专家系统
- 格式:pdf
- 大小:291.82 KB
- 文档页数:12
1、什么是专家系统?它具有哪些特点和优点?1)专家系统:专家系统(Expert System)是一种在特定领域内具有专家水平解决问题能力的程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的经验方法来处理该领域的高水平难题。
也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家才能处理好的复杂问题。
简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。
2)专家系统的特点:①启发性:专家系统要解决的问题,其结构往往是不合理的,其问题求解知识不仅包括理论知识和常识,而且包括专家本人的启发知识;②透明性:专家系统能够解释本身的推理过程和回答用户提出的问题,以便让用户了解推理过程,增大对专家系统的信任感;③灵活性:专家系统的灵活性是指它的扩展和丰富知识库的能力,以及改善非编程状态下的系统性能,即自学习能力;④符号操作:与常规程序进行数据处理和数字计算不同,专家系统强调符号处理和符号操作(运算),使用符号表示知识,用符号集合表示问题的概念。
一个符号是一串程序设计,并可用于表示现实世界中的概念;⑤ 不确定性推理:领域专家求解问题的方法大多数是经验性的,经验知识一般用于表示不精确性并存在一定概率的问问题。
止匕外,所提供的有关问题的信息往往是不确定的。
专家系统能够综合应用模糊和不确定的信息与知识,进行推理;⑥为解决特定领域的具体问题,除需要一些公共的常识,还需要大量与所研究领域问题密切相关的知识;⑦ 一般采用启发式的解题方法;⑧在解题过程中除了用演绎方法外,有时还要求助于归纳方法和抽象方法;⑨需处理问题的模糊性、不确定性和不完全性;⑩能对自身的工作过程进行推理(自推理或解释);11采用基于知识的问题求解方法;12知识库与推理机分离。
人工智能的专家系统与规则推理专家系统与规则推理是人工智能领域中的两个重要概念,它们在解决复杂问题、进行推理和决策过程中发挥着重要作用。
本文将深入探讨专家系统和规则推理的定义、原理、应用以及未来发展方向。
一、专家系统的概念和原理专家系统是通过模拟人类专家的知识和经验,以解决特定问题为目标的计算机程序。
它由知识库、推理机和用户界面三个主要组成部分构成。
知识库包含了专家知识的各种表达形式,这些知识可以是规则、事实、概念、关系等。
推理机是专家系统的核心,其作用在于根据知识库中的规则和事实,进行推理和判断,并提供解决问题的答案。
用户界面则是用户与专家系统进行交互的桥梁,使用户能够输入问题并接收系统的回答。
专家系统的原理基于规则推理,即依据一系列前提条件推导出结论的思维过程。
规则推理是基于规则库中的规则进行的,规则库是知识库的一个重要组成部分。
规则库中的规则通常采用条件-结论形式来表示,它由一个前提和一个结论组成。
前提是一个或多个条件,表示问题的特征或状态;结论是根据前提条件推导出来的结论或行动。
推理机会根据用户提供的前提条件,在规则库中寻找匹配的规则,并根据规则中的结论向用户提供答案或行动建议。
二、专家系统的应用领域专家系统的应用领域非常广泛,涵盖了医疗、金融、工业、农业等多个领域。
以下是几个典型的应用案例。
1. 医疗诊断:专家系统可以根据患者提供的症状和疾病数据库,通过规则推理的方式诊断患者疾病,给出相应的治疗建议。
2. 金融风险评估:专家系统可以根据海量的金融数据和分析模型,通过规则推理的方式评估客户的信用风险,为银行提供贷款决策的建议。
3. 工业故障诊断:专家系统可以根据设备传感器数据和故障数据库,通过规则推理的方式判断设备是否存在故障,并提供相应的维修建议。
4. 农业植物识别:专家系统可以根据植物图像和植物数据库,通过规则推理的方式识别出植物的种类以及相应的养护方法。
三、规则推理的概念和原理规则推理是基于规则库中的规则进行的推理过程,它是专家系统中的核心方法之一。
专家系统是一类具有专门知识和经验的计算机智能程序系统,通过对人类专家的问题求解能力的建模,采用人工智能中的知识表示和知识推理技术来模拟通常由专家才能解决的复杂问题,达到具有与专家同等解决问题能力的水平。
这种基于知识的系统设计方法是以知识库和推理机为中心而展开的,即专家系统 = 知识库 + 推理机它把知识从系统中与其他部分分离开来。
专家系统强调的是知识而不是方法。
很多问题没有基于算法的解决方案,或算法方案太复杂,采用专家系统,可以利用人类专家拥有丰富的知识,因此专家系统也称为基于知识的系统(Knowledge-Based Systems)。
一般说来,一个专家系统应该具备以下三个要素:(1)具备某个应用领域的专家级知识;(2)能模拟专家的思维;(3)能达到专家级的解题水平。
专家系统与传统的计算机程序的主要区别如表7.1所示。
表7.1 专家系统与传统的计算机程序的主要区别列项传统的计算机程序专家系统适用范围无限制封闭世界假设建造一个专家系统的过程可以称为“知识工程”,它是把软件工程的思想应用于设计基于知识的系统。
知识工程包括下面几个方面:(1)从专家那里获取系统所用的知识(即知识获取)(2)选择合适的知识表示形式(即知识表示)(3)进行软件设计(4)以合适的计算机编程语言实现。
专家系统的发展史1965年斯坦福大学的费根鲍姆(E.A. Feigenbaum)和化学家勒德贝格(J. Lederberg)合作研制DENDRAL 系统,使得人工智能的研究以推理算法为主转变为以知识为主。
20世纪70年代,专家系统的观点逐渐被人们接受,许多专家系统相继研发成功,其中较具代表性的有医药专家系统MYCIN、探矿专家系统PROSPECTOR等。
20世纪80年代,专家系统的开发趋于商品化,创造了巨大的经济效益。
1977年美国斯坦福大学计算机科学家费根鲍姆 (E.A.Feigenballm)在第五届国际人工智能联合会议上提出知识工程的新概念。
专家系统名词解释
专家系统是一种人工智能系统,旨在模拟人类专家在特定领域
的知识和推理能力。
这种系统利用专家的知识来解决复杂的问题,
通常通过规则、推理和逻辑推断来进行决策和问题求解。
专家系统
通常包括知识库、推理引擎和用户接口三个主要部分。
知识库存储
了领域专家的知识和经验,推理引擎利用这些知识进行推理和决策,用户接口则使用户能够与系统进行交互并得到解决方案。
专家系统
被广泛应用于医疗诊断、工程设计、金融分析、客户服务等领域,
以辅助人类专家进行决策和问题解决。
专家系统的发展使得人们能
够利用计算机技术来处理复杂的知识和问题,为各种领域的专业人
士提供了强大的工具和支持。
随着人工智能技术的不断发展,专家
系统也在不断演进和完善,成为了现代智能化应用中的重要组成部分。
生活中常见的专家系统的例子生活中常见的专家系统的例子有很多,下面列举了10个例子:1. 医疗诊断专家系统医疗诊断专家系统是一种利用人工智能技术实现的系统,能够根据患者的症状和病史等信息,进行疾病的诊断和治疗建议。
该系统基于大量的医学知识和专家经验,通过推理和推断来帮助医生进行准确的诊断和治疗。
2. 金融风险评估专家系统金融风险评估专家系统是一种用于评估金融机构风险的系统,能够根据各种因素(如市场波动、财务状况等)进行风险评估和预测。
该系统通过分析数据和规则,提供风险评估报告和决策建议,帮助金融机构做出合理的风险管理决策。
3. 智能家居控制专家系统智能家居控制专家系统是一种用于控制家居设备的系统,能够根据用户的需求和环境条件,智能地控制灯光、温度、安防等设备。
该系统通过学习用户的习惯和喜好,自动调节设备,提供舒适和便捷的居住体验。
4. 智能交通管理专家系统智能交通管理专家系统是一种用于优化交通流量和减少交通拥堵的系统,能够根据实时交通数据和交通规则,进行交通信号控制和路线规划。
该系统通过智能算法和优化模型,提供最优的交通管理方案,改善交通状况,提高路网通行效率。
5. 客户关系管理专家系统客户关系管理专家系统是一种用于管理和分析客户信息的系统,能够根据客户的需求和行为,进行个性化的营销和服务。
该系统通过分析客户数据和行为模式,提供定制化的产品推荐和沟通策略,增强客户满意度和忠诚度。
6. 环境监测与预警专家系统环境监测与预警专家系统是一种用于监测和预测环境变化的系统,能够根据各种环境指标和模型,进行环境污染和自然灾害的监测与预警。
该系统通过大数据分析和模型模拟,提供准确的环境预警和应急响应,保护环境和人民的生命财产安全。
7. 农业决策支持专家系统农业决策支持专家系统是一种用于农业生产和管理的系统,能够根据农业数据和农业知识,进行种植、养殖和农业管理的决策支持。
该系统通过分析土壤、气候、作物等信息,提供种植技术、病虫害防治等方面的建议,提高农业生产效益和农民收入。
专家系统的一般步骤专家系统就像是一个超级聪明的小助手,那它是怎么工作的呢?一、知识获取。
这就像是给这个小助手“喂知识”。
要从各个地方收集知识呢,比如说从书本里,那些写满了专业知识的书籍,就像宝藏一样。
还有从专家那里,专家们脑袋里装着好多宝贵的经验和见解,把这些都拿过来。
这一步就像是给小助手准备食材,食材越丰富,做出来的“菜”就越美味。
二、知识表示。
知识有了,那得让小助手能理解和使用呀。
就像把食材切好、分类,按照一定的方式摆放。
可以用规则表示,就像定好一些小规矩,什么情况下该怎么做。
也可以用框架表示,就像给小助手搭好一个个小架子,把知识分别放在不同的架子上,这样找起来就方便多了。
三、推理机制。
这是小助手的思考过程啦。
当有问题来了,小助手就要开始在自己的知识库里捣鼓了。
如果是正向推理呢,就像是从已知的条件开始,一步一步向前走,看看能得出什么结论。
要是反向推理呢,就像是从想要的结果开始倒推,看看需要哪些条件才能达到这个结果。
这个过程就像是小助手在走迷宫,要找到正确的路才能给出答案。
四、解释功能。
小助手给出答案了,可不能就这么干巴巴地说出来。
得给大家解释一下呀,为啥会得到这个答案呢。
这就像是小助手在给你讲故事,把自己思考的过程讲给你听,这样你才会相信它的答案是靠谱的,而不是随便乱猜的。
五、人机接口。
这就是小助手和我们交流的窗口啦。
要让我们能很方便地把问题告诉小助手,小助手也能把答案和解释清楚地告诉我们。
这个接口要设计得很友好,就像和朋友聊天一样轻松自在,不能让人觉得很复杂、很难操作。
专家系统就是这么一步步工作的,每个步骤都很重要,就像一个小团队里的每个成员,缺了谁都不行呢。
知识表示是对知识的一种描述,或者说是一组约定,是一种计算机可以接受的用于描述知识的数据结构。
知识外部表示模式:是与软件开发与运行的软件工具与平台无关的知识表示的形式化描述。
知识内部表示模式:是与开发软件工具与平台有关的知识表示的存储结构。
命题是具有真假意义的语句。
命题代表人们进行思维时的一种判断,或者是肯定,或者是否定。
谓词公式的永真性、可满足性、不可满足性、等价性蕴含式与产生式的差别:①蕴含式只能表示精确知识;产生式可以表示精确知识,也可以表示不精确知识。
②蕴含式要求匹配是精确的;产生式匹配可以是精确的,也可以是不精确的。
产生式系统有三个基本组成部分:规则库、综合数据库和控制机构专家系统的基本特征:知识库和推理机的分离产生式系统的推理方式:正向推理(数据驱动、自底向上)反向推理(目标驱动、自顶向下)双向推理由问题的全部状态及一切可用算符所构成的集合称为问题的状态空间,一般用一个三元组表示:(S,F,G)其中S是问题的所有初始状态构成的集合;F是算符的集合;G是目标状态的集合。
状态空间的图示形式称为状态空间图。
其中,节点表示状态;有向边(弧)表示算符。
本原问题:直接可解的子问题称为本原问题。
端节点与终叶节点:没有子节点的节点称为端节点;本原问题所对应的端节点称为终叶节点。
宽度优先搜索:在搜索树的生成过程中,只有对搜索树中同一层的所有节点都考查完之后,才会对下一层的节点进行考查。
深度优先搜索:在搜索树的生成过程中,对open表中同一层的节点只选择表中一个节点进行考查和扩展,只有当这个节点是不可扩展的。
才选择同层的兄弟节点进行考查和扩展。
博弈树的特点:①博弈的初始格局是初始节点。
②在博弈树中,“或”节点和“与”节点是逐层交替出现的。
自己一方扩展的节点之间是“或”关系,对方扩展的节点之间是“与”关系。
双方轮流地扩展节点。
③所有能使自己一方获胜的终局都是本原问题,相应的节点是可解节点,所有使对方获胜的终局都是不可解节点。
三专家系统简介专家系统是一种以知识推理的定性方式辅助决策的智能技术,利用专家知识进行推理的过程。
专家系统是具有大量专门知识,并能运用这些知识解决特定领域中实际问题的计算机程序系统。
(大量的专家知识,运用知识推理的方法,解决特定问题。
)知识处理的特点:知识包括事实与规则(状态转变过程);适合于符号处理;推理过程是不固定形式的;能得出未知的事实。
1. 专家系统的定义及构成专家系统是人工智能的一个最活跃的分支,产生于60年代中期,DENDRAL专家系统的出现标志着专家系统的诞生,短短的30多年时间内发展迅速。
目前同自然语言理解、机器人学并列为人工智能的三大研究方向。
至于专家系统的定义,有以下几种说法:(1)专家系统是一个智能程序系统;(2)专家系统能利用仅人类专家可用的知识和解决问题的方法来解决问题;(3)专家系统是一种计算机程序,它可以以人类专家的水平完成专门的一般是困难的问题。
图1专家系统结构1) 专家系统的核心是知识库和推理机。
专家系统=知识库+推理机。
2) 知识获取是把专家的知识按照一定的知识表示形式深入到专家系统的知识库中3) 人机接口将用户的咨询和专家系统推出的建议、结论进行人机间的翻译和转换。
4) 产生式规则知识的推理机。
产生式规则的推理机=搜索+匹配推理过程中边搜索边匹配。
匹配就是找事实,事实一是来自规则库中别的规则,另一是来自向用户提问。
搜索过程中包含回溯。
5) 产生式规则推理的解释。
跟踪和显示推理过程中的搜索和匹配过程就是解释机制。
一般说来,专家系统由下述几个部分构成:(1) 知识库 存储专家的知识、经验及书本上的知识和常识,简称领域(Domain)知识库,包括:领域的专门知识和启发性知识(经验),要求知识库具有完备性和可用性,即知识要全面,同时不能有冗余,即不能存放多余的或无用的知识。
(2)动态数据库存贮专家系统当前要处理的对象的一些事实,包括该领域内的初始论据(初始状态),推理过程得到的各种中间信息,推理的最终结果也在其中。