非晶体和晶体结构
- 格式:ppt
- 大小:3.53 MB
- 文档页数:29
晶体结构一、晶体、准晶体和非晶体材料结构特征与差别(1)晶体结构:整个晶体是一个完整的单一结构,即结晶体内部的微粒在三维空间呈高度有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序,且具有各向异性。
(2)准晶体结构:既不同于晶体,也不同于非晶态,原子分布不具有平移对称性,但仍有一定的规则,且呈长程的取向性有序分布,可认为是一种准周期性排列。
一位准晶:原子有二维是周期分布的,一维是准晶周期分布。
一维准晶模型————菲博纳奇(fibonacci)序列。
其序列以L→L+S S →L(L,S分别代表长短两段线段)的规律增长,若以L为起始项,则会发现学列中L可以成双或成单出现,而S 只能成单出现,序列的任意项均为前两项之和,相邻的比值逐渐逼近i,当n →∞时,i=(1+√5)/2。
二维准晶,一种典型的准晶结构是三维空间的彭罗斯拼图(Penrose)。
二维空间的彭罗斯拼图由内,角为36度、144度和72度、108度的两种菱形组成,能够无缝隙无交叠地排满二维平面。
这种拼图没有平移对称性,但是具有长程的有序结构,并且具有晶体所不允许的五次旋转对称性。
三维准晶,原子在三维上的都是准周期分布包括二十面体准晶,立方准晶。
准晶体质点在空间排列为长程取向,没有长程平移周期性。
(3)非晶体结构:非晶体是内部质点在三维空间不成周期性重复排列的固体,具有近程有序,但不具有长程有序。
外形为无规则形状的固体。
非晶体具有各向同性,非晶体无固定的熔点,它的熔化过程中温度随加热不断升高。
二、原胞、基矢的概念,晶面晶向的表示,对称性和点阵基本类型(1)原胞与基矢:能完整反映晶体内部原子或离子在三维空间分布之化学-结构特征的平行六面体单元,最小的周期重复单元称作点阵的原胞。
以原胞的边长为点阵基矢构成平移矢量为基矢。
任意格矢为R=m1a1+m2a2+m3a3,定义表明,晶体在不同方向上,晶体的物理性质不同,也表明点阵是无限大的。
晶体与非晶体的区别晶体和非晶体是固态物质中两种不同的结构形式。
晶体具有高度有序的排列结构,而非晶体则没有明显的长程有序结构。
这两种结构之间存在着一系列的差异,涉及到原子排列、物理性质和应用领域等方面。
在本文中,我们将详细探讨晶体和非晶体的区别。
1. 原子排列晶体的原子排列具有高度的有序性,呈现出周期性的排列模式。
晶体中的原子、分子或离子从排列的角度上看,通常呈现出三维空间的重复性结构。
晶体的原子间距、配位数和晶格常数等参数都有明确的值。
晶体的原子排列可以分为几个基本类型,包括立方晶系、正交晶系和六角晶系等。
相比之下,非晶体的原子排列没有明显的有序性。
非晶体的原子结构呈现出无规则的、无周期性的排列方式。
非晶体中的原子或分子以无序或部分有序的方式排列。
这种无序排列导致了非晶体的结构没有明确的晶格常数,也没有确定的配位数。
2. 物理性质晶体和非晶体之间也存在很多物理性质方面的差异。
以下是其中一些具有代表性的区别:硬度:大多数晶体比非晶体更硬。
这是由于晶体的有序结构使得其原子间的结合更加紧密。
透明性:晶体通常具有较高的透明性,可以使光线较容易通过,因此具有较好的光学性质。
相比之下,非晶体通常会因为其无序结构而使光线发生散射,导致其透明性较差。
融点:晶体的融点通常较高,因为其具有较强的化学键强度。
而非晶体的融点较低,因为原子之间的无序排列导致了较弱的化学键强度。
热稳定性:晶体通常具有较好的热稳定性,具有较高的熔点和更慢的热传导速度。
相比之下,非晶体的热稳定性较差,容易在高温条件下发生结构松散或相变。
3. 应用领域由于晶体和非晶体在结构和性质上的差异,它们在不同的应用领域中具有不同的用途。
晶体在电子学和光学领域中有广泛的应用。
例如,硅晶体在电子芯片制造中被广泛使用。
晶体中的周期性结构使其具有良好的半导体特性,适用于制造晶体管和集成电路等器件。
晶体还广泛应用于光学器件,如激光、光纤和太阳能电池等。
非晶体则在玻璃制造、陶瓷和塑料制造领域得到广泛应用。
物质的结构晶体与非晶体的特性与区别晶体与非晶体是物质的两种常见结构形态,它们在结构和性质上存在显著的差异。
本文将探讨晶体和非晶体的特性与区别。
一、晶体的特性晶体是由原子、分子或离子等规则有序排列而成的固体,具有以下特性:1. 长程有序性:晶体在微观层面上呈现规则的周期性排列,能够延续到整个晶体的空间范围内。
2. 阶梯式生长:晶体从熔融液体或溶液中生长出来时,会逐渐形成规则、有序的晶格结构。
3. 温度与压力影响:晶体的形成和稳定性受温度和压力等因素的影响,不同条件下形成的晶体可能存在差异。
4. 具有晶体面与晶体轴:晶体内部存在多个平行的晶体面和晶体轴,通过这些面和轴的排列可以确定晶体的晶胞结构。
二、非晶体的特性非晶体(也称为无定形固体)是由无序排列的原子、分子或离子组成的固体,具有以下特性:1. 无长程有序性:非晶体呈现无规则的排列方式,没有明显的周期性结构。
2. 玻璃态或凝胶态:非晶体可处于固体的玻璃态或凝胶态,不具备典型的晶体特征,如晶体面和晶体轴。
3. 受制于制备条件:非晶体的形成与制备条件密切相关,如快速冷却或凝固可使物质呈非晶体状态。
4. 范围广泛:非晶体可以包含各种元素和化合物,具有丰富的结构和性质。
三、晶体与非晶体的区别晶体和非晶体具有以下主要区别:1. 结构差异:晶体具有长程有序性,而非晶体则没有明显的有序结构,呈现无规则的排列方式。
2. 物理性质差异:晶体的物理性质如折射率、热导率等与其晶体结构有关,而非晶体的物理性质受到非规则结构的影响。
3. 热稳定性差异:晶体在高温下可能熔化,而非晶体的结构较为稳定,能够在较高温度下保持其无规则的结构。
4. 机械性能差异:晶体具有明显的断裂面,其断裂模式与晶体结构有关,而非晶体呈现一种类似塑性流变的断裂行为。
综上所述,晶体和非晶体在结构和性质上存在显著的差异。
晶体具有长程有序性和典型的晶体面与轴,而非晶体则呈现无规则的排列方式。
他们在物理性质、热稳定性和机械性能等方面也有着明显的差异。
高中物理晶体非晶体知识点
基础知识:
1. 晶体是由有序排列的原子或分子构成的固体,非晶体是由无序排列的原子或分子构成的固体。
2. 晶体具有定向性,非晶体没有定向性。
3. 晶体具有明确的晶体结构,而非晶体没有明确的结构,呈现出随机分布的状态。
4. 晶体具有具体的晶格参数、晶面和晶体形态,而非晶体没有这些特征。
晶体结构:
1. 晶体结构分为离子晶体结构、共价晶体结构和金属晶体结构。
2. 离子晶体结构由正离子和负离子通过电静力相互作用形成的结构。
3. 共价晶体结构由共价键形成的结构。
4. 金属晶体结构由金属原子之间的金属键形成的结构。
晶体缺陷:
1. 晶体缺陷主要分为点缺陷、线缺陷和面缺陷。
2. 点缺陷包括空位缺陷和杂质缺陷。
3. 线缺陷包括位错和螺旋位错。
4. 面缺陷包括晶界和堆垛错。
非晶体结构:
1. 非晶体结构没有明确的结构,它的结构呈现出无规则分布的状态。
2. 非晶体结构有两种常见的排列方式,即高密度排列(例如熔
融态条件下)和低密度排列(例如固态条件下)。
3. 非晶体具有很强的非晶特性,例如固态条件下呈现出象液体的形态。
4. 非晶体具有良好的机械性能和化学性质,因此在制备材料、光电器件等领域有广泛应用。
区别晶体与非晶体最科学的方法晶体和非晶体是材料科学中的两个基本概念,它们的区别对于材料的性质和应用有着重要的影响。
那么,如何科学地区分晶体和非晶体呢?晶体和非晶体的最显著的区别在于它们的结构。
晶体是有序排列的,其原子、离子或分子按照一定的规律排列成周期性的结构,这种结构被称为晶体结构。
晶体结构可以通过X射线衍射等方法进行表征,因为晶体的结构是高度有序的,所以晶体会产生衍射图案,而这种图案的特征可以用来确定晶体的结构类型和晶胞参数等信息。
相反,非晶体的结构是无序的,其原子、离子或分子没有任何规律地排列,因此非晶体没有固定的晶体结构,也不会产生X射线衍射图案。
晶体和非晶体的物理性质也有所不同。
晶体具有各向同性的物理性质,即在不同方向上的物理性质是相同的,例如光的折射、电阻率等。
而非晶体由于其无序性质,物理性质通常是各向异性的,即在不同方向上的物理性质是不同的。
例如,非晶体的磁性通常会随着制备方法的不同而发生改变,而晶体的磁性则只与其结构有关。
晶体和非晶体的制备方法也不同。
晶体的制备通常需要一定的条件,例如高温、高压或者溶剂蒸发等,可以通过晶体生长等方法来制备。
而非晶体的制备则通常是通过快速冷却等方法来实现的,例如快速凝固、溅射等。
晶体和非晶体的应用也有所不同。
晶体的应用范围非常广泛,例如晶体管、晶体振荡器、晶体管等,这些应用都是基于晶体的周期性结构和各向同性的物理性质而实现的。
相反,非晶体的应用则通常涉及到其各向异性的物理性质,例如非晶合金、非晶硅等。
晶体和非晶体的区别主要在于其结构、物理性质、制备方法和应用等方面。
科学地区分晶体和非晶体对于材料科学的研究和应用具有重要的意义。
晶体和非晶体的主要区
晶体和非晶体是两种不同的物质状态,它们的主要区别在于它们的内部结构。
晶体是由单一物质组成的,其中有一个定义的几何形状,晶体由一种重复的、有序的模式来构成,这种重复的、有序的模式也被称为“晶格”。
在这种晶格结构中,每一个晶体单元中的原子都是分布在相同的位置上,并以相同的角度来组织,因此形成了一种有序的、高度重复的晶格结构。
非晶体是由多个物质组成的,其内部结构是无序的。
在非晶体结构中,原子的位置分布是随机的,每个原子的位置和角度都是不同的,没有特定的模式来构成,所以没有特定的几何形状。
除了内部结构外,晶体和非晶体还有很多其他方面的区别。
首先,晶体和非晶体的性质不同,晶体具有一定的弹性和坚硬性,而非晶体却更加脆弱且容易破裂;其次,晶体和非晶体的力学性质也有很大的区别,晶体表面是光滑的,而非晶体表面是粗糙的;第三,晶体和非晶体的晶体结构也是不一样的,晶体具有一定的晶体结构及晶体定律,而非晶体则没有这样的结构,没有一定的晶体定律。
晶体和非晶体是由不同的物质组成,它们的内部结构是不同的,它们还有其他很多方面的区别。
研究晶体和非晶体的主要区别有助于我们更好地理解它们的特性,运用它们的特性发挥其最大的功能,从而促进科学的发展。
晶体和非晶体是我们自然界中广泛存在的物质状态,它们各自都具有着独特的特性和功能,在社会的各个方面都有着重要的作用,从而成为当今日益发展的科学技术领域中不可或缺的要素。
理解晶体和非晶体的主要区别,对于科研、应用及持续发展有着重要意义。
- 1 -。
§3 晶体结构一、晶体与非晶体1、晶体的特征:⑴有一定的几何外形,非晶体如玻璃等又称无定形体;⑵有固定的熔点;⑶各向异性:晶体在不同方向上表现出不同的物理性质。
一块晶体的某些性质,如光学性质、力学性质、导电导热性质、机械强度等,从晶体的不同方向去测定,常不同。
⑷晶体具有平移对称性:在晶体的微观空间中,原子呈现周期性的整齐排列。
对于理想的完美晶体,这种周期性是单调的,不变的,这是晶体的普遍特征,叫做平移对称性。
⑸自范性:在适宜条件下,晶体能够自发地呈现封闭的、规则的多面体外形。
2、晶体的内部结构⑴晶格:把晶体中规则排列的微粒抽象成几何学中的点,并称为结点。
这些点的结合称为点阵,沿着一定的方向按某种规则把结点连结起来,则得到描述各种晶体内部结构的几何图像——晶体的空间格子,称为晶格。
⑵晶胞:在晶格中,能表现出其结构的一切特征的最小部分称为晶胞。
(晶体中最有代表性的重复单位)⑶晶胞基本特征:晶胞有二个要素:①是晶胞的大小、型式,②是晶胞的内容。
晶胞的大小、型式由a、b、c三个晶轴及它们间的夹角α.β.γ所确定。
晶胞的内容由组成晶胞的原子或分子及它们在晶胞中的位置所决定。
3、单晶体和多晶体⑴单晶体——由一个晶核(微小的晶体)各向均匀生成而成,其内部的粒子基本上按某种规律整齐排列。
如冰糖、单晶硅等。
⑵多晶体——由很多单晶体杂乱聚结而成,失去了各二、离子晶体及其性质1、离子晶体的特征和性质⑴由阳离子和阴离子通过静电引力结合成的晶体——离子晶体。
⑵性质:静电作用力较大,故一般熔点较高,硬度较大、难挥发,但质脆,一般易溶于水,其水溶液或熔融态能导电。
2、离子键⑴定义:阳离子和阴离子通过静电作用形成的化学键。
⑵离子键的形成条件:元素的电负性差要比较大。
⑶离子键的本质特征:是①静电作用力,②没有方向性和饱和性。
⑷影响离子键强度的因素①离子电荷数的影响。
②离子半径的影响:半径大, 导致离子间距大, 所以作用力小; 相反, 半径小, 则作用力大。
材料科学基础名词解释(全)晶体:即内部质点在三维空间呈周期性重复排列的固体。
非晶体:原子没有长程的排列,无固定熔点、各向同性等。
晶体结构:指晶体中原子或分子的排列情况,由空间点阵和结构基元构成。
空间点整:指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。
晶面指数:结晶学中用来表示一组平行晶面的指数。
晶胞:从晶体结构中取出来的反映晶体周期性和对称性的重复单元。
晶胞参数:晶胞的形状和大小可用六个参数来表示,即晶胞参数。
离子晶体晶格能:1mol离子晶体中的正负离子,由相互远离的气态结合成离子晶体时所释放的能量。
原子半径:从原子核中心到核外电子的几率分布趋向于零的位置间的距离。
配位数:一个原子或离子周围同种原子或异号离子的数目。
极化:离子紧密堆积时,带电荷的离子所产生的电厂必然要对另一个离子的电子云产生吸引或排斥作用,使之发生变形,这种征象称为极化。
同质多晶:化学组成相同的物质在不同的热力学条件下形成结构不同的晶体的现象。
类质同晶:化学组成相似或相近的物质在相同的热力学条件下形成具有相同结构晶体的现象。
铁电体:指具有自发极化且在外电场作用下具有电滞回线的晶体。
正、反尖晶石:在尖晶石结构中,如果A离子占据四面体空隙,B离子占据八面体空隙,称为正尖晶石。
如果半数的B离子占据四面体空隙,A离子和另外半数的B离子占据八面体空隙则称为反尖晶石。
反萤石结构:正负离子位置刚好与萤石结构中的相反。
压电效应:由于晶体在外力作用下变形,正负电荷中心产生相对位移使晶体总电矩发生变化。
结构缺陷:通常把晶体点阵结构中周期性势场的畸变称为结构缺陷。
空位:指正常结点没有被质点占据,成为空结点。
间隙质点:质点进入正常晶格的间隙位置。
点缺陷:缺陷尺寸处于原子大小的数量级上,三维方向上的尺寸都很小。
线缺陷:指在一维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷。
面缺陷:是指在二维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷。
简述晶体和非晶体的异同一、引言晶体和非晶体是材料科学中的两个重要概念,它们在物理性质、化学性质、制备方法等方面都有很大的差异。
本文将从晶体和非晶体的定义、结构、性质等方面进行详细的分析和比较。
二、晶体和非晶体的定义1. 晶体晶体是由一定数量原子或分子按照一定规律排列而成的固态物质,具有长程有序性。
其表现为具有明显的晶格结构,可以通过X射线衍射等方法确定其结构。
常见的晶体有金刚石、石英等。
2. 非晶体非晶体是由原子或分子无序排列而成的固态物质,缺乏长程有序性。
其表现为没有明显的晶格结构,不能通过X射线衍射确定其结构。
常见的非晶体有玻璃、塑料等。
三、晶体和非晶体的结构1. 晶体结构晶体具有长程有序性,其原子或分子按照一定规律排列形成了明显的周期性结构。
不同种类的元素或化合物形成不同类型的结构,如金刚石属于立方晶系,石英属于三斜晶系等。
晶体结构可以通过X射线衍射等方法确定。
2. 非晶体结构非晶体缺乏长程有序性,其原子或分子无序排列。
虽然没有明显的周期性结构,但是非晶体中存在类似于局部有序的区域,称为“偏序区域”。
这些偏序区域的大小和形状不规则,并且相互之间没有规律可言。
非晶体结构不能通过X射线衍射确定。
四、晶体和非晶体的物理性质1. 晶体物理性质由于晶体具有长程有序性,其物理性质表现为各向同性或各向异性。
例如,金刚石是一种各向同性材料,在所有方向上都具有相同的硬度;而云母则是一种各向异性材料,在不同方向上具有不同的物理特性。
2. 非晶体物理性质由于非晶体缺乏长程有序性,其物理特性表现为均匀或均匀随机分布。
例如玻璃是一种均匀材料,在所有方向上都具有相同的物理特性。
五、晶体和非晶体的化学性质1. 晶体化学性质由于晶体具有长程有序性,其化学性质表现为具有一定的化学反应性。
例如金刚石可以在高温和高压下转变为石墨。
2. 非晶体化学性质由于非晶体缺乏长程有序性,其化学反应性表现为均匀或均匀随机分布。
例如玻璃具有较好的耐腐蚀性能。