幂的运算经典练习题
- 格式:doc
- 大小:330.50 KB
- 文档页数:7
一、同底数幂的乘法1、下列各式中,正确的是( ) A .844m m m = B.25552m m m = C.933m m m = D.66y y 122y =2、102·107= 3、()()()345-=-•-y x y x4、若a m =2,a n =3,则a m+n 等于( ) (A)5 (B)6 (C)8 (D)95、()54a a a =•6、在等式a 3·a 2·( )=a 11中,括号里面人代数式应当是( ).(A)a 7 (B)a 8 (C)a 6 (D)a 383a a a a m =••,则m=7、-t 3·(-t)4·(-t)58、已知n 是大于1的自然数,则()c -1-n ()1+-•n c 等于 ( )A. ()12--n c B.nc 2-C.c-n2 D.n c 29、已知x m-n ·x 2n+1=x 11,且y m-1·y 4-n =y 7,则m=____,n=____. 二、幂的乘方 1、()=-42x 2、()()84aa =3、( )2=a 4b 2;4、()21--k x =5、323221⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-z xy =6、计算()734x x •的结果是 ( )A. 12xB. 14xC. x 19D.84x7、()()=-•342a a8、n n 2)(-a 的结果是 9、()[]52x --= 10、若2,x a =则3x a = 三、积的乘方1)、(-5ab)2 2)、-(3x 2y)2 3)、332)311(c ab - 4)、(0.2x 4y 3)2 5)、(-1.1x m y 3m )2 6)、(-0.25)11×411 7)、-81994×(-0.125)1995 四、同底数幂的除法 1、()()=-÷-a a 42、()45a a a =÷3、()()()333b a ab ab =÷4、=÷+22x x n5、()=÷44ab ab .6、下列4个算式: (1)()()-=-÷-24c c 2c(2) ()y -()246y y -=-÷(3)303z z z =÷ (4)44a a a m m =÷ 其中,计算错误的有 ( )A.4个B.3个C.2个D.1个 7、 ÷a 2=a 3。
(完整版)幂的运算经典习题⼀、同底数幂的乘法1、下列各式中,正确的是() A .844m m m = B.25552m m m = C.933m m m = D.66y y 122y =2、102·107= 3、()()()345-=-?-y x y x4、若a m =2,a n =3,则a m+n 等于( ) (A)5 (B)6 (C)8 (D)95、()54a a a =?6、在等式a 3·a 2·( )=a 11中,括号⾥⾯⼈代数式应当是( ).(A)a 7 (B)a 8 (C)a 6 (D)a 383a a a a m =??,则m=7、-t 3·(-t)4·(-t)58、已知n 是⼤于1的⾃然数,则()c -1-n ()1+-?n c 等于 ( )A. ()12--n c B.nc 2-C.c-n2 D.n c 29、已知x m-n ·x 2n+1=x 11,且y m-1·y 4-n =y 7,则m=____,n=____. ⼆、幂的乘⽅ 1、()=-42x 2、()()84aa =3、( )2=a 4b 2;4、()21--k x =5、323221??-z xy =6、计算()734x x ?的结果是 ( )A. 12xB. 14xC. x 19D.84x7、()()=-?342a a8、n n 2)(-a 的结果是 9、()[]52x --= 10、若2,x a =则3x a = 三、积的乘⽅1)、(-5ab)2 2)、-(3x 2y)2 3)、332)311(c ab - 4)、(0.2x 4y 3)2 5)、(-1.1x m y 3m )2 6)、(-0.25)11×411 7)、-81994×(-0.125)1995 四、同底数幂的除法 1、() ()=-÷-a a 42、()45a a a =÷3、()()()333b a ab ab =÷4、=÷+22x x n5、()=÷44ab ab .6、下列4个算式: (1)()()-=-÷-24c c 2c(2) ()y -()246y y -=-÷(3)303z z z =÷ (4)44a a a m m =÷ 其中,计算错误的有 ( )A.4个B.3个C.2个D.1个 7、 ÷a 2=a 3。
幂的运算专项练习50题(有答案)1.2. (4ab2)2×(﹣a2b)33.(1);(2)(3x3)2•(﹣x);(3) m2•7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.5.已知3m=x,3n=y,用x,y表示33m+2n.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d 的大小.7.计算:(﹣2 m2)3+m7÷m.8.计算:(2m2n﹣3)3•(﹣mn﹣2)﹣29.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x•32y的值.13.已知3×9m×27m=316,求m的值.14.若(a n b m b)3=a9b15,求2m+n的值.15.计算:(x2•x3)2÷x6.16.计算:(a2n)2÷a3n+2•a2.17.若a m=8,a n =,试求a2m﹣3n的值.18.已知9n+1﹣32n=72,求n的值.19.已知x m=3,x n=5,求x2m+n的值.20.已知3m=6,9n=2,求32m﹣4n+1的值.21.(x﹣y)5[(y﹣x)4]3(用幂的形式表示)22.若x m+2n=16,x n=2,(x≠0),求x m+n,x m﹣n的值.23.计算:(5a﹣3b4)2•(a2b)﹣2.24.已知:3m•9m•27m•81m=330,求m的值.25.已知x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,求a+b的值.26.若2x+3y﹣4=0,求9x﹣1•27y.27.计算:(3a2x4)3﹣(2a3x6)2.28.计算:.29.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2010的值.30.已知162×43×26=22m﹣2,(102)n=1012.求m+n的值.31.(﹣a)5•(﹣a3)4÷(﹣a)2.32.(a﹣2b﹣1)﹣3•(2ab2)﹣2.33.已知x a+b•x2b﹣a=x9,求(﹣3)b+(﹣3)3的值.34.a4•a4+(a2)4﹣(﹣3x4)235.已知(x5m+n y2m﹣n)3=x6y15,求n m的值.36.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.37.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n38.计算:(x﹣2y﹣3)﹣1•(x2y﹣3)2.39.已知a2m=2,b3n=3,求(a3m)2﹣(b2n)3+a2m•b3n的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n 的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n 的值.42.计算:(a2b6)n+5(﹣a n b3n)2﹣3[(﹣ab3)2]n.43..44.计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.46.已知2a•27b•37c=1998,其中a,b,c为整数,求(a﹣b﹣c)1998的值.47.﹣(﹣0.25)1998×(﹣4)1999.48.(1)(2a+b)2n+1•(2a+b)3•(2a+b)n﹣4(2)(x﹣y)2•(y﹣x)5.49.(1)(3x2y2z﹣1)﹣2•(5xy﹣2z3)2.(2)(4x2yz﹣1)2•(2xyz)﹣4÷(yz3)﹣2.50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a2b3(2a﹣1b3);(2)(a﹣2)﹣3(bc﹣1)3;(3)2(2ab2c﹣3)2÷(ab)﹣2.幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2. 原式=16a2b4×(﹣a6b3)=﹣2a8b73.解:(1)原式=(﹣5)×3=﹣15;(2)原式=9x6•(﹣x)=﹣9x7;(3)原式=7m3p2÷(﹣7mp)=﹣m2p;(4)原式=6a2+2a﹣9a﹣3=6a2﹣7a﹣3.故答案为﹣15、﹣9x7、﹣m2p、6a2﹣7a﹣3 4.解:a x+y=a x•a y=2×3=6;a2x﹣y=a2x÷a y=22÷3=5.解:原式=33m×32n,=(3m)3×(3n)2,=x3y26.解:a=(25)11=3211;b=(34)11=8111;c=(43)11=4811;d=(52)11=2511;可见,b>c>a>d7.解:(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m68.解:(2m2n﹣3)3•(﹣mn﹣2)﹣2=8m6n﹣9•m﹣2n4= 9.解:原式=(﹣4)+4×1=010.解:原式=÷(﹣)+2×1=﹣2+2=011.解:∵2x=4y+1,∴2x=22y+2,∴x=2y+2 ①又∵27y=3x﹣1,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,=3×32m×33m,=31+5m,∴31+5m=316,∴1+5m=16,解得m=314.解:∵(a n b m b)3=(a n)3(b m)3b3=a3n b3m+3,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n17.解:a2m﹣3n=(a m)2÷(a n)3,∵a m=8,a n =,∴原式=64÷=512.故答案为51218.解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8,∴当9n+1﹣32n=72时,9n×8=9×8,∴9n=9,∴n=119.解:原式=(x m)2•x n=32×5=9×5=4520.解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36×3÷4=2721.解:(x﹣y)5[(y﹣x)4]3=(x﹣y)5[(x﹣y)4]3=(x﹣y)5•(x﹣y)12=(x﹣y)1722.解:∵x m+2n=16,x n=2,∴x m+2n÷x n=x m+n=16÷2=8,x m+2n÷x3n=x m﹣n=16÷23=223.解:(5a﹣3b4)2•(a2b)﹣2=25a﹣6b8•a﹣4b﹣2=25a﹣10b6=24.解:由题意知,3m•9m•27m•81m,=3m•32m•33m•34m,=3m+2m+3m+4m,=330,∴m+2m+3m+4m=30,整理,得10m=30,解得m=325.解:∵x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,∴,解得:,则a+b=1026.解:∵2x+3y﹣4=0,∴2x+3y=4,∴9x﹣1•27y=32x﹣2•33y=32x+3y﹣2=32=927.解:(3a2x4)3﹣(2a3x6)2=27a6x12﹣4a6x12=23a6x12 28.解:原式=•a2b3=29.解:∵16m=4×22n﹣2,∴(24)m=22×22n﹣2,∴24m=22n﹣2+2,∴2n﹣2+2=4m,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,∴(n﹣m)2010=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.32.解:(a﹣2b﹣1)﹣3•(2ab2)﹣2=(a6b3)•(a﹣2b﹣4)=a4b﹣1=33.解:∵x a+b•x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,∴(﹣3)b+(﹣3)3=(﹣3)3+(﹣3)3=2×(﹣3)3=2×(﹣27)=﹣54 34.解:原式=a8+a8﹣9x8,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,∵(x5m+n y2m﹣n)3=x6y15,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=37.解:(﹣3x2n+2y n)3÷[(﹣x3y)2]n,=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2•y﹣3)﹣1•(x2•y﹣3)2,=x2y3•x4y﹣6,=x6y﹣3,=39.解:(a3m)2﹣(b2n)3+a2m•b3n,=(a2m)3﹣(b3n)2+a2m•b3n,=23﹣32+2×3,=540.解:原式=27x6n﹣4x6n=23x6n=23(x3n)2=23×7×7=112741.解:∵x2n=5,∴(3x3n)2﹣34(x2)3n=9x6n﹣34x6n=﹣25(x2n)3=﹣25×53=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n=6a2n b6n﹣3a2n b6n=3a2n b6n43.解:原式=()50x50•()50x100=x15044.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=045.解:(1)∵x a=2,x b=6,∴x a﹣b=x a÷x b=2÷6=;=(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a•33b⋅37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=448.解:(1)原式=(2a+b)(2n+1)+3+(n﹣4)=(2a+b)3n;(2)原式=﹣(x﹣y)2•(x﹣y)5=﹣(x﹣y)749.解:(1)原式=()﹣2•()2=•=;(2)原式=•÷=•y2z6=150.解:(1)a2b3(2a﹣1b3)=2a2﹣1b3+3=2ab6;(2)(a﹣2)﹣3(bc﹣1)3,=a6b3c﹣3,=;(3)2(2ab2c﹣3)2÷(ab)﹣2,=2(4a2b4c﹣6)÷(a﹣2b﹣2),=8a4b6c﹣6,。
幂运算练习题大全幂运算,是数学领域中一种常见的运算方式。
它用于表示一个数的某个指数次幂,例如2的3次幂就是2×2×2,通常表示为2^3。
幂运算在数学、物理、计算机科学等领域有着重要的应用。
在本文中,我们将提供一系列幂运算的练习题,帮助读者更好地掌握幂运算的概念和运用。
1. 简化以下幂运算:a) 2^4b) 3^2c) 5^3d) 10^02. 计算以下幂运算的结果:a) 2^5b) 4^3c) 6^2d) 8^43. 给定以下幂运算,求未知数的值:a) 2^x = 16b) 3^x = 27c) 4^x = 256d) 5^x = 6254. 简化以下幂运算的结果,使用负指数:a) 2^-3b) 3^-2c) 5^-4d) 10^-15. 简化以下幂运算的结果,使用幂与根相互抵消的关系:a) √(4^3)b) ∛(8^2)c) ∜(16^2)d) ⁵√(32^3)6. 简化以下幂运算的结果,使用幂运算的运算法则:a) (2^3) × (2^4)b) (3^2) ÷ (3^5)c) (5^6)^2d) (10^4)^07. 计算以下复合幂运算的结果:a) (2^3)^2b) (4^2)^3c) (6^4)^2d) (8^5)^08. 解决以下问题,应用幂运算的概念:a) 一台计算机每秒钟可以执行10^9次运算,那么1分钟内可以执行多少次运算?b) 一辆汽车每小时行驶80公里,那么2小时内可以行驶多远?c) 一块土地的面积为5^2平方米,如果将其分割成边长为1米的小方块,可以得到多少个小方块?9. 解决以下问题,应用幂运算的运算法则:a) 简化表达式:(2^3 × 2^4) ÷ 2^2b) 简化表达式:(3^5)^2 ÷ (3^2)c) 简化表达式:(5^3 ÷ 5^2) × 5^4d) 简化表达式:(10^6)^2 ÷ 10^3通过以上的练习题,可以帮助读者巩固幂运算的知识点和运用技巧。
同底数幂的乘法1、下列各式中,正确的是( )A .844m m m = B.25552m m m = C.933m m m = D.66y y 122y =2、102·107 =3、()()()345-=-∙-y x y x4、若a m =2,a n =3,则a m+n 等于( )(A)5 (B)6 (C)8 (D)95、()54a a a =∙6、在等式a 3·a 2·( )=a 11中,括号里面人代数式应当是( ).(A)a 7 (B)a 8 (C)a 6 (D)a 37、83a a a a m =∙∙,则m=8、-t 3·(-t)4·(-t)59、已知n 是大于1的自然数,则()c -1-n ()1+-∙n c 等于 ( )A. ()12--n cB.nc 2-C.c -n 2D.n c 210、已知x m -n ·x 2n+1=x 11,且y m -1·y 4-n =y 7,则m=____,n=____.幂的乘方1、()=-42x2、()()84a a=3、( )2=a 4b 2;4、()21--k x =5、323221⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-z xy =6、计算()734x x ∙的结果是 ( )A. 12xB. 14xC. x 19D.84x7、()()=-∙342a a8、n n 2)(-a 的结果是 ()[]52x --=9、若2,x a =则3x a =三、积的乘方1、 (-5ab)22、 -(3x 2y)23、332)311(c ab4、(0.2x 4y 3)25、(-1.1x m y 3m )26、(-0.25)11×4117、-81994×(-0.125)1995同底数幂的除法1、()()=-÷-a a 4 2、()45a a a =÷3、()()()333b a ab ab =÷4、=÷+22x x n5、()=÷44ab ab .6、下列4个算式 (1)()()-=-÷-24c c 2c (2) ()y -()246y y -=-÷ (3)303z z z =÷ (4)44a a a m m =÷ 其中,计算错误的有 ( )A.4个B.3个C.2个D.1个幂的混合运算1、a 5÷(-a 2)·a = 2、(b a 2)()3ab ∙2= 3、(-a 3)2·(-a 2)3 4、()m m x x x 232÷∙= 5、()1132)(--∙÷∙n m n m x x x x6、(-3a)3-(-a)·(-3a)27、()()()23675244432x x x x x x x +∙++ 8、下列运算中与44a a ∙结果相同的是( ) A.82a a ∙ B.()2a4 C.()44a D.()()242a a ∙4 *9、32m ×9m ×27=10、化简求值a 3·(-b 3)2+(-21ab 2)3 ,其中a =41,b =4。
同底数幂的乘法1、下列各式中,正确的是( )A .844m m m = B.25552m m m = C.933m m m = D.66y y 122y =2、102·107= 3、()()()345-=-∙-y x y x 4、若a m=2,a n=3,则a m+n等于( ) (A)5 (B)6 (C)8 (D)95、()54a a a =∙6、在等式a 3·a 2·( )=a 11中,括号里面人代数式应当是( ). (A)a7(B)a8(C)a6(D)a 383a a a a m =∙∙,则m=7、-t 3·(-t)4·(-t)58、已知n 是大于1的自然数,则()c -1-n ()1+-∙n c 等于 ( ) A. ()12--n c B.nc 2- C.c-n2D.nc29、已知x m -n ·x 2n+1=x 11,且y m -1·y4-n =y 7,则m=____,n=____.幂的乘方 1、()=-42x 2、()()84a a =3、( )2=a 4b 2; 4、()21--k x = 5、323221⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-z xy =6、计算()734x x ∙的结果是 ( )A. 12x B. 14x C. x 19D.84x7、()()=-∙342a a8、nn 2)(-a 的结果是 ()[]52x --= 若2,xa =则3xa =同底数幂的除法1、()()=-÷-a a 42、()45a aa =÷3、()()()333b a ab ab =÷ 4、=÷+22x x n5、()=÷44ab ab . 6、下列4个算式(1)()()-=-÷-24c c 2c (2)()y -()246y y -=-÷ (3)303z z z =÷(4)44a a a mm=÷其中,计算错误的有 ( )A.4个B.3个C.2个D.1个幂的混合运算1、a 5÷(-a 2)·a = 2、(b a 2)()3ab ∙2=3、(-a 3)2·(-a 2)34、()m mx x x 232÷∙=5、()1132)(--∙÷∙n m n m x x x x6、(-3a)3-(-a)·(-3a)27、()()()23675244432x x x x x x x +∙++8、下列运算中与44a a ∙结果相同的是( ) A.82a a ∙ B.()2a 4C.()44aD.()()242a a ∙4*9、32m×9m×27=10、化简求值a 3·(-b 3)2+(-21ab 2)3, 其中a =41,b =4。
幂的运算练习题(每日一页)【基础能力训练】一、同底数幂相乘1 .下列语句正确的是()A.同底数的幂相加,底数不变,指数相乘;B.同底数的幂相乘,底数合并,指数相加;C.同底数的幂相乘,指数不变,底数相加;D.同底数的幂相乘,底数不变,指数相加2. a4·a m·a n=()A.a4m B.a4(m+n)C.a m+n+4D.a m+n+4 3.(- x)·(- x)8·(- x)3=()A .(- x)11B .(- x)24C .x12D .- x124 .下列运算正确的是()A .a2·a3=a6B .a3+a3=2a6C .a3a2=a6D .a8- a4=a45 . a· a3x可以写成()A .( a3)x+1B .(a x)3+1C .a3x+1D .(a x) 2x+1 6.计算: 100×100m-1×100m+17.计算: a5·(- a)2·(- a)38.计算:(x-y)2·(x-y)3-( x-y)4·(y-x)二、幂的乘方9.填空:(1)(a8)7=________;(2)(105)m=_______;(3)(a m)3 =_______;(4)(b2m)5=_________;(5)(a4)2·( a3)3=________.10.下列结论正确的是()A.幂的乘方,指数不变,底数相乘;B.幂的乘方,底数不变,指数相加;C. a 的 m次幂的 n 次方等于 a 的 m+n次幂;D. a 的 m次幂的 n 次方等于 a 的 mn次幂11 .下列等式成立的是()A .( 102)3 =105B .(a2)2=a4C .(a m)2 =a m+2D .(x n)2=x2n12 .下列计算正确的是()A.( a2)3·(a3)2 =a6· a6 =2a6B.(- a3)4·a7=a7· a2=a9C.(- a2)3·(- a3)2=(- a6)·(- a6)=a12D.-(- a3)3·(- a2)2=-(- a9)·a4=a1313.计算:若 642× 83=2x,求 x 的值.三、积的乘方14.判断正误:(1)积的乘方,等于把其中一个因式乘方,把幂相乘()(2)(xy)n=x·y n()(3)(3xy)n=3(xy)n()(4)(ab)nm=a m b n()(5)(- abc)n=(- 1)n a n b n c n()15 .(ab3)4=()A.ab12 B .a4b7 C .a5b7 D .a4b1216 .(- a2b3 c)3=()A.a6b9c3B.-a5b6c3C.-a6b9c3D.-a2b3c317.(- a m+1b2n)3 =()A.a3m+3b6n B.-a3m+b6n C.-a3m+3b6n D.-a3m+1b8m318 .如果( a n b m b)3=a9b15,那么 m, n 的值等于()A.m=9,n=-4B.m=3,n=4C .m=4,n=3D.m=9,n=6 【综合创新训练】一、综合测试19.计算:(1)(- x m+1·y)·(- x2-m y n-1)(2)10×102× 1 000×10n- 3(3)(- a m b n c)2·(a m-1b n+1c n)2 (4)[ ()2 ] 4·(- 23)3二、创新应用20 .下列计算结果为14的是()m2 7 7 7 6 7 8 6A .m·mB .m+mC .m·m· mD . m· m·m 21.若 5m+n=56·5n-m,求 m的值.22.已知 2×8n×16n=222,求 n 的值.23.已知 x3n=2,求 x6n+x4n·x5n的值.24.若 2a=3, 4b=6,8c=12,试求 a,b,c 的数量关系.25.比较 6111,3222,2333的大小.26.比较 3555,4444,5333的大小.三、巧思妙想27 .(1)( 2)2×42 (2)[ ()2] 3×( 23)3(3)(-)12×(- 1)7×(- 8)13×(-)9(4)- 82003×()2002+()17× 417答案:【基础能力训练】1 .D2 .D3 . C4 . C5 . C6 . 1002m+17 .- a108.原式 =( x-y)5-( x-y)4·[ -( x-y)]=2 (x-y)59.( 1) a56(2)105m(3)a3m(4)b10m(5)a1710. D 11 .B 12 . D13.左边 =(82)2×83=84×83=87 =( 23)7=221而右边 =2x,所以 x=21.14.(1)× (2)× (3)× (4)× (5)∨15. D 16 .C 17 . C 18 .C【综合创新运用】19.原式 =(-)×()·x m+1·x2-m· y· y n-1=x m+1+2- m·y1+n-1 =x3y n(2)原式 =10×102×103×10n-3 =101+2+3+n-3=103+n(3)原式 =(- 1)2( a m)2·(b n)2·c2·(a m-1)2·( b n+1)2(c n)2 =a2m·b2n·c2·a2m- 2b2n+2c2n=a4m-2b4n+2c2n+2(4)原式 =()2×4·(- 1)3·23×3=-()8· 29=-=-2209 7 15.. C 解析: A 应为 m, B 应为 2m, D应为 m21 .由 5m+n=56· 5n-m=56+m-n得 m+n=6+n- m,即 2m=6,所以 m=3.22.式子 2×8n×16n可化简为: 2×23n×24n=21+7n,而右边为 222比较后发现 1+7n=22, n=3.23. x6n+x4n·x5n=x6n+x9n=(x3n)2+(x3n)3把 x3n=2 代入可得答案为 12.24.由 4=6 得 22b=6,8c=12 即 23c=12,所以 2a·22b=2×6=12 即 2a+2b=12,所以 2a+2b=23c,所以 a+2b=3c.25.3222=(32)111=9111,2333=(23)111=8111 因为9111>8111>6111,所以3222>2333>6111.26.4444>3555 >533327.(1)原式 =()2× 42 =81(2)原式 =()6× 29 =(× 2)6× 23 =23=8(3)原式 =(-)12×(-)7×(- 8)13×(-)9=-()12×813×()7×()9=-(× 8)12×8×(×)7×()2 =- 8×(4)原式 =- 82003×()2002+(-)17×417=-( 8×)2002×8+(-× 4)17=-8+(- 1)=-9【探究学习】设拉面师傅拉 n 次就可以变成一碗面条,则2n=256,由于 256=28,∴ n=8.。
幂的运算经典练习题1、正确的式子是C.mm=m。
2、102·107=109.3、(x-y)5·(x-y)4=(x-y)9.4、am+n=2+3=5.5、a4·a1=a5.6、a3·a2·a3=a8,括号里的代数式是a3.7、-t3·(-t)4·(-t)5=-t12.8、(-c)n-1·(-c)n+1=-c2n。
9、m=5,n=8.10、(-x2)4=x8.11、a4·a4=a8.12、(ab)2=a2b2.13、xn+2=xn·x2.14、(ab)4/ab4=a3b3.15、计算错误的算式是第四个,应该是a4m/am=a3m。
16、a5/(-a2)·a=-a2.17、(a2b)(ab3)=a3b4.18、(-a3)2·(-a2)3=-a12.19、x2·xm/x2m=xm-2.20、xm·(xn)3/xm-1·2xn-1=xn+1.21、(-3a)3-(-a)·(-3a)2=-24a3.22、x3·x4+x4·x2+x5·x7/x3·x2=x9+x6+x12/x5=x4+x6+x7.与a4·a4结果相同的是B.a8.14、长为2.2×10m,宽是1.5×10m,高是4×10m的长方体体积为_________。
答案:16.5×10^3 m^3.一、选择题:(每小题3分,共24分)1.可以写成()A。
B。
C。
D。
答案:B。
2.下列计算正确的是()A。
B。
C。
D。
答案:C。
3.下列计算正确的是()A。
B。
C。
D。
答案:B。
4.如果将写成下列各式,正确的个数是( ) ①;②;③;④;⑤。
A。
1;B。
2;C。
3;D。
4.答案:C。
5.计算的结果正确的是()A。
《幂的运算》提高练习题一、选择题1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、22、当m 是正整数时,下列等式成立的有()A、a n与b nB、a2n与b2nC、a2n+1 与b2n+1D、a2n﹣1 与﹣b2n﹣15、下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A、0 个B、1 个C、2 个D、3 个二、填空题(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2)m.6、计算:x2•x3=.;(﹣a2)3+(﹣a3)2=A、4 个B、3 个C、2 个D、1 个3、下列运算正确的是()A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y33 2 1 24 47、若2m=5,2n=6,则2m+2n= .三、解答题8、已知 3x(x n+5)=3x n+1+45,求 x 的值。
C、4x y•(﹣2x y)= ﹣2x yD、(x﹣y)3=x3﹣y34、a 与b 互为相反数,且都不等于 0,n 为正整数,则下列各组中一定互为相反数的是()9、若1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值.10、已知 2x+5y=3,求 4x•32y的值.11、已知 25m•2•10n=57•24,求 m、n.12、已知 a x=5,a x+y=25,求 a x+a y的值.13、若 x m+2n=16,x n=2,求 x m+n的值.15、如果 a2+a=0(a≠0),求 a2005+a2004+12 的值.16、已知 9n+1﹣32n=72,求 n 的值.18、若(a n b m b)3=a9b15,求 2m+n的值.19、计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)120、若 x=3a n,y=﹣2n﹣1,当 a=2,n=3 时,求a n x﹣ay 的值.14、比较下列一组数的大小.8131,2741,9612a2 22 3 3 321、已知:2x =4y+1,27y =3x ﹣1,求 x ﹣y 的值.22、计算:(a ﹣b )m+3•(b ﹣a )2•(a ﹣b )m •(b ﹣a )523、若(a m+1b n+2)(a 2n ﹣1b 2n )=a 5b 3,则求 m+n 的值.24、用简便方法计算:1(1)(24) ×4(2)(﹣0.25)12×412(3)0.52×25×0.1251(4)[(2) ] ×(2 )答案与评分标准一、选择题(共5 小题,每小题4 分,满分20 分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、2考点:有理数的乘方。
同底数幂的乘法
1、下列各式中,正确的是( ) A .8
44m m m = B.25
552m m m = C.9
33m m m = D.66y y 12
2y =
2、102
·107
= 3、()()(
)34
5-=-•-y x y x
4、若a m =2,a n =3,则a m+n
等于( ) (A)5 (B)6 (C)8 (D)9
5、()
5
4
a a a =•
6、在等式a 3·a 2·( )=a 11
中,括号里面人代数式应当是( ).
(A)a 7 (B)a 8 (C)a 6 (D)a 3
83a a a a m =••,则m=
7、-t 3
·(-t)4
·(-t)5
8、已知n 是大于1的自然数,则()c -1
-n ()1
+-•n c 等于 ( )
A. ()1
2--n c B.nc 2-
C.c
-n
2 D.n
c 2 9、已知
x
m -n ·x 2n+1
=x
11
,且
y
m -1
·y
4-n
=y 7
,则m=____,n=____.
幂的乘方
1、()=-4
2
x
2、()()
8
4
a a =
3、( )2=a 4b 2
; 4、()2
1
--k x =
5、3
23221⎥⎥⎦⎤
⎢⎢⎣
⎡⎪⎭⎫ ⎝⎛-z xy =
6、计算()
73
4x x •的结果是 ( )
A. 12x
B. 14x
C. x 19
D.84
x
7、()()
=-•3
4
2
a a
8、n
n
2)(-a 的结果是 ()[
]5
2x --= 若2,x
a
=则3x a =
同底数幂的除法
1、()()=-÷-a a 4
2、()
45
a a a =÷ 3、()()()3
33b a ab ab =÷
4、=÷+22
x x
n 5、()=÷44
ab ab .
6、下列4个算式
(1)()()-=-÷-2
4
c c 2
c
(2) ()y -(
)2
4
6
y
y
-=-÷
(3)303z z z =÷ (4)4
4a a a m
m
=÷ 其中,计算错误的有 ( ) 个 个 个 个
幂的混合运算
1、a 5
÷(-a 2
)·a= 2、(b a 2)()3
ab •2
=
3、(-a 3)2
·(-a 2)3
4、()m
m x x x 23
2
֥=
5、()1
132)(--•÷•n m n m x x
x x 6、(-3a)3
-(-a)·(-3a)2
7、()
()
()
2
36752
4
44
32x x x x x x x +•++
8、下列运算中与4
4a a •结果相同的是( )
A.8
2
a a • B.()2
a 4
C.()4
4a D.()()
24
2a a •4
*9、32m ×9m
×27= 10、化简求值a 3
·(-b 3
)2
+(-
21ab 2)3 ,其中a =4
1
,b =4。
混合运算整体思想
1、(a +b)2·(b+a)3
=
2、(2m -n)3·(n-2m)2
= ; 3、(p -q)4÷(q-p)3·(p-q)2
4、()a b - ()3
a b -()5
b a -
5、()[
]3
m n -p
()[]5
)(p n m n m --•
6、()m m
a b b a 25)(--()m a b 7-÷ (m 为偶数,b a ≠)
7、()()y x x y --2
+
3
)(y x -+
()x y y x -•-2)(2
负指数的意义
1、要使(x -1)0-(x +1)-2
有意义,x 的取值应满足什么条件 2、如果等式()1122=-+a a ,则a 的值为 3、已知: ()
124
2=--x x ,求x 的值.
化归思想
1、计算25m
÷5m
的结果为 2、若32,35n m ==,则2313m n +-= 3、已知a m =2,a n =3,求a 2m-3n
的值。
4、已知: 8·22m -1
·23m
=2
17
.求m 的值 5、若2x+5y —3=0,求4
x -1
·32
y
的值
6、解关于x 的方程:
33x+1·53x+1=152x+4
数的计算
1、下列计算正确的是 ( ) A .14
3341-=⨯÷
- B.()121050
=÷- C.52⨯2
210= D.81912
=⎪
⎭⎫ ⎝⎛--
2、()()2
30
2
559131-÷-+⎪⎭
⎫ ⎝⎛+⎪⎭
⎫ ⎝⎛--
3、053102)
(-⨯⨯-2101012
⨯⨯⎪⎭
⎫ ⎝⎛-
4、4-(-2)-2-32÷π)0
5、×55
= 7、 2004
×(-8)
2005
= 8、2007
2006
522125⎛⎫
⎛⎫-⨯ ⎪
⎪⎝⎭
⎝⎭
=
9、()5.1)3
2(2000
⨯1999()
1999
1-⨯
10、)
1(16997111
11-⎪⎭
⎫
⎝⎛⎪⎭⎫ ⎝⎛11
11、(7
104⨯)(
)5
10
2⨯÷= 12、()()=⨯⨯⨯2
4
10310
5________;
13、(
)()()2
2
3
312105.0102102⨯÷⨯-÷⨯-
14、长为×103 m ,宽是×102m ,高是4×102
m 的长方体体积为_________。
一、选择题:(每小题3分,共24分)
1.可以写成()A.B.C.D.
2.下列计算正确的是()
A.B.C.D.
3.下列计算正确的是()
A.B.
C.D.
4.如果将写成下列各式,正确的个数是 ( )
①;②;③;④;⑤.
A.1B.2C.3 D.4
5.计算的结果正确的是()
A.B.C..D.
6.下列运算正确的是()
A.B.C.D.
7.的结果是()A.B.C.D.
8.与的关系是()
A .相等
B .互为相反数
C .当n为奇数时它们互为相反数;当n为偶数时,它们相等.
D .当n为奇数时它们相等;当n为偶数时,它们互为相反数.
二、填空题:(每小题3分,共18分)
9.______________.
10.= .
11.用科学记数法:____________.
12.____________.
13.若5n=3,4n=2,则20n的值是__________.
14.若,则____________.
三、计算题:(每小题3分,共18分)
17.(1) ;(2) ;
(3);(4);
(5);(6).
18.计算题(每小题4分,共16分)
(1);(2);
(3);(4).
四、解答题:(每小题6分,共24分)
19.若为正整数,且,则满足条件的共有多少对
20.设n为正整数,且,求的值.
21.已知求的值.
22.一个小立方块的边长为,一个大立方体的边长为,
(1)试问一个小立方块的体积是大立方体体积的几分之几试用科学记数法表示这个结果.(2)如果用这种小立方块堆成那样大的立方体,则需要这种小立方块多少个
参考答案
一、选择题:(每小题3分,共24分)
二、填空题:(每小题3分,共18分)9.10. 11.12.13. 6 14.
三、计算题:
17.(1) (2)(3)(4)(5)(6)
18.(1)(2)(3)(4)
19.满足条件的共有4对.
20.
21.
22.;;个.。