压都是不同的,加上液氮在存放和使用过程中不断地挥发和空气的冷凝,温度有所变化,导致液氮饱和蒸汽压Ps的改变,因此,每次实验都必须测定当时的液氮饱和蒸汽压,本实验用氧蒸汽温度计测定液氮的实际温度,然后再利用蒸汽压和温度的关系曲线,查得液氮的饱和蒸汽压Ps。
实验十四 固体比表面的测定——BET 色谱法一、实验目的与要求:1、了解BET 公式的基本假定、适用范围以及如何应用BET 公式求算多孔固体的比表面积。
2、掌握ST -03型比表面及孔径分布测定仪的测定原理、使用方法及流动体系的操作技术。
3、用连续流动色谱法测定多孔物质的平衡吸附量。
二、预习要求:1、 了解BET 色谱法测定固体比表面记的原理。
2、 了解ST-03型比表面测定仪的仪器构造及测量原理。
三、实验原理:一克多孔固体所具有的总表面积(包括外表面积和内表面积)定义为比表面,以m 2/g 表示。
在气固多相催化反应机理的研究中,大量的事实证明,气固多相催化反应是在固体催化剂表面上进行的。
某些催化剂的活性与其比表面有一定的对应关系。
因此测定固体的比表面,对多相反应机理的研究有着重要意义。
测定多孔固体比表面的方法很多,而BET 气相吸附法则是比较有效、准确的方法。
BET 吸附理论的基本假设是:在物理吸附中,吸附质与吸附剂之间的作用力是范德华力,而吸附分子之间的作用力也是范德华力。
所以当气相中的吸附质分子被吸附在多孔固体表面上之后,它们还可能从气相中吸附同类分子。
因此吸附是多层的,但同一层吸附分子之间无相互作用,吸附平衡是吸附和解吸附的动态平衡;第二层及其以后各层分子的吸附热等于气体的液化热,根据这个假设,推导得到BET 方程式如下:P P V P P V C C V C P P Sd S m m S N N N 222111()-=+-⋅14 (1)式中:P N 2—混合气中氮的分压P S —吸附平衡温度下吸附质的饱和蒸汽压V m —铺满一单分子层的饱和吸附量(标准态) C —与第一层吸附热及凝聚热有关的常数V d —不同分压下所对应的固体样品吸附量(标准状态下) 选择相对压力P P S N 2在0.05~0.35范围内。
实验得到与各相对P P S N 2相应的吸附量V d 后,根据BET 公式,将P P V P P Sd S N N 221()-对P P S N 2作图,得一条直线,其斜率为b C V C m =-1,截距a V C m =1由斜率和截距可以求得单分子层饱和吸附量V mV a b m =+114 (2)根据每一个被吸附分子在吸附表面上所占有的面积,即可计算出每克固体样品所具有的表面积。
催化科学实验实验一孔性物质吸附等温线的测定一.实验目的1.掌握真空吸附重量法测定吸附等温线的实验技术。
2.了解真空体系的获得,以及测量体系真空度的方法。
二.实验原理气体或蒸汽分子同具有洁净表面的孔性物质接触,有部分气体或蒸汽分子会附着或结合在孔性物质的表面,使得气固二相界面上气体分子的浓度富集,对定量气体而言,在定容条件下可观察到气体压力的降低,而在定压条件下,便有体积的缩小,这种现象通常称为吸附。
被吸附的气体称为吸附物或吸附质,吸附气体分子的固体称为吸附剂。
吸附质分子与吸附剂表面的相互作用力的性质不同,可把吸附作用分为两类,一类是物理作用力,即分子间范德瓦尔力引起的,称为物理吸附,它和蒸汽的凝聚很相似,不论在任何同类或不同类分子间都存在,所以吸附作用是非选择性的,而且往往是多层吸附。
另一类是吸附质被吸附后,吸附分子预期表面形成化学键,称为化学吸附,它类似于化学反应,因此只能在特定的吸附质与吸附剂之间进行,故具有选择性,且是单分子层吸附。
在指定的温度和压力下,吸附平衡时,吸附剂吸附气体(或蒸汽)的量与吸附剂的结构、化学组成以及吸附质分子的化学、物理性质都有关系,对于给定的吸附剂与吸附质体系,吸附平衡时,单位重量吸附剂对吸附质的吸附量w,则是吸附温度T、吸附质的压力P的函数:w=f (T·p)若吸附温度保持不变,则吸附量只是与吸附质的压力有关,随着p的增大,w值增加,当w不再随着p的增加而增加时,该吸附量称为饱和吸附量。
这种关系曲线称为吸附等温线。
由于孔性物质对吸附质具有吸附性能,我们可以使用不同大小的吸附质分子作为“码尺分子”来测定晶体物质的孔径大小(对无定形固体,由于其孔径大小不一,只能测其孔径分布),根据晶体物质对各种“码尺分子”是否吸附来确定其孔径范围,可从被具有最大直径的吸附质分子来判断晶体物质的孔径大小。
在测定吸附量时,首先要对吸附剂表面进行处理,也就是要应用真空技术不断地抽空,同时加热样品以获得洁净的表面。
1、催化剂定义催化剂是一种能够改变化学反应速度而不能改变反应的热力学平衡位置,且自身不被明显消耗的物质。
2、催化剂活性、表示方法(1)活性定义:一般,指定条件下(压力、温度)一定量催化剂上的反应速率(来衡量)。
(2)表示方法:对于反应, ,速率3、催化剂选择性、表示方法(1)定义:当反应可以按照热力学上几个可能的方向进行时,催化剂可以选择性地加速其中的某一反应。
4、载体具有哪些功能和作用?8①分散作用,增大表面积,分散活性组分;②稳定化作用,防止活性组分熔化或者再结晶;③支撑作用,使催化剂具备一定机械强度,不易破损;④传热和稀释作用,能及时移走热量,提高热稳定性;⑤助催化作用,某些载体能对活性组分发生诱导作用,协助活性组分发生催化作用。
5、催化剂选择考虑因素:选择性>寿命>活性>价格工业催化剂:6、催化剂一般组成1)活性组份或称主催化剂2)载体或基质3)助催化剂7.催化剂分类按物相均一性:均相催化、多相催化、酶催化按作用机理:氧化还原催化,酸碱催化(离子型机理,生成正碳离子或负碳离子)配位催化:催化剂与反应物分子发生配位作用而使反应物活化。
按反应类型分类:加氢、脱氢、部分氧化、完全氧化、水煤气、合成气、酸催化、氯氧化、羰基化、聚合8、多相催化反应的过程步骤可分为哪几步?实质上可分为几步?(1)外扩散—扩散—化学吸附—表面反应—脱附—扩散—外扩散(2)物理过程—化学过程—物理过程9、吸附是如何定义的?物理吸附与化学吸附的本质不同是什么?吸附:气体与固体表面接触时,固体表面上气体的浓度高于气相主体浓度的现象。
固体表面吸附:物理吸附:作用力:van der Waals力静电力:具有永久偶极矩的分子间的静电吸引力诱导力:容易极化的分子被极性分子诱导产生的诱导偶极子和永久偶极子之间的作用力色散力:原子电子密度的瞬时诱导邻近原子产生偶极而致的两个瞬时偶极子之间的相互作用力化学吸附:作用力:价键力,形成化学键本质:二者不同在于其作用力不同,前者为德华力,后者为化学键力,因此吸附形成的吸附物种也不同,而且吸附过程也不同等诸多不同。
实验16甲烷部分氧化制合成气Ni/SiO2催化剂的制备、表征和性能评价(一) 催化剂制备一、实验目的1.了解催化剂制备的常用方法。
2.掌握浸渍法制备负载型催化剂的基本原理和方法并采用干式浸渍法制备Ni/SiO2催化剂。
二、 实验原理催化剂的性能(活性、选择性和稳定性)不仅取决于催化剂的组分和含量,而且与催化剂制备的方法和工艺条件密切相关。
催化剂制备的常用方法有:沉淀法(包括共沉淀)、溶胶-凝胶法、浸渍法、离子交换法、机械混合法、熔融法和特殊制备方法等。
浸渍法是一种常用的制备负载型金属或金属氧化物催化剂的方法。
该方法所制备的催化剂的催化性能不仅与负载的金属或氧化物的种类、含量有关,而且多数情况下还与金属在载体上的分散度及载体的性质有关,此外还受制备方法、溶液的浓度、pH值和后处理等因素影响。
浸渍方法可分为浸入式浸渍和干式浸渍两种。
前一种方法是将载体浸入金属盐(硝酸盐、醋酸盐、氯化物、乳酸盐等)的浓溶液,排掉多余液体后,催化剂在热空气中处理以蒸发溶液并分解金属盐;后一种方法是让载体吸收相当于其孔体积的金属盐溶液,再经烘干、分解。
三、实验仪器和试剂1.仪器容量瓶(100 mL),坩锅(30 mL),烘箱,马福炉。
2.试剂Ni(NO3)2·6H2O (A.R.),硅胶(40 - 60目)。
四、实验步骤1.Ni/SiO2催化剂制备(以10 % Ni/SiO2催化剂为例):用天平称取43.62 g Ni(NO3)2·6H2O(A.R.)于小烧杯中,加适量二次去离子水溶解,再定容于100 mL容量瓶中,配成1.500 mol/LNi(NO3)2 ( 0.08805 g Ni/mL)水溶液。
2.取1.500 mol/L Ni(NO3)2水溶液6.31 mL于小烧杯中,加水稀释至总体积为8.0 mL。
称取5.0 g经烘干处理过的青岛硅胶(40 ~ 60目),快速将硅胶倒入装有稀释后Ni(NO3)2水溶液的烧杯中并放置10 min。
催化重点知识点一、概述催化剂定义描述:在反应体系中,若存在某一种类物质,可使反应速率明显变化(增加或减少),而本身的化学性质和数量在反应前后基本保持不变,这种物质称为催化剂.催化剂可以是正催化剂,也可以是负催化剂.催化剂的组成:主体,载体,其他。
主体分为主催化剂、共催化剂、助催化剂。
助催化剂分为结构助催化剂、电子助催化剂、晶格缺陷助催化剂、扩散助催化剂.主催化剂:起催化作用的根本性物质。
没有它不存在催化作用。
共催化剂:催化剂中含有两种单独存在时都具有催化活性的物质,但各自的催化活性大小不同,活性大的为主催化剂,活性小的为共催化剂。
两者组合可提高催化活性。
助催化剂:是催化剂中提高主催化剂的活性、选择性、改善催化剂的耐热性、抗毒性、机械强度、寿命等性能的组分。
催化反应:有催化剂参与的反应.催化反应的分类:通常根据体系中催化剂和反应物的“相”分类;也可根据反应中反应分子间电子传递情况分类。
催化反应分为:均相催化反应,多相催化反应,酸碱反应,氧化还原反应。
均相催化反应:催化剂和反应物形成均一的相,可以是气相、液相。
多相催化反应:催化剂和反应物处于不同相,催化剂通常均为固体.可分为气固、液固.酸碱反应:在反应中发生电子对转移的称为酸-碱反应。
氧化还原反应:在反应中发生一个电子转移的称为氧化-还原反应。
催化特征:1催化是一种知识,是一种关于加快化学反应发生的“捷径”的知识。
2催化不能改变化学反应热力学平衡, 但促使热力学可自发发生的反应尽快发生,尽快达到化学平衡。
3催化是选择性的,往往要在一系列平行反应中特别地让其中一种反应尽快发生,尽速达到平衡.如果可能,它还要同时抑制其它反应的进行。
四、如果热力学允许,催化对可逆反应的两个方向都是有效的.催化的本质:在催化剂作用下,以较低活化能实现的自发化学反应被称为催化反应。
催化剂是一种中介物质,它提供了改变活化能的路径从而加快了反应速率(或降低了反应温度),但其自身最终并没有被消耗。
BET要求:(1)阐述BET 方程测定固体催化剂比表面积的原理;(2)BET 方程的压力适用范围(即相对压力p/p 0有何要求?);(3)阐述BET 流动色谱法测定催化剂比表面积的原理;(4)详细阐述BET 流动色谱法测定比表面积的具体实验步骤;物理吸附的多分子理论是由Brunauar 、Emmett 和Teller 三人在1938年提出的。
其基本假设是:①固体表面是均匀的,自由表面对所有分子的吸附机会相等,分子的吸附、脱附不受其他分子存在的影响;②固体表面与气体分子的作用力为范德华引力,因此在第一吸附层之上还可以进行第二层、第三层等多层吸附。
当吸附达到平衡时,每一层的形成速度与破坏速度相等。
经过数学推导,其基本等温式为:0)1(1)(p p C V C C V p p V p m m -+=- 其中,P ——吸附平衡时的压力,(Pa )P 0——吸附气体在该温度下的饱和蒸气压,(Pa )V m ——表面上上形成单分子层需要的气体体积,(mL )V ——平衡压力为P 时的吸附量,(mL )C ——与吸附有关的常数。
利用BET 方程测定固体比表面积的原理是建立在BET 方程之上的;根据BET 方程,利用低温下测定气体在固体上的吸附量和平衡分压值,将p /V(P 0-p)对P /P 0作图,可以得到一条直线,直线的斜率为(C-1)/CV m ,其截距为1/CV m ,因此可求出V m 和常数C ,可利用表表面积公式求得。
关于BET 方程的压力适用范围;通常为 p/p 0=0.05~0.35, 这是因为比压小于0.05时,压力大小建立不起多分子层吸附的平衡,甚至连单分子层物理吸附也还未完全形成。
在比压大于0.35时,由于毛细管凝聚变得显著起来,因而破坏了吸附平衡。
但对于含微孔的粉体如活性炭等,其吸附能力很强,如果采用通常的BET 比表面测定方法,在分压0.05~0.35的范围中其线性很差,比表面数值偏小,而且吸附常数C 出现负值,研究认为,对于活性炭应该将BET 的线性部分修正到0.05~0.1压力范围,这时C 值转为正值,且BET 比表面值会逼近Langmuir 比表面值。
化工专业实验报告实验名称:色谱法测定固体催化剂的表面积姓名:邢瑞哲实验时间:2014.06.03 同组人:赵亚鹏、窦茂斌、赵郁鑫专业:化学工程与工艺组号: 2 学号:3011207058 指导教师:实验成绩:色谱法测定固体催化剂的表面积实验五色谱法测定固体催化剂的表面积1. 实验目的①掌握用流动吸附色谱法测定催化剂比表面积的方法。
②通过实验了解BET多层吸附理论在测定比表面积方面的应用。
2. 实验原理催化剂的表面积是其重要的物性之一。
表面积的大小直接影响催化剂的效能。
因此在催化剂研究、制造和应用的过程中,测定催化剂的表面积是十分重要的。
固体催化剂表面积的测定方法较多,大体上可分为动态色谱法和静态容量法。
本实验采用动态色谱BET法。
经典的BET法,由于设备复杂、安装麻烦,应用受到一定限制。
气相色谱的发展,为催化剂表面积测定提供了一种快速方法。
BET法由于是依据著名的BET理论为基础而得名。
BET方程由经典统计理论推导出的多分子层吸附公式而来,是现在颗粒表面吸附科学的理论基础,并被广泛应用于颗粒表面吸附性能研究及相关检测仪器的数据处理中。
推导BET方程所采用的模型的基本假设是:1. 固体表面是均匀的,发生多层吸附;2. 除第一层的吸附热外其余各层的吸附热等于吸附质的液化热。
推导有热力学角度和动力学角度两种方法,均以此假设为基础。
BET理论最大优势考虑到了由样品样品吸附能力不同带来的吸附层数之间的差异,这是与以往标样对比法最大的区别;BET公式是现在行业中应用最广泛,测试结果可靠性最强的方法,几乎所由国内外的相关标准都是依据BET方程建立起来的。
在该实验中色谱法测固体比表面积是以氮为吸附质、以氢气作为载气,二者按一定的比例通入样品管,当装有待测样品的样品管浸入液氮时,混合气中的氮气被样品所吸附,而载气不被吸附,H2-N2混气的比例发生变化。
这时在记录仪上即出现吸附峰。
各种气体的导热系数不尽相同,氢的导热系数比氮要大得多,具体各种气体的导热系数如下表:表2-1 各种气体的导热系数同样,在随后的每个样品解吸过程中,被吸附的N2又释放出来。
1.2比表面测试单位重量催化剂所具有的表面积称为比表面,其中具有活性的表面称活性比表面,也称有效比表面。
尽管催化剂的活性、选择性以及稳定性等主要取决于催化剂的化学结构,但其在很大程度上也受到催化剂的某些物理性质如催化剂的表面积的影响。
一般认为,催化剂表面积越犬,其上所含有的活性中心越多,催化剂的活性也越高。
因此测定、表征催化剂的比表面对考察催化剂的活性等性能具有很人的意义和实际应用价值。
催化剂的表面枳针对反应来说可以分为总比表面和活性比表面,总比表面可用物理吸附的方法测定,而活性比表面则可采用化学吸附的方法测定。
催化剂的比表面积的常见表征方法见表2。
1.2.1总表面积的测定催化剂总表面积的测定目前所采用的方法基本上均为低温物理吸附法,而其中的BET法则更是推崇为催化剂表面枳测定的标准方法。
有关BET法的具体介绍见第二章,在此不展开讨论。
1.2.2有效表面积的测定BET法测定的是催化剂的总表面枳。
但是在实际应用中,催化剂的表面中通常只是其中的一部分才具有活性,这部分称为活性表面。
活性表面的面积测定通常采用“选择化学吸附”进行测定。
如附载型金属催化剂,其上暴露的金属表面是催化活性的,以氢、一氧化碳为吸附质进行选择化学吸附,即可测定活性金属表面枳,因为氢、一氧化碳只与催化剂上的金属发生化学吸附作用,而载体对这类气体的吸附可以忽略不计。
同样,用碱性气体的选择化学吸附可测定催化剂上酸性中心所具有的表面积。
表2列出了用于测定催化剂比表面枳的常见方法。
表2催化剂比表面表征(1)金属催化剂有效表面积测定[17-19]金属表面积的测定方法很多,有X-射线谱线加宽法、X-射线小角度法、电子显微镜法、BET真空容量法及化学吸附法等。
其中以化学吸附法应用较为普遍,局限性也最小。
所谓化学吸附法即某些探针分子气体(CO、H2、02等)能够选择地、瞬时地、不可逆地化学吸附在金属表面上,而不吸附在载体上。
所吸附的气体在整个金属表面上生成一单分子层, 并且这些气体在金属表面上的化学吸附有比较确定的计量关系,通过测定这些气体在金属表面上的化学吸附屋即可计算出金属表面枳。
化工专业实验报告实验名称:色谱法测定固体催化剂的表面积实验人员:同组人:实验地点:天大化工技术实验中心606室实验时间:2015年4月17号年级;专业;组号;学号指导教师:实验成绩:天津大学化工技术实验中心印制一.实验目的1. 掌握用流动吸附色谱法测定催化剂比表面积的方法。
2. 通过实验了解BET多层吸附理论在测定比表面积方面的应用。
二.实验原理催化剂的表面积是其重要的物性之一。
表面积的大小直接影响催化剂的效能。
因此在催化剂研究、制造和应用的过程中,测定催化剂的表面积是十分重要的。
固体催化剂表面积的测定方法较多。
经典的BET法,由于设备复杂、安装麻烦,应用受到一定限制。
气相色谱的发展,为催化剂表面积测定提供了一种快速方法。
色谱法测定催化剂固体表面积,不需要复杂的真空系统,不接触水银,操作和数据处理较简单,因此在实验室和工厂中得到了广泛应用。
色谱法测固体比表面积是以氮为吸附质、以氢气或氦气作为载气,二者按一定的比例通入样品管,当装有待测样品的样品管浸入液氮时,混合气中的氮气被样品所吸附,而载气不被吸附,He-N2混气或H2-N2混气的比例发生变化。
这时在记录仪上出现吸附峰。
各种气体的导热系数不尽相同,氢和氦的导热系数比氮要大得多,具体各种气体的导热系数如下表1。
表1 气体导热系数表气体组分H2He Ne O2 N2导热系数Cal/cm·sec·c°×10539.7 33.6 10.87 5.7 5.66同样,在随后的每个样品解吸过程中,被吸附的N2又释放出来。
氮、氦气体比例的变化导致热导池与匹配电阻所构成的惠斯登电桥中A、B二端电位失去平衡,计算机通过采样板将它记录下来得到一个近似于正态分布的电位-时间曲线,称为脱附峰。
最后在混合气中注入已知体积的纯氮,得到一个校正峰。
根据校正峰和脱附峰的峰面积,即可计算在该相对压力下样品的吸附量。
改变氮气和载气的混合比,可以测出几个氮的相对压力下的吸附量,从而可据BET公式计算表面积。
1、 催化剂定义催化剂是一种能够改变化学反应速度而不能改变反应的热力学平衡位置,且自身不被明显消耗的物质。
2、 催化剂活性、表示方法(1)活性定义:一般,指定条件下(压力、温度)一定量催化剂上的反应速率 (来衡量)。
3、 催化剂选择性、表示方法(1)定义:当反应可以按照热力学上几个可能的方向进行时,催化剂可以选择性地加速其中的某一反应。
(2>选择性表示方法 目的产物占总产物的比例mon ) 分数选择性:斗=片吃耳工业选择也选择性二转化为目f 产吧豊營反昨兀唤英反网物转化的总尼 4、 载体具有哪些功能和作用?8①分散作用,增大表面积,分散活性组分; ②稳定化作用,防止活性组分熔化或者再结晶;③支撑作用,使催化剂具备一定机械强度,不易破损; ④传热和稀释作用,能及时移走热量,提高热稳定性; ⑤助催化作用,某些载体能对活性组分发生诱导作用,协助活性组分发生催化作用。
5、 催化剂选择考虑因素:选择性〉寿命〉活性〉价格综合考虑;活性r 选择性、稳定性和流动性澤工程性能" 相对重要性: 取决于反应、反应器、过程条件和经济性 关系:相互依存工业催化剂6、 催化剂一般组成1 )活性组份或称主催化剂 2)载体或基质3)助催化剂 7. 催化剂分类按物相均一性:均相催化、多相催化、酶催化按作用机理:氧化还原催化,酸碱催化(离子型机理,生成正碳离子或负碳离子)配位催化:催化剂与反应物分子发生配位作用而使反应物活化。
按反应类型分类:加氢、脱氢、部分氧化、完全氧化、水煤气、合成气、酸催化、氯氧化、羰基化、聚合 &多相催化反应的过程步骤可分为哪几步?实质上可分为几步?(1) 外扩散一扩散一化学吸附一表面反应一脱附一扩散一外扩散 (2) 物理过程一化学过程一物理过程9、吸附是如何定义的?物理吸附与化学吸附的本质不同是什么? 吸附:气体与固体表面接触时,固体表面上气体的浓度高于气相主体浓度的现象。
(2)表示方法:对于反应,■=■,速率r= v. }dn v /di催化反应速率L 如Qdl反应的比速率相互影响单位体枳的臣应速率 冷单位面积的反应速率IT =-固体表面吸附:物理吸附: 作用力:van der Waals 力静电力:具有永久偶极矩的分子间的静电吸引力诱导力:容易极化的分子被极性分子诱导产生的诱导偶极子和永久偶极子之间的作用力色散力:原子电子密度的瞬时诱导邻近原子产生偶极而致的两个瞬时偶极子之间的相互作用力 化学吸附:作用力:价键力,形成化学键本质:二者不同在于其作用力不同,前者为德华力,后者为化学键力,因此吸附形成的吸附物种也不同, 而且吸附过程也不同等诸多不同。
化工专业实验报告
实验名称:色谱法测定固体催化剂的表面积
实验人员:同组人:
实验地点:天大化工技术实验中心室
实验时间:
班级/学号:级班组号
指导教师:
实验成绩:
一、实验目的
1. 掌握用流动吸附色谱法测定催化剂比表面积的方法。
2. 通过实验了解BET多层吸附理论在测定比表面积方面的应用。
二、实验原理
催化剂的表面积是其重要的物性之一。
表面积的大小直接影响催化剂的效能。
因此在催化剂研究、制造和应用的过程中,测定催化剂的表面积是十分重要的。
固体催化剂表面积的测定方法较多。
经典的BET法,由于设备复杂、安装麻烦,应用受到一定限制。
气相色谱的发展,为催化剂表面积测定提供了一种快速方法。
色谱法测定催化剂固体表面积,不需要复杂的真空系统,不接触水银,操作和数据处理较简单,因此在实验室和工厂中的到了广泛应用。
色谱法色谱法测固体比表面积是以氮为吸附质、以氢气或氦气作为载气,二者按一定的比例通入样品管,当装有待测样品的样品管浸入液氮时,混合气中的氮气被样品所吸附,而载气不被吸附,He-N2混气或H2-N2混气的比例发生变化。
这时在记录以上出现吸附峰。
各种气体的导热系数不尽相同,氢和氦的导热系数比氮要大得多,具体各种气体的导热系数如下表
又释放出来。
氮、氦气体比例的变化同样,在随后的每个样品解吸过程中,被吸附的N
2
导致热导池与匹配电阻所构成的惠斯登电桥中A、B二端电位失去平衡,计算机通过采样板将它记录下来得到一个近似于正态分布的电位-时间曲线,称为脱附峰。
最后在混合气中注入
已知体积的纯氮,得到一个校正峰。
根据校正峰和脱附峰的峰面积,即可计算在该相对压力下样品的吸附量。
改变氮气和载气的混合比,可以测出几个氮的相对压力下的吸附量,从而可据BET公式计算表面积。
BET公式:
P/V(P0-P)=1/V m C+(C-1)/V m C*P/P0(1)
式中:P—氮气分压,Pa;
P0—吸附温度下液氮的饱和蒸气压,Pa;
体积,ml;
V m—待测样品表面形成单分子层所需要的N
2
V—待测样品所吸附气体的总体积,ml;
C—与吸附有关的常数。
其中
V=标定气体体积×待测样品峰面积/标定气体峰面积
标定气体体积需经过温度和压力的校正转换成标准状况下的体积。
以P/[V(P0-P)]对P/P
0作图,可得一条直线,其斜率为(C-1)/(V m C),截距为1/(V m C),由此可得:
V m=1/(斜率+截距) (2)若知每个被吸附分子的截面积,可求出催化剂的表面积,即
S g=(V m N A A m)/(22400W) (3)
式中S g——催化剂的比表面积,m2 /g;
N A——阿弗加德罗常数;
A m——被吸附气体分子的横截面积,其值为16.2×10-20m2 ;
W——待测样品重量,g;
BET公式的使用范围P/P0=0.05~0.35,相对压力超过此范围可能发生毛细管凝聚现象
三、实验流程
本实验采用3H-2000Ⅱ型氮吸附比表面仪用色谱法测定催化剂的比表面,见图1。
四、实验步骤
(1)打开载气减压阀调节载气流量为100ml/min左右,等待10-15min左右使其流量稳定后用皂膜流量计准确测量,并在整个实验过程中保持载气流速不变,将六通阀置于“测量位”。
(2)为使流量稳定,若载气为H2,则氢气减压阀减压表示数应在0.1MPa以上
(3)打开吸附仪电源开关,调节电流旋钮至最大,调节电压使电流为100mA,等待5-10min至调零显示稳定后,调节热导池电位粗调、细调旋钮,使热导池平衡,即调零输出信号为0。
减压阀表示数应在0.4 MPa以上)
(4)低温吸附将两个盛满液氮的液氮杯放在从左至右的两个升降台上,调零后点击[吸附],接下来转动升降开关使两个液氮杯同时上升,中间间隔5-10s(间隔时间视待测样品比表面积而定,待测样品比表面积越大,间隔时间相应要加长,其目的为防止样品管内气体瞬间冷缩
和被吸附,将空气倒吸入热导池内)待调零显示基本稳定后,可认为吸附平衡,点击[完成],调零,准备脱附。
(10)升温脱附,先调零,点击[开始],降下第一个样品位的液氮,得到第一个待测样品的脱附峰和峰面积,待调零显示归零后,同上,对第二个待测样品进行脱附。
待测样品脱附完毕后,将六通阀转至“标定位”,得到标定气体的峰和峰面积。
(注意:如果对一个样品脱附结束后,调零显示没有完全回到零点,需要人为手动调零后,再继续下一个样品的脱附或标定)。
记录各峰面积,完成一个分压点下的测定。
(11)进行下一个分压点下的测量。
若H2流量没有变化,则只用改变N2流量(每次较前一次增加约7-10ml,流量越大增加量应越大,使N2分压平均分布在0.05-0.30之间),用皂膜流量计准确测量混合气体总流量。
按步骤8-11重复操作4-5次,完成一组样品的实验测定。
五、实验数据记录与处理
1. 实验条件:
实验大气压为101325Pa
表1-比表面积测试仪器的性质(4号设备)
2. 载气及混合气流量测定数据表:(气膜流过20mL体积所需时间t)
表2-载气及混合气流量测定数据
计算示例:(以混合气4为例)
流过20mL体积所需平均时间=(7.35+7.32+7.28)/3=7.32s,
故混合气流量为20÷7.32×60=163.93 ml/min;氮气流量为163.93-116.85=47.08 ml/min。
3. 色谱吸附脱附数据记录
表3-色谱脱附数据
4. 数据处理
表4-数据处理
备注:混合气4超出BET公式处理范围,不予处理
(氮气分压P;待测样品吸附气体总体积V;吸附温度下液氮饱和蒸气压P0)
计算示例:(以混合气1为例)氮气流量为12.04 ml/min,
故氮气分压P=氮气摩尔分率×标准大气压=12.04/116.85×101325=10440.33Pa;
吸附温度下液氮的饱和蒸气压P0为793.3 mmHg,合101325×793.3/760=105764.63Pa,
故P/P0=10400.33/105764.63=0.0943;
标定气体体积的校正为:4.5322×(0.115+0.336)×273.15/(273.15+21.30)=1.896ml,
故待测样品1吸附气体总体积V1=1.896×33965/56560=1.138 ml,
待测样品2吸附气体总体积V2=1.896×67159/56560=2.251ml;
由此可计算出P/[V1(P0-P)]= 0.0959;P/[V2(P0-P)]= 0.0485。
5. 作图
由实验结果,以P/[V(P0-P)]对P/P0作图求出斜率和截距,再由式(2)和式(3)即可求出样品的比表面积。
表11 样品线性拟合数据
根据公式V m=1/(斜率+截距) 和S g=(V m N A A m)/(22400W)
得S g=(N A A m)/(22400W(斜率+截距)
=6.02*1023*16.2*10-20/0.7261/22400/(0.72716+0.02455)
=7.98m2/g相对误差为|9.1-7.98|/9.1*100%=12.3%
同理得到样品4-2的比表面积为26.04m2/g 相对误差为17.6%
六、思考题
1.单分子层和多分子层吸附的主要区别是什么?请简述其要点。
答:多分子层吸附是指被吸附了的分子发生再吸附的现象,而单分子层则只在吸附剂表面形成一单分子层吸附。
2.实验中相对压力为什么要控制在0.05~0.35之间?
答:BET公式的使用范围P/P0=0.05~0.35,相对压力超过此范围可能发生毛细管凝聚现象。
3. 定量管体积是固定的,为什么每作一个实验点都要进行标定?
答:原因:虽然定量管的体积是固定的,但是在每个实验点实验时N2的流速是变化的,因此标定气体体积是变化的,计算得到的待测样品所吸附气体的总体积也是变化的,故需每做一个实验点都要进行标定。
4. 影响本实验误差的主要因素是什么?
答:影响本实验误差的主要因素:1载气及混合气体的流量在实验过程中不稳定,使得测定的氮气的流速产生误差。
2实验过程中,温度发生波动,测定的标定气体体积产生误差。
3测定方法本身存在着系统误差。
4仪器自身存在着测量误差。
5.在催化剂制备中,哪些因素会影响其比表面积?
答:催化剂颗粒大小,催化剂孔径大小,反应温度,压力,反应器材料等。