连续介质力学-第1章-四川大学复习过程
- 格式:pptx
- 大小:1.16 MB
- 文档页数:84
<连续介质力学> QM 复习提纲(2010.12)一、基本要求1、掌握自由指标与哑指标的判别方法及表达式按指标展开;2、掌握ij 与ijk e 的定义、性质及相互关系;3、掌握二阶张量坐标转换的计算;4、掌握二阶张量特征值、特征向量与三个不变量的计算方法;5、掌握哈密顿微分算子及其基本计算;6、掌握小变形应变张量、转动张量及转动向量的计算;7、掌握正应变的计算;8、掌握正应力、剪应力及应力向量的计算;9、掌握应力张量与应变张量的对称性;10、掌握能量密度及能通量密度向量的计算;11、掌握各向同性线弹性体的广义胡克定律的两种形式;12、掌握应力张量与体积膨胀率的关系;13、掌握各向同性线弹性体的应变能密度函数;14、会对材料的各个弹性参数之间的关系进行相互推导;15、掌握从质点的运动方程推导Navier 方程的过程;16、掌握从质点的运动方程出发推导纵横波的方程的过程;17、掌握地震波速度与泊松比的关系;18、掌握非均匀平面简谐波的传播特征;19、掌握P 波、SV 波入射到自由界面上的传播特征;20、掌握利用自由界面边界条件确定反射系数和反射波位移场的方法;21、掌握Reilaygh 波和Stonely 波的传播特征;22、掌握P 波入射到两种弹性体接触面上的反射系数和透射系数的计算方法;二、复习题简答论述题1、试解释“连续介质”所必须满足的条件。
2、简述弹性动力学基本假设。
3、说明应力、应变、正应力、正应变、剪应力及剪应变的含义。
4、说明杨氏模量、泊松比、体积模量与剪切模量的物理含义。
5、简述小变形应变张量的几何解释。
6、举例说明相容性条件的物理意义。
7、什么是应力主平面?什么是主应力与应力主方向?8、极端各向异性体有哪些特征?9、正交各向异性体有哪些特征?10、横向各向同性体有哪些特征?11、试说明Stoneley 波的传播特点?12、试说明Rayleigh 波的传播特点?13、以复数值形式表示的波向量所对应的位移为'''()i t A e e ω--=k x k x u d其中的'k 及''k 满足式ωχ22⎫''''''⋅-⋅=⎪⎬⎪'''⋅=0⎭k k k k k k 试论述该平面波的传播特征。
《连续介质力学》期末复习提纲连续介质力学是研究物质连续性的基本规律和力学性质的分支学科。
它在物理学和工程学中具有广泛的应用,涉及领域包括固体力学、流体力学、声学和热力学等。
下面是一个关于连续介质力学的期末复习提纲,帮助你系统地回顾这门课程的重点内容。
一、基本概念和假设1.连续介质的定义和性质2.连续介质力学的基本假设和适用范围3.应力和应变的概念和分类4.应力张量的定义和性质二、应力分析1.应力分析的基本原理和方法2.平面应力和平面应变假设3.均匀平面应力和均匀平面应变条件4.应力分量和应变分量的关系三、线性弹性理论1.线性弹性体的定义和性质2.弹性模量的定义和计算3.各向同性弹性和各向异性弹性4.弹性体力学模型:胡克定律、泊松比和剪切模量四、变形分析1.变形分析的基本原理和方法2.应变张量和应变分量的表示和计算3.变形分析中的应变量:延伸应变、切变应变和体应变4.变形场的概念和地应力计算五、应力应变关系1.胡克定律和非线性弹性2.应力应变关系的线性性质和线性弹性材料的条件3.应力应变关系的非线性性质和非线性弹性材料的条件4.弹塑性和破裂的介绍六、应力分析方法1.平衡方程和边界条件的建立和使用2.静力平衡方程的应用:直接法和能量法3.动量守恒方程的应用:牛顿第二定律和动量矩法4.应力分析的数值计算方法:有限元法和边界元法七、流体力学基础1.基本概念和流体的性质2.流体的运动描述:欧拉法和拉格朗日法3.流体连续性方程和运动方程4.流体静力学:静水压力和流体静力学平衡方程八、流体动力学1.不可压缩流体的纳维-斯托克斯方程和边界条件2.流体的黏性和黏性阻力3.流体的层流和湍流4.流体动力学的数值模拟方法九、声学基础1.声波的基本特性和传播规律2.声波的速度和频率3.声波的传播和衰减4.声学问题的数值模拟方法十、热力学基础1.热力学基本概念和热力学系统2.热力学过程和热力学方程3.热力学状态方程和热力学循环4.热力学问题的数值模拟方法以上是关于《连续介质力学》的期末复习提纲,主要涵盖了基本概念和假设、应力分析、线性弹性理论、变形分析、应力应变关系、应力分析方法、流体力学基础、流体动力学、声学基础和热力学基础等内容。
《连续介质力学》期末复习提纲--弹性力学部分.docx〈连续介质力学〉期末复习提纲一弹性力学部分1、自由指标与哑指标判别(★)2、自由指标与哑指标的取值范围约定3、自由指标与哑指标规则4> Einstein 求和约定(★)5、Kronecker-delta 符号(★)、、, f 0, i j定乂:廿性质:(1) §ij= Eji(2)e f -e)= %(3)戈=久+爲2+爲3=3(6) S ik5kj=S ij6、Ricci符号(置换符号或排列符号)(★)1,北为1,2,3的偶排列定义:e..k = -1, ■从为1,2,3的奇排列0, 门,舛任两个相等性质:(1) e ijk = e jki = e kij = -e Jik = -e ikj = -e kji(2)弓23 =幺23] =?】2 =1(3)弓32=?2I =勺口=_1⑷e^ej=e ijk e k(5) (axb)k = egbj, a、b为向量7、%与爲的关系(★)魯i詁0 § ZQ8、坐标变换(★)向量情形:旧坐标系: ox [兀込尹丘,仔,£新坐标系:州兀姿戸心乙列变换系数: e[?e 尸(3 坐标变换关系:X ,i - 0ijXj x t = 0jXj0厂(角)T矩阵形式为:011 012 013011 0】2013X * = 021 022 023兀2或[耳,兀;,堪]=[西,兀2,兀021 022 023A.几 2 A.3__^3_.031 032 033.011 012 013 A011 012 013 兀2 — 021022 023%;或[西,吃,兀3] =[X ,%;,兀;]021 022 023_031 032033 _.031032033.张量情形入芋与A“?是两个二阶张量,角是坐标变换系数矩阵,则有気=炕0“九矩阵形式为[匍=[0]|? ]|> ],其中[A J=[A ]T (★)9、张量的基本代数运算(1)张量的相等(2)张量的加减法(3)张量的乘积(4)张量的缩并(5)张量的内积(★)(6)张量的商法则 10、几中特殊形式的张量(1)零张量(2)单位张量(3)转置张量(4)逆张量(5)正交张量(6)二阶对称张量与二阶反对称张量(★)=*(每+心)+*(州一%)对称部分反对称部分若%?为对称二阶张量,则勺辺=0(7)球张量与偏张量Ay = | Akk Sij +(4/_| A3j )球张虽偏怅虽(8)各向同性张量a. 零阶各向同性张量形式:标量b. 一阶各向同性张量形式:零向量c. 二阶各向同性张量形式:傀=呱,o 为任意标量d. 三阶各向同性张量形式:B ijk =/3e ijk . 0为任意标量e. 四阶各向同性张量形式:C 购=2第爲+“@易+爲务), 11、二阶对称张量的特征值与特征向量(★)特征值久与特征向量"所满足的方程组:(★)(片一 A )/2] + T ]2n 2 + 7j 3n 3 = 0(场-鸥)? = 0 O ?q + (乓 _ 小2 + T23n3 = ° ?7^]M| 4- 7^2^2 + (可3 —几)斤3 = °计算特征值2的方程:(★)计算特征向量"的方程:(★)(T f - A )2 -f-T 耳 2十丁 nO ((£?厂久5莎=■ 卩十7( -2A n )+T n 巧宅=1J 芯卩 t T 如+2/ -么"=P第I 、II 与III 不变量的直接计算公式:(★)2、“为常数(★)7]厂几忆?一鸥 | = 0o T 2l1 =T U =T XX +T 22 +T 33 II⑺血-7;再)胡禺2 + T 22T 33 +石/厂莖一泾一兀III = det(7? )=人[石2召3 +久2呂3石I +刁3石禺2 - ”禺3巧2 -久2厶石3 -刁3石2石1利用三个特征向量计算三个不变量的公式:(★)I =厶=入+入+入III = det?)=人人入12、张量分析简介(1) Hamilton 微分算子V (★)笛卡尔坐标系屮,V 的定义为若比为标量函数,则梯度:若“为矢量函数,则散度:若比为矢量函数,则旋度:设U 为标量函数,43为矢量函数,C 为常矢量,则有① V-(wC) = VwC ② N x(wC) = VwxC③ ▽?G4xB) = B ?(VxA) —A(VxB) ④ V-(Vw) = V 2w ⑤ (V-V)A = V 2A@Vx(Vw) = 0⑦ V-(VxA) = 0V 2a 2 a 2⑧ V X(V X A)=V(V-A)-V2A(2)Laplace微分算子与Hamilton微分算子的关系在笛卡尔坐标系屮,Laplace微分算子定义为:△ = 2 +厶+ 2_ox2 ox^ Laplace微分算子与Hamilton微分算子的关系:v 2=v-v =d 2 d d d —e x H H = —7 H r 讥' dx 2 2 dx 3 3a?九2a 2 a 2 7 H -- = A dx^ dx ; dx 3(3)三矢量的混合积及其几何意义(★)对于如下的三个矢量A = A 】弓 + A 2e 2 + A 3e 3B — + ^2^2 + B3EC = C|^| + G 匕 +4?(BxC) = A B\ c, cA 2B2上述混合积的几何意义是: 三矢量的混合积A (BxC )表示以|A |> \B \. |c|为棱的平行六面体的体积。
《连续介质力学》例题和习题第一章 矢量和张量分析第一节 矢量与张量代数一、矢量代数令112233A A A =++A e e e ,112233B B B =++B e e e ,则有112233A A A αααα=++A e e e111222333()()()A B A B A B +=+++++A B e e e112233112233112233()()A A A B B B A B A B A B •=++•++=++A B e e e e e e112233112233111112121313212122222323313132323333()() A A A B B B A B A B A B A B A B A B A B A B A B ⨯=++⨯++=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯A B e e e e e e e e e e e e e e e e e e e e e e e e又因为: 11⨯=e e 0;123⨯=e e e ;132⨯=-e e e ;213⨯=-e e e ;22⨯=e e 0;231⨯=e e e ; 312⨯=e e e ;321⨯=-e e e ;33⨯=e e 0则: 233213113212213(_)()()A B A B A B A B A B A B ⨯=+-+-A B e e e 习题:1、证明下列恒等式:1)[]2()()()()⨯•⨯⨯⨯=•⨯A B B C C A A B C2) [][]()()()()⨯•⨯=•⨯-•⨯A B C D A C D B B C D A2、请判断下列矢量是否线性无关?1232=-+A e e e 23=--B e e 12=-+C e e .其中i e 为单位正交基矢量。
3、试判断[]816549782-⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦A 是否有逆矩阵;如有,请求出其逆阵[]1-A 。
二、张量代数例1:令T 是一个张量,其使得矢量a ,b 经其变换后变为2=+Ta a b ,=-Tb a b ,假定一个矢量2=+c a b ,求Tc 。
连续介质力学作业(第一章)习题1. 向量~~~~k z j y i x a ++=。
~i ,~j ,~k 表示三维空间中标准正交基。
给定一组协变基~~12i g =,~~~2j i g +=,~~~3k j g +=。
(1)求逆变基1g ,2g ,3g 。
(2)求ij g(3)向量~a 参考逆变基~1g ,~2g ,~3g 表示时,~~i i g a a =,求i a 。
(1)[]222~~~~~~~~~3~2~1= +•= +• +×=• ×=k j k k j j i i g g g g+−=+× += ×=~~~~~~~~3~2~121211i j k k j j i g g g g~~~~~~1~3~22211j k i k j g g g g +−= × += ×=~~~~~2~1~32211k j i i g g gg =+×= ×=(2) g ij =gg ii ⋅gg jj �g ij �=�3/4−11/2−12−11/2−11�(3)a i =aa ⋅gg ii a 1=2x,a 2=x +y,a 3=y +z2. 已知笛卡尔坐标系331e e e ,,,一个新的坐标系定义为−−−= ′′′32132161312161312162310e e e e e e 向量321e e e x 321x x x ++=,给定函数2321x x )f(−=x 。
(1) 求函数f 的梯度)(f grad(2) 求向量x 参考新坐标系的表示形式i ′′=e x i x(3) 求函数f 在新的坐标系下的表达形式),,(321′′′′x x x f (4) 判断)(f grad 的客观性。
3. 二维情况下,一质点应力张量σ主值6.11=σλ,3.22=σλ。
主方向2112123e e N −=,2122321e e N +=。