七年级数学有理数练习题含答案
- 格式:docx
- 大小:14.59 KB
- 文档页数:5
七年级数学《有理数》测试题及答案一、选择题(本大题10小题,每小题3分,共30分)1.在1,0,2,﹣3这四个数中,最大的数是( )A .1B .0C .2D .﹣32.2的相反数是( )A .B .C .﹣2D .23.﹣5的绝对值是( )A .5B .﹣5C .D .﹣4.﹣2的倒数是( )A .2B .﹣2C .D .﹣5.下列说法正确的是( )A .带正号的数是正数,带负号的数是负数B .一个数的相反数,不是正数,就是负数C .倒数等于本身的数有2个D .零除以任何数等于零6.在有理数中,绝对值等于它本身的数有( )A .1个B .2个C .3个D .无穷多个7.比﹣2大3的数是( )A .1B .﹣1C .﹣5D .﹣68.下列算式正确的是( )A .3﹣(﹣3)=6B .﹣(﹣3)=﹣|﹣3|C .(﹣3)2=﹣6D .﹣32=99.据报道,2014年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为()A .0.136×1012元B .1.36×1012元C .1.36×1011元D .13.6×1011元10.近似数2.7×103是精确到( )A .十分位B .个位C .百位D .千位二、填空题(本大题6小题,每小题4分,共24分)11.如果温度上升3℃记作+3℃,那么下降3℃记作.12.已知|a|=4,那么a= .13.在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是.14.比较大小:3223.15.若(a﹣1)2+|b+2|=0,那么a+b= .16.观察下列依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,则第10个数为.三、解答题(一)(本大题3小题,每小题6分,共18分)17.把下列各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.18.﹣8﹣6+22﹣919.计算:﹣8÷(﹣2)+4×(﹣5).四、解答题(二)(本大题3小题,每小题7分,共21分)20.小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?21.计算:(﹣ +﹣)×(﹣12).22.计算:﹣22+3×(﹣1)4﹣(﹣4)×2.五、解答题(三)(本大题3小题,每小题9分,共27分)23.若|a|=5,|b|=3,求a+b的值.24.某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.25.一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:+7表示汽车向北行驶7千米),当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:千米)问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)1.在1,0,2,﹣3这四个数中,最大的数是()A.1 B.0 C.2 D.﹣3【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣3<0<1<2,故选:C.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.2的相反数是()A.B.C.﹣2 D.2【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:2的相反数是﹣2,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.﹣5的绝对值是()A.5 B.﹣5 C.D.﹣【考点】绝对值.【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.【点评】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.4.﹣2的倒数是()A.2 B.﹣2 C.D.﹣【考点】倒数.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.5.下列说法正确的是()A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零【考点】有理数.【分析】利用有理数的定义判断即可得到结果.【解答】解:A、带正号的数不一定为正数,例如+(﹣2);带负号的数不一定为负数,例如﹣(﹣2),故错误;B、一个数的相反数,不是正数,就是负数,例如0的相反数是0,故错误;C、倒数等于本身的数有2个,是1和﹣1,正确;D、零除以任何数(0除外)等于零,故错误;故选:C.【点评】此题考查了有理数,熟练掌握有理数的定义是解本题的关键.6.在有理数中,绝对值等于它本身的数有()A.1个B.2个C.3个D.无穷多个【考点】绝对值.【分析】根据绝对值的意义求解.【解答】解:在有理数中,绝对值等于它本身的数有0和所有正数.故选D.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.7.比﹣2大3的数是()A.1 B.﹣1 C.﹣5 D.﹣6【考点】有理数的加法.【分析】先根据题意列出算式,然后利用加法法则计算即可.【解答】解:﹣2+3=1.故选:A.【点评】本题主要考查的是有理数的加法法则,掌握有理数的加法法则是解题的关键.8.下列算式正确的是()A.3﹣(﹣3)=6 B.﹣(﹣3)=﹣|﹣3| C.(﹣3)2=﹣6 D.﹣32=9【考点】有理数的乘方;相反数;有理数的减法.【分析】根据有理数的减法和有理数的乘方,即可解答.【解答】解:A、3﹣(﹣3)=6,正确;B、﹣(﹣3)=3,﹣|﹣3|=﹣3,故本选项错误;C、(﹣3)2=9,故本选项错误;D、﹣32=﹣9,故本选项错误;故选:A.【点评】本题考查了有理数的减法和有理数的乘方,解决本题的关键是熟记有理数的乘方和有理数的减法.9.据报道,2014年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为()A.0.136×1012元B.1.36×1012元C.1.36×1011元D.13.6×1011元【考点】科学记数法—表示较大的数.【分析】根据科学记数法的表示方法:a×10n,可得答案.【解答】解:1.36万亿元,用科学记数法表示为1.36×1012元,故选:B.【点评】本题考查了科学记数法,科学记数法中确定n的值是解题关键,指数n是整数数位减1.10.近似数2.7×103是精确到()A.十分位B.个位 C.百位 D.千位【考点】近似数和有效数字.【分析】由于2.7×103=2700,而7在百位上,则近似数2.7×103精确到百位.【解答】解:∵2.7×103=2700,∴近似数2.7×103精确到百位.故选C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起,到这个数完为止,所有这些数字叫这个数的有效数字.二、填空题(本大题6小题,每小题4分,共24分)11.如果温度上升3℃记作+3℃,那么下降3℃记作﹣3℃.【考点】正数和负数.【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负.【解答】解:∵温度上升3℃记作+3℃,∴下降3℃记作﹣3℃.故答案为:﹣3℃.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.12.已知|a|=4,那么a= ±4 .【考点】绝对值.【分析】∵|+4|=4,|﹣4|=4,∴绝对值等于4的数有2个,即+4和﹣4,另外,此类题也可借助数轴加深理解.在数轴上,到原点距离等于4的数有2个,分别位于原点两边,关于原点对称.【解答】解:∵绝对值等于4的数有2个,即+4和﹣4,∴a=±4.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.本题是绝对值性质的逆向运用,此类题要注意答案一般有2个,除非绝对值为0的数才有一个为0.13.在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是﹣5或﹣1 .【考点】数轴.【专题】探究型.【分析】由于所求点在﹣3的哪侧不能确定,所以应分在﹣3的左侧和在﹣3的右侧两种情况讨论.【解答】解:当所求点在﹣3的左侧时,则距离2个单位长度的点表示的数是﹣3﹣2=﹣5;当所求点在﹣3的右侧时,则距离2个单位长度的点表示的数是﹣3+2=﹣1.故答案为:﹣5或﹣1.【点评】本题考查的是数轴的特点,即数轴上右边的点表示的数总比左边的大.14.比较大小:32>23.【考点】有理数的乘方;有理数大小比较.【专题】计算题.【分析】分别计算32和23,再比较大小即可.【解答】解:∵32=9,23=8,∴9>8,即32>23.故答案为:>.【点评】本题考查了有理数的乘方以及有理数的大小比较,是基础知识要熟练掌握.15.若(a﹣1)2+|b+2|=0,那么a+b= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b,然后相加即可得解.【解答】解:根据题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,a+b=1+(﹣2)=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.观察下列依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,则第10个数为20 .【考点】规律型:数字的变化类.【分析】观察不难发现,这列数的绝对值是从2开始的连续偶数,并且第偶数个数是正数,第奇数个数是负数,然后写出第10个数即可.【解答】解:∵﹣2,4,﹣6,8,﹣10…,∴第10个数是正数数,且绝对值为2×10=20,∴第10个数是20,故答案为:20.【点评】本题是对数字变化规律的考查,比较简单,难点在于从绝对值和符号两个部分考虑求解.三、解答题(一)(本大题3小题,每小题6分,共18分)17.把下列各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.【考点】有理数大小比较;数轴.【分析】先在数轴上表示各个数,再比较即可.【解答】解:4>2.5>﹣1>﹣1.5>﹣3.【点评】本题考查了有理数的大小比较,数轴的应用,能正确在数轴上表示各个数是解此题的关键,注意:在数轴上表示各个数,右边的数总比左边的数大.18.﹣8﹣6+22﹣9【考点】有理数的加减混合运算.【分析】直接进行有理数的加减运算.【解答】解:原式=﹣23+22=﹣1.【点评】本题考查有理数的运算,属于基础题,注意运算的顺序是关键.19.计算:﹣8÷(﹣2)+4×(﹣5).【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:原式=4﹣20=﹣16,故答案为:﹣16【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题(二)(本大题3小题,每小题7分,共21分)20.小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?【考点】规律型:数字的变化类.【分析】分析几个数可知要使抽取的数最大,需同时抽两个最大正数或两个最小的负数,即可使乘积最大.【解答】解:抽取﹣3和﹣8.最大乘积为(﹣3)×(﹣8)=24.【点评】两个负数的乘积为正数,且这两个负数越小,其乘积越大.21.计算:(﹣ +﹣)×(﹣12).【考点】有理数的混合运算.【专题】计算题.【分析】根据有理数的混合运算的运算方法,应用乘法分配律,求出算式的值是多少即可.【解答】解:(﹣ +﹣)×(﹣12)=(﹣)×(﹣12)+×(﹣12)﹣×(﹣12)=2﹣9+5=﹣2【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法运算定律的应用.22.计算:﹣22+3×(﹣1)4﹣(﹣4)×2.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3+8=7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.五、解答题(三)(本大题3小题,每小题9分,共27分)23.若|a|=5,|b|=3,求a+b的值.【考点】有理数的加法;绝对值.【分析】|a|=5,则a=±5,同理b=±3,则求a+b的值就应分几种情况讨论.【解答】解:∵|a|=5,∴a=±5,同理b=±3.当a=5,b=3时,a+b=8;当a=5,b=﹣3时,a+b=2;当a=﹣5,b=3时,a+b=﹣2;当a=﹣5,b=﹣3时,a+b=﹣8.【点评】正确地进行讨论是本题解决的关键.规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.24.某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.【考点】正数和负数.【分析】(1)根据正负数的意义解答即可;(2)求出所有记录的和的平均数,再加上基准分即可.【解答】解:(1)最高分为:80+12=92分,最低分为:80﹣10=70分;(2)8﹣3+12﹣7﹣10﹣3﹣8+1+0+10=8+12+1+10+0﹣3﹣7﹣10﹣3﹣8=31﹣31=0,所以,10名同学的平均成绩80+0=80分.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:+7表示汽车向北行驶7千米),当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:千米)问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?【考点】正数和负数.【专题】应用题.【分析】(1)把当天记录相加,然后根据正数和负数的规定解答即可;(2)先求出行驶记录的绝对值的和,再乘以0.35计算即可得解.【解答】解:(1)18﹣9+7﹣14﹣6+12﹣6+8=45﹣35=10,所以,B地在A地北方10千米;(2)18+9+7+14+6+12+6+8=80千米80×0.35=28升.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.。
七年级数学有理数试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. -3/4C. πD. √52. 两个有理数相乘,结果仍为有理数的是:A. 2/3 4/5B. 2/3 √2C. -3/4 πD. √5 √53. 下列哪个数是整数?A. -3/4B. 2.5C. 3D. √94. 两个负数相乘的结果是:A. 正数B. 负数C. 零D. 无法确定5. 下列哪个数是正有理数?A. -3/4B. 2.5C. -3D. √9二、判断题(每题1分,共5分)1. 所有的整数都是有理数。
()2. 两个有理数相加,结果仍为有理数。
()3. 0是有理数。
()4. 两个正数相乘的结果是负数。
()5. 所有的分数都是有理数。
()三、填空题(每题1分,共5分)1. 3/4 + 1/4 = ______2. -2/3 3/2 = ______3. 4/5 1/5 = ______4. | -3/4 | = ______5. -3/4的倒数是______四、简答题(每题2分,共10分)1. 请简述有理数的定义。
2. 请解释有理数的分类。
3. 请简述有理数的乘法法则。
4. 请解释有理数的加法法则。
5. 请简述有理数的除法法则。
五、应用题(每题2分,共10分)1. 计算下列各式的值:a. 3/4 + 1/4b. -2/3 3/2c. 4/5 1/5d. | -3/4 |e. -3/4的倒数2. 判断下列各数是否为有理数,并解释原因:a. √2b. -3/4c. πd. √5e. 2.53. 计算下列各式的值:a. 2/3 + 1/6b. -3/4 2/3c. 5/8 3/8d. | -5/6 |e. -5/6的倒数4. 判断下列各数是否为整数,并解释原因:a. -3/4b. 2.5c. 3d. √9e. -2/35. 计算下列各式的值:a. 3/5 + 2/5b. -4/5 5/4c. 7/10 3/10d. | -7/8 |e. -7/8的倒数六、分析题(每题5分,共10分)1. 分析有理数的乘法法则,并举例说明。
初中数学七年级上册练习题(有理数)学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各式值必为正数的是( )A .||||a b +B .22a b +C .21a +D .2(1)a + 2.下列运算正确的是( )A .(6)(13)7++-=+B .(6)(13)19++-=-C .()()9.059.0518.1++-=D .735( 3.75)2936⎛⎫-+=- ⎪⎝⎭3.下列数对相加和最小的是( ) A .5和15- B .2与2- C .1-与1- D .0.01与104.一个数是8,另一个数比8的相反数小2,则这两个数的和为( ) A .2- B .2 C .6- D .65.下列运算不正确的个数是( )①(2)(2)0-+-=;①(6)(4)10-++=-;①0(3)3+-=+;①512663⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭;①337744⎛⎫⎛⎫--+-=- ⎪ ⎪⎝⎭⎝⎭;①111236⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭;①(5)(6)(1)0++-++=. A .0 B .1 C .2 D .36.据全球新冠疫情统计,截至2021年12月7日,全球累计确诊新冠肺炎病例逾2.6亿例.2.6亿用科学记数法表示为( )A .26×710B .2.6×810C .0.26×910?D .2.6×9107.在-3,36,+25,-0.01,0,34-中,负数的个数为( ) A .2个 B .3个 C .3个 D .4个 8.当我们把其中一种意义的量规定为正,用正数表示,则与它具有相反意义的量直接可以用负数表示.例:中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示( )A .支出20元B .收入20元C .支出80元D .收入80元 9.港珠澳大桥是世界最长的跨海大桥,其中主体工程“海中桥隧”长达35.578公里,整个大桥造价超过720亿元人民币.数“720亿”用科学记数法可表示为( )A .27.210⨯B .37.210⨯C .107.210⨯D .117.210⨯ 10.在有理数-4,0,-1,3中,最小的数是( )A .-4B .0C .-1D .3 二、填空题11.数2-的符号是_______,绝对值是_______;数0.5的符号是_______,绝对值是_______,这两个数属_______号(填:“同”或“异”),绝对值较大的数的符号是_______.这两个数的绝对值之和是_______;较大的绝对值减较小的绝对值的差是_______. ()()20.5-++=____(|__|____|__|)=_______.零加上a 得_______.12.符号相同的几个数相加,取_______的符号,并把它们的_______相_______;符号不同两个数相加,取______________的符号,并用较大的绝对值_______较小的绝对值.互为相反数的和是_______.13.按法则要求步骤填空(1)(3)(9)++-=_______( )=_______.(2)( 5.7)(4,3)-+-=_______( )=_______.(3)106⎛⎫+-= ⎪⎝⎭_______. (4)2134⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭_______( )=_______. (5)10.254⎛⎫-+= ⎪⎝⎭_______. 14.若a 是绝对值最小的数,b 是最大的负整数,则()a b +-=_______.15.若3,7m n =-=-,则||m n +=_______;||m n +=_______;m n +=_______;||||m n +=_______.16.若||5,||3x y ==,则x y +=______________.17.x 是有理数,它在数轴上的对应点的位置如图所示.则77x x -++=________.18.央视天下财经2021年11月25日晚报道电影《长津湖》票房突破57亿,截至11月25日,电影《长津湖》已打破此前由影片《战狼2》保持的国产票房最高纪录,以破56.95亿元的成绩成为中国影史票房冠军.将56.95亿用科学记数法表示为___________.19.李白出生于公元701年,我们记作+701,那么秦始皇出生于公元前256年,可记作_________.20.截止北京时间2021年12月20日全球累计确诊新冠肺炎病例约为274950000例,将这个数精确到十万位为__例.21.在横线上填上适当的符号使式子成立:( )6+(﹣18)=﹣12.22.钓鱼岛是中国领土的一部分,岛屿周围的海域面积约174000平方千米,数据174000用科学记数法可以表示为________.23.计算:22139⎛⎫-+=⎪⎝⎭______.24.把数字3120000用科学记数法表示为______.三、解答题25.计算:(1)(51.76)(32.8)++-(2)( 3.75)( 3.75)-++(3)116332⎛⎫⎛⎫++-⎪ ⎪⎝⎭⎝⎭(4)25( 2.7)3⎛⎫-+-⎪⎝⎭26.计算:1(2)3(4)99(100)+-++-+⋅⋅⋅++-27.公路养护小组乘车沿南北公路巡视维护,某天早晨从A地出发,晚上最后到达B 地,约定向北为正方向,当天的行驶记录如下(单位:千米):+18.5,﹣9.3,+7,﹣14.7,+15.5,﹣6.8,﹣8.2,请通过计算回答:(1)B地在A地何方,相距多少千米?(2)若汽车行驶每100千米耗油8升,出发时汽车油箱有油20升,晚上到达B地时油箱还剩油多少升?28.小虫从某点O出发在一直线上来回爬行,假定向右爬行路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O 最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻? 29.某大米包装袋上印有(50±2)kg ,请问:(1)±2kg 是什么意思?(2)若随机抽查了其中5袋大米,质量分别为47.5kg ,51.3kg ,49.8kg ,50.3kg ,51.8kg ,请判断一下,这5袋大米的质量哪些是合格的?30.将下列数按照整数与分数进行分类:3,2.6,-26,3.1415926,0,45-. 31.讨论:观察下面两个式子有什么不同?(1)(-4)2与-42; (2)23()5与23532.411(2)()|2|3⎡⎤-+-÷---⎣⎦. 33.计算:10+(﹣5)×2﹣(﹣9)参考答案:1.C【解析】【分析】根据题意可知选项中的值必须为正数,所以无论a、b取何值时都得满足其值为正数这一条件,据此依次判断即可.【详解】解:A、当a=0,b=0时,此式不符合条件,故本选项错误;B、当a=0,b=0时,此式不符合条件,故本选项错误;C、无论a取何值,a2+1的值都为正数,故本选项正确;D、当a=-1时,此式不符合条件,故本选项错误;故选:C.【点睛】本题考查有理数的乘方和绝对值以及非负数与正数的关系,注意掌握非负数包括0,而正数不包括0.2.D【解析】【分析】根据有理数的加法计算法则进行求解即可.【详解】解:A、(6)(13)613=7++-=--,此选项不符合题意;B、(6)(13)613=7++-=--,此选项不符合题意;C、(9.05)(9.05)9.059.05=0++-=-,此选项不符合题意;D、73735( 3.75)3=294936⎛⎫-+=-+-⎪⎝⎭,此选项符合题意;故选D.【点睛】本题主要考查了有理数的加法,解题的关键在于能够熟练掌握有理数的加法计算法则.3.C【解析】【分析】根据有理数的加法分别算出四个选项的和,然后比较大小即可【详解】解:145=455⎛⎫+- ⎪⎝⎭,()22=0+-,()11=-2-+-,0.0110=10.01+,①410.014025>>>-,故选C.【点睛】本题主要考查了有理数的加法运算和有理数的比较大小,解题的关键在于能够熟练掌握相关知识进行求解4.A【解析】【分析】根据相反数的定义和有理数的减法确定另一个数,再利用有理数的加法法则计算即可.【详解】依题意另一个数为:-8-2=-10,①8+(-10)=-2.故选:A.【点睛】本题考查了相反数,有理数的加减法,熟练掌握有理数加减法法则是解题的关键.5.D【解析】【分析】根据有理数的加法法则,逐项计算分析可得.【详解】①(2)(2)4-+-=-,故①不正确;①(6)(4)2-++=-,故①不正确;①0(3)3+-=-,故①不正确;①512663⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭,故①正确;①337744⎛⎫⎛⎫--+-=-⎪ ⎪⎝⎭⎝⎭,故①正确;①111236⎛⎫⎛⎫-++=- ⎪ ⎪⎝⎭⎝⎭,故①不正确; ①(5)(6)(1)0++-++=,故①正确;综上,正确的有①①①,共计3个.故选D .【点睛】本题考查了有理数的加法,掌握有理数的加法法则是解题的关键.6.B【解析】【分析】科学记数法的定义即可得.【详解】解:2.6亿=82.610⨯,故选B .【点睛】本题考查了精确度和科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 7.B【解析】【分析】负数是小于零的数,由此可得出答案.【详解】解:由负数的概念可以得到-3,-0.01,34-,这三个数是负数, 故选:B【点睛】本题考查了正数和负数,掌握正数和负数的定义是解题的关键.8.C【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.9.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:720亿=72000000000=7.2×1010.故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.A【解析】【分析】根据有理数大小比较的法则:①正数都大于0;①负数都小于0;①正数大于一切负数;①两个负数,绝对值大的其值反而小可得答案.【详解】解:①44,11,而41,①41,在有理数-4,0,-1,3中,4103,①最小的数是-4,故选:A.【点睛】本题主要考查了有理数的比较大小,关键是掌握有理数的比较大小的方法.11.-2+0.5异- 2.5 1.5-2--0.5 1.5-a 【解析】【分析】根据有理数的性质及加法运算法则即可依次填空.【详解】数2-的符号是-,绝对值是2;数0.5的符号是+,绝对值是0.5,这两个数属异号(填:“同”或“异”),绝对值较大的数的符号是-.这两个数的绝对值之和是2.5;较大的绝对值减较小的绝对值的差是1.5.()()20.5-++=-(|2|-|0.5|)= 1.5-.零加上a得a.故答案为:-;;2;+;0.5;异;-;2.5;1.5;-;2-;-;0.5; 1.5-;a.【点睛】此题主要考查有理数的性质与运算,解题的关键是熟知绝对值的运用.12.相同绝对值加绝对值较大加数减去零【解析】【分析】根据有理数加法的计算法则进行求解即可.【详解】解:符号相同的几个数相加,取相同的符号,并把它们的绝对值相加;符号不同两个数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的和是零.故答案为:相同,绝对值,加,绝对值较大加数,减去,零.【点睛】本题主要考查了有理数加法的计算法则,解题的关键在于能够熟练掌握有理数的加法计算法则.13.-93-6-- 5.7 4.3+10-16--2134-512-0【解析】【分析】根据有理数加法运算法则计算即可.【详解】解:(1)原式=(93)--=6-;(2)原式=(5.7 4.3)-+=10-;(3)原式=16-; (4)原式=215()3412--=-; (5)原式=0; 故答案为:-;93-;6-;-;5.7 4.3+;10-;16-;-;2134-;512-;0. 【点睛】本题考查了有理数加法运算法则,同号两数相加,取相同符号,在把绝对值相加;异号两数相加;取绝对值大的符号,再把绝对值相减;任何数加上零还等于原数.14.1【解析】【分析】根据绝对值最小的数为0,最大的负整数为1-,求解即可.【详解】解:①a 是绝对值最小的数,b 是最大的负整数,①0,1a b ==-,①()[]0(1)1a b +-=+--=,故答案为:1.【点睛】本题考查了有理数的加法,熟知运算法则以及得出a 、b 的值是解本题的关键. 15. 4- 4 10- 10【解析】【分析】根据有理数的加法运算法则以及绝对值的意义求解即可.【详解】解:①3,7m n =-=-,①||3(7)4m n +=+-=-,||374m n +=-+=,m n +=3(7)10-+-=-;||||3710m n +=+=;故答案为:4-;4;10-;10.【点睛】本题考查了有理数的加法运算法则以及绝对值的意义,熟知运算法则是解本题的关键. 16.8±或2±【解析】【分析】根据绝对值的代数意义分别求出x 与y 的值,再代入所求的式子中计算即可.【详解】解:①|x |=5,|y |=3,①x =±5,y =±3,①x +y =5+3=8或x +y =5−3=2或x +y =−5+3=−2或x +y =−3−5=−8.故答案为:±2或±8.【点睛】本题考查了绝对值的意义以及有理数的加法,根据题意求出x 与y 的值是解题的关键. 17.14【解析】【分析】由数轴可知-6< x < 0,则x - 7< 0,x +7 > 0,再去掉绝对值,可解.【详解】由数轴可知-6<x <0,则x -7<0,x +7> 0,①|x - 7|+|x +7|=7-x +x +7=14故答案为14.【点睛】此题综合考查了数轴、绝对值的有关内容,在去掉绝对值的时候,要特别细心.18.9⨯5.69510【解析】【分析】根据科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,确定a、n的值即可.【详解】解:由题意知:56.95亿=5695000000=5.695×109,故答案为:5.695×109.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解题的关键.19.256-【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:李白出生于公元701 年,我们记作+701,那么秦始皇出生于公元前256年,可记作﹣256.故答案为:﹣256.【点睛】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.20.82.75010⨯【解析】【分析】根据精确度和科学记数法的定义即可得.【详解】解:274950000精确到十万位为275000000,8=⨯,275000000 2.75010故答案为:8⨯.2.75010【点睛】本题考查了精确度和科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 21.+【解析】【分析】根据有理数的加法法则即可得出答案.【详解】解:6+(﹣18)=﹣12,故答案为:+.【点睛】本题考查了有理数的加法,掌握绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值是解题的关键.22.51.7410⨯【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中11|0|a ≤<,n 为整数. 【详解】解:51.7174000401=⨯.故答案为:51.7410⨯.【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中11|0|a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.23.13- 【解析】【分析】根据有理数的乘方、有理数的加法可以求解即可.【详解】 解:221()39-+ 4199=-+ 13=- 故答案为:13-. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题关键.24.63.1210⨯【解析】【分析】根据科学记数法的定义即可得.【详解】解:63.31212000001=⨯,故答案为:63.1210⨯.【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.25.(1)18.96;(2)0;(3)526;(4)11830- 【解析】【分析】(1)根据有理数的加减运算法则即可求解;(2)根据有理数的加减运算法则即可求解;(3)根据有理数的加减运算法则即可求解;(4)根据有理数的加减运算法则即可求解.【详解】(1)(51.76)(32.8)++-=51.7632.8-=18.96;(2)( 3.75)( 3.75)-++=0;(3)116332⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭=()116332⎛⎫-+- ⎪⎝⎭=136⎛⎫+- ⎪⎝⎭=526 (4)25( 2.7)3⎛⎫-+- ⎪⎝⎭=()2752310⎛⎫--+-- ⎪⎝⎭=117130--=11830-. 【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.26.50-【解析】【分析】根据1(2)=12=1+---,3(4)=34=1+---,()56=56=1+---从而可得()()()1(2)3(4)99(100)=111+-++-+⋅⋅⋅++--+-+⋅⋅⋅+-(一共50个负1相加),由此求解即可.【详解】解:①1(2)=12=1+---,3(4)=34=1+---,()56=56=1+---,①()()()1(2)3(4)99(100)=111+-++-+⋅⋅⋅++--+-+⋅⋅⋅+-(一共50个负1相加) ①1(2)3(4)99(100)=-50+-++-+⋅⋅⋅++-.【点睛】本题主要考查了有理数的加法运算,解题的关键在于能够发现()()()1(2)3(4)99(100)=111+-++-+⋅⋅⋅++--+-+⋅⋅⋅+-(一共50个负1相加). 27.(1)北方,2千米(2)13.6升【解析】【分析】(1)根据有理数的加法,有理数的大小比较,可得答案;(2)根据单位耗油量乘以行驶路程,可得总耗油量,根据原有油量减去耗油量,可得答案.(1)解: +18.5﹣9.3+7﹣14.7+15.5﹣6.8﹣8.2=2(千米),2>0,在北方,答:B地在A地北方,相距2千米;(2)路程=18.5+|﹣9.3|+7+|﹣14.7|+15.5+|﹣6.8|+|﹣8.2|=80(千米),每千米的耗油量8÷100=0.08升,耗油量80×0.08=6.4(升),20﹣6.4=13.6(升),答:晚上到达B地时油箱还剩油13.6升.【点睛】本题考查了正数和负数,有理数的加减法运算是解题关键.28.(1)能回到原点O(2)12厘米(3)54粒【解析】【分析】(1)将爬过的路程相加即可求出答案.(2)计算出每次爬行否离开原点的距离即可判断.(3)求出每次路程的绝对值之和即可求出答案.(1)由题意可知:+5-3+10-8-6+12-10=0,故小虫回到原点O;(2)第一次爬行,此时离开原点5厘米,第二次爬行,此时离开原点5-3=2厘米,第三次爬行,此时离开原点5-3+10=12厘米,第四次爬行,此时离开原点5-3+10-8=4厘米,第五次爬行,此时离开原点5-3+10-8-6=-2厘米,第六次爬行,此时离开原点5-3+10-8-6+12=10厘米,第7次爬行,此时离开原点5-3+10-8-6+12-10=0厘米,故小虫离开出发点最远是12厘米;(3)小虫共爬行的路程为:5+|-3|+10+|-8|+|-6|+12+|10|=5+3+10+8+6+12+10=54厘米,①每爬行1厘米奖励一粒芝麻,①小虫共可得到54粒芝麻.【点睛】本题考查正数与负数的意义,解题的关键是熟练运用正数与负数的意义.29.(1)表示质量比50kg最多多2kg或最多少2kg(2)51.3kg,49.8kg,50.3kg,51.8kg这四袋大米质量是合格的【解析】【分析】(1)(50±2)kg,50kg是标准质量,+2k g是上偏差,表示比标准质量最多多2kg,-2kg是下偏差,表示比标准质量最多少2kg;(2)在(50-2)kg和(50+2)kg之间的为合格,在这个范围之外的为不合格.(1)解:+2kg是表示比50kg最多多2kg,-2kg是表示50kg最多少2kg;①±2kg是表示比50kg最多多2kg或最多少2kg;(2)解:50+2=52(kg),50-2=48(kg),在48~52kg之间为合格,则51.3kg,49.8kg,50.3kg,51.8kg为合格,47.5kg为不合格,①51.3kg,49.8kg,50.3kg,51.8kg这四袋大米质量是合格的.【点睛】本题考查正负数的意义,理解正负数的相对性,能用正负数表示同意一对具有相反意义的量是解题的关键.30.整数:3,-26,0;分数:2.6,3.1415926,4 5【解析】【分析】直接根据整数和分数的概念进行判断即可得到答案.解:整数:3,-26,0;分数:2.6,3.1415926,45-. 【点睛】此题主要考查了有理数的分类,解题的关键是掌握有理数的分类.31.(1)见解析(2)见解析【解析】【分析】(1)根据乘方的定义,即可求解;(2)根据乘方的定义,即可求解;(1)解:①(-4)2表示-4的平方,-42表示4的平方的相反数,①(-4)2与-42互为相反数;(2) 解:235⎛⎫ ⎪⎝⎭表示35的平方,235表示23除以5. 【点睛】本题主要考查了乘方的定义,熟练掌握n 个相同因数的积的运算,叫做乘方,记作n a ,其中a 叫做底数,n 叫做指数;注意()n a -的意义是-a 的n 次方”, n a -的意义是“a 的n 次方的相反数”是解题的关键.32.7【解析】【分析】根据有理数的混合运算顺序进行计算即可求解.【详解】解:原式=()()1232--⨯-- 92=-7=本题考查了有理数的混合运算,正确的计算是解题的关键.33.9【解析】【详解】解:10+(﹣5)×2﹣(﹣9)=-+101099=【点睛】本题主要考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键.。
第1章有理数 1.2有理数一、选择题1.在12,0,1,-9四个数中,负数是( )A.12B.0 C.1 D.-92.如图,数轴上蝴蝶所在点表示的数可能为( )A.3 B.2 C.1 D.-13.相反数是它本身的数是( )A.1和-1 B.0C.0和±1 D.0和14.若|-3|=x,则x的值为( )A.3 B.-3C.±3 D.以上都不正确5.若a是有理数,则下列说法正确的是( )A.|a|一定为正数B.-a一定为负数C.-|a|一定为负数D.|a|+1一定为正数6.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,-a,b,-b按照从小到大的顺序排列是( )A.-b<-a<a<b B.a<-b<b<-aC.-b<a<-a<b D.a<-b<-a<b7.学校、冰冰家、书店依次坐落在一条南北走向的大街上,学校在冰冰家的南边20米,书店在冰冰家的北边100米,冰冰从家里出发,向北走了50米,接着又向南走了70米,此时冰冰的位置( )A.在家B.在学校C.在书店D.不在上述地方8.已知数轴上的点A表示的数是2,那么在数轴上到点A的距离是3的点表示的数是( ) A.3或-3 B.5C.-1 D.-1或5二、填空题9.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.23米,记作+0.23米,那么小东跳出了3.75米,记作________.10.若a是最大的负整数,则a=________;若b是绝对值最小的有理数,则b=________;若c比最小的正整数大3,则c=________.11.如图所示,表示0.5的点是________,表示-1.5的点是________,点A表示的数是________.12.化简下列各数:+(-5)=________,-(-313)=________,-[-(-335)]=________.13.A是数轴上的一个点,将点A先向右移动5个单位长度,再向左移动3个单位长度(向右为正方向),终点恰好是原点,则点A表示的数是________.14.比较大小:(1)-2.1________1;(2)-23________-34;(3)-(-5)________-|-5|.15.小明在写作业时不慎将墨水滴在数轴上,请根据图中的数值,判断墨迹盖住部分的整数有________个.三、解答题16.在数轴上表示出下列各数,并将它们用“<”号连接起来:0,-4.5,-|-3|,-(-1),1 3 .17.2018·淮安清江浦区期中把下列各数分别填入相应的大括号里:-4,-|-43|,0,227,-3.14,2020,-(+5),+1.88.(1)正数:{ …};(2)负数:{ …};(3)整数:{ …};(4)分数:{ …}.18.某汽车配件厂生产一种圆形橡胶垫,从中抽取6件产品进行检验.规定:其直径比标准直径大的部分记作正数;比标准直径小的部分记作负数.检查的结果(单位:毫米)记录如下:(1)请找出三个误差相对较小的零件,并用绝对值的知识来说明;(2)若规定与标准直径相差不大于0.2毫米的为合格产品,则6件产品中有几件不合格产品?请写出不合格产品的序号.19.观察下面一列数,探求其规律:1 2,-23,34,-45,56,-67,….(1)写出第7,8,9个数;(2)第2022个数是什么?(3)如果这一列数无限排列下去,与哪两个有理数越来越接近?20.小华骑车从家出发,先向东骑行2 km到达A村,继续向东骑行3 km到达B村,接着又向西骑行9 km到达C村,最后回到家,试解答下列问题:(1)以家为原点,向东为正方向,用1个单位长度表示1 km画数轴,并在数轴上表示出家以及A,B,C三个村庄的位置;(2)C村与A村的距离是多少?(3)小华一共行驶了多少千米?21.已知a,b,c为有理数,且它们在数轴上对应的点的位置如图所示.(1)试判断a,b,c的正负性.(2)根据数轴化简:①|a|=________;②|b|=________;③|c|=________;④|-a|=________;⑤|-b|=________;⑥|-c|=________.(3)若|a|=5.5,|b|=2.5,|c|=5,求a,b,c的值.参考答案1.D 2.D 3.B 4.A5.D 6.B 7.B 8.D 9.-0.25米10.-1 0 411.G D -3 12.-5 313 -33513.-2 14.(1)< (2)> (3)>15.9 [解析] 墨迹盖住部分的整数有-5,-4,-3,-2,1,2,3,4,5,共9个.16.解:将各数表示在数轴上如下:用“<”号连接为-4.5<-|-3|<0<13<-(-1). 17.解:(1)正数:{227,2020,+1.88,…}; (2)负数:{-4,-|-43|,-3.14,-(+5),…}; (3)整数:{-4,0,2020,-(+5),…};(4)分数:{-|-43|,227,-3.14,+1.88,…}. 18.解:(1)三个误差相对较小的零件是3号,4号,5号.理由:|+0.5|=0.5,|-0.3|=0.3,|+0.1|=0.1,|0|=0,|-0.1|=0.1,|+0.2|=0.2.因为0<0.1<0.2<0.3<0.5,故三个误差相对较小的零件是3号,4号,5号.(2)6件产品中有2件不合格产品,分别是1号和2号.19.解:(1)第7,8,9个数分别为78,-89,910. (2)-20222023. (3)与1和-1越来越接近. 20.解:(1)如图:(2)2+|-4|=2+4=6(km).答:C 村与A 村的距离是6 km.(3)|2|+|3|+|-9|+|4|=2+3+9+4=18(km).答:小华一共行驶了18 km.21.解:(1)a为负数,b为正数,c为正数.(2)①-a ②b③c④-a ⑤b⑥c(3)a=-5.5,b=2.5,c=5.。
2.5有理数的混合运算[时间: 60分钟分值: 100分]一、选择题(每题3分,共24分)1.下列各数中为负数的是( )A.0B.|-3|C.-3²D.--(-3)2.据统计,今年“五一”小长假期间,近70 000 人次游览了自贡中华彩灯大世界.70 000用科学记数法表示为 ( )A.0.7×10⁵B.7×10⁴C.7×10⁵D.0.7×10⁴3.—4³的意义是 ( )A.3个—4 相乘B.3 个一4 相加C.—4 乘 3D.4³ 的相反数4.用四舍五入法将130 542精确到千位并用科学记数法表示,正确的是 ( )A.131 000B.0.131×10⁶C.1.31×10⁵D.13.1×10⁴5.下列各组运算中,结果相等的是 ( )A.4³ 和3⁴B.—|5|³ 和(—5)³C.-4²和(一4)²D.(−23)2 和 (−32)36.下列各式中,运算正确的是 ( )A.(-5.8)--(-5.8)=-11.6B.−42÷14×14=−1C.−2³×(−3)²=−72D.[(−5)²+4×(−5)]×(−3)²=−457. 程序计算法按下列程序计算,如果输入一1,则输出的结果是 ( )A.4B.5C.-8D.-48.一张纸的厚度大约为0.09 mm,如图,将其对折、压平,称作第 1 次操作,再将其对折、压平,称作第2次操作……假设这张纸足够大,每一次也能压得足够平整,如此重复,则第10次操作后的厚度最接近于( )A.数学课本的厚度B.姚明的身高C.一层楼房的高度D.一个笔筒的高度二、填空题(每题4分,共24分)9.(2)在 (−32)4中,底数是 ,指数是 .10.计算:(-2)²+(-2)×2= .11.把下列用科学记数法表示的数的原数填在横线上:(1)2.16×10⁶=;(2)−7.123×10³=.12.若 (x −2)2+|y +13|=0,则 yᶻ=.13.−32,(−2)3,(−13)2,(−12)3的大小顺序是 > > > . 14. 定义一种对正整数 n 的“F 运算”:①当n 为奇数时,结果为3n+1;②当n 为偶数时,结果为π/2(其中k 是使此次结果为奇数的正整数),并且运算可以重复进行.例如,n=25时,运算过程如图.若n=34,则第2024次“F 运算”后的结果是 .三、解答题(共52分)15.(12分)按括号里的要求,对下列各数取近似数:(1)0.832 84;(精确到千分位)(2)2 346.46 m;(精确到 1 m)(3)28.3万亿.(精确到万亿位)16.(12 分计算:( (−2)³÷ [−32×(−23)2+2]×16.下面是小颖的解答过程,请认真阅读并完成任务:原式 =(−8)÷(9×49+2)×16 第一步=(−8)÷(4+2)×16 第二步 =(−8)÷6×16 第三步 =(-8)÷1 第四步——8. 第五步任务一:小颖的解答过程共存在两处错误,分别在第 步和第 步;任务二:请写出正确的解答过程.17.(14 分)水葫芦的繁殖'水葫芦是一种水生漂浮植物,有着惊人的繁殖能力.据研究表明:适量水葫芦的生长对水质的净化是有利的,关键是对水葫芦的科学管理和转化利用,若在适宜的条件下,1株水葫芦每5 天就能繁殖1株(不考虑死亡、被打捞等其他因素).(1)假设湖面上现有1株水葫芦,填写下表(其中n为正整数):天数 5 10·15 … 50 … 5n总株数2 4 … …(2)假定某个流域的水葫芦维持在 1 280 株以内对水质净化有益,若现有 10 株水葫芦,请你计算,多少天后该流域内有1 280株水葫芦?18.(14 分)观察下列各式,完成下列问题.1+3=4=2²,1+3+5=9=3²,1+3+5+7=16=4²,1+3+5+7+9=25=5²,…(1)根据上述式子,计算:1+3+5+7+ (99)(2)根据上述规律,请你用自然数n(n≥1)表示一般规律: .(3)根据你所总结的规律计算121+123+ (179)一、1. C 2. B 3. D 4. C 5. B 6. C 7. A8. D 【点拨】第1次操作后的厚度为(0.09×2) mm;第2次操作后的厚度为( (0.09×2²)mm;第 3 次操作后的厚度为( (0.09×2³)mm;……所以第n 次操作后的厚度为(0.09×2") mm;当n=10 时,( 0.09×2ⁿ=0.09×2¹⁰=0.09×1024=92.16,所以第10次操作后的厚度最接近于一个笔筒的高度.二、9. 32₂;4 10. 11.(1)2 160 000 (2)-7 12312 1918.(−13)2;(−12)3;(−2)3;−3214.4 【点拨】当n=34时,每次运算的结果分别是: 342=17,17×3+1=52,5222=13,13×3+1=40,4023=5, 5×3+1=16,1624=1,1×3+1=4,422=1, 所以从第七次开始1 和 4 出现循环,偶数次为4,奇数次为1,所以第 2 024次“F 运算”后的结果是4, 三、15.【解】(1)0.832 84≈0.833.(2)2 346.46 m≈2 346 m.16.【解】任务一:一;四任务二:原式 =−8÷(−9×49+2)×16=−8÷(−4+2)×16=−8÷(−2)×16=4×16 =23.17.【解】(1)2³;2¹⁰;2"(2)根据题意,得10×2"=1 280,解得 n=7,7×5=35(天).所以 35 天后该流域内有 1 280株水葫芦.18.【解】(1)2 500(2)1+3+5+7+…+(2n -1)=n²(3)因为 1+3+5+7+⋯+119=(1+1192)2=602=3600, 1+3+5+7+⋯+179=(1+1792)2=902=8100,所以121+123+...+179 =(1+3+5+7+...+179)-(1+3+5+7+ (119)=8 100-3 600=4 500.。
人教版七年级数学《有理数》计算题专项练习学校:班级:姓名:得分:1、计算:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24).2、计算:12﹣(﹣18)+(﹣7)﹣15;3、计算:(﹣)×(﹣8)+(﹣6)÷(﹣)2.4、计算:(﹣3)+(+15.5)+(﹣6)+(﹣5)5、计算:(﹣﹣)×366、计算:(﹣1)4﹣36÷(﹣6)+3×(﹣)7、计算:(﹣+)×(﹣24)8、计算:﹣32+2×(﹣3)2﹣(﹣6)÷(﹣).9、计算:﹣14÷(﹣5)2×(﹣)10、计算:(﹣5)3×(﹣)+32÷(﹣22)×(﹣1).11、计算:23×(1﹣)×0.5.12、计算:﹣72+2×(﹣3)2+(﹣6)÷(﹣)2.13、计算:4+(﹣2)2×2﹣(﹣36)÷4.14、计算:﹣33+(﹣1)2016÷+(﹣5)2.15、计算:﹣10+8÷(﹣2)2﹣(﹣2)3×(﹣3)16、计算:﹣22÷(﹣1)2﹣×[4﹣(﹣5)2].17、计算:(﹣2)4÷(﹣2)2+5×(﹣)﹣0.25.18、计算:2×(﹣3)2﹣5÷(﹣)×(﹣2)19、计算:(﹣2)3÷+3×|1﹣(﹣2)2|.20、计算:(﹣)2÷()3﹣12×(﹣)21、计算:.22、计算:﹣13﹣(1﹣0.5)××[2﹣(﹣3)2].23、计算:(﹣28)÷(﹣6+4)+(﹣1)×5.人教版七年级数学《有理数》计算题专项练习参考答案与试题解析1.计算:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24).【解答】解:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24)=﹣40+28+19﹣24=﹣(40+24)+(28+19)=﹣64+47=﹣172.计算:12﹣(﹣18)+(﹣7)﹣15;【解答】解:(1)原式=12+18﹣7﹣15=30﹣22=8;3.计算:(﹣)×(﹣8)+(﹣6)÷(﹣)2.【解答】解:原式=4﹣54=﹣50.4.计算:(﹣3)+(+15.5)+(﹣6)+(﹣5)【解答】解:原式=(﹣3﹣6)+(15.5﹣5)=﹣10+10=0.5、计算:(﹣﹣)×36【解答】解:(﹣﹣)×36=8﹣9﹣2=﹣3;6.计算:(﹣1)4﹣36÷(﹣6)+3×(﹣)【解答】解:(﹣1)4﹣36÷(﹣6)+3×(﹣)=1+6+(﹣1)=6.7.计算:(﹣+)×(﹣24)【解答】解:原式=﹣8+18﹣20=﹣10;8.计算:﹣32+2×(﹣3)2﹣(﹣6)÷(﹣).【解答】解:原式=﹣9+2×9﹣(﹣6)×(﹣)=﹣9+18﹣9=0.9.计算:﹣14÷(﹣5)2×(﹣)【解答】解:(1)﹣14÷(﹣5)2×(﹣)=﹣1÷25×(﹣)=﹣1××(﹣)=;10.计算:(﹣5)3×(﹣)+32÷(﹣22)×(﹣1).【解答】解:(﹣5)3×(﹣)+32÷(﹣22)×(﹣1)=﹣125×(﹣)+32×(﹣)×(﹣)=75+10=85.11.计算:23×(1﹣)×0.5.【解答】解:原式=8××=3.12.计算:﹣72+2×(﹣3)2+(﹣6)÷(﹣)2.【解答】解:原式=﹣49+2×9+(﹣6)÷=﹣49+18﹣6×9=﹣49+18﹣5413.计算:4+(﹣2)2×2﹣(﹣36)÷4.【解答】解:原式=4+4×2﹣(﹣9)=4+8+9=21.14.计算:﹣33+(﹣1)2016÷+(﹣5)2.【解答】解:﹣33+(﹣1)2016÷+(﹣5)2=﹣27+1×6+25=﹣27+6+25=4.15.计算:﹣10+8÷(﹣2)2﹣(﹣2)3×(﹣3)【解答】解:原式=﹣10+2﹣24=﹣34+2=﹣32.16.计算:﹣22÷(﹣1)2﹣×[4﹣(﹣5)2].【解答】解:原式=﹣4÷1﹣×(﹣21)=﹣4+7=3.17.计算:(﹣2)4÷(﹣2)2+5×(﹣)﹣0.25.【解答】解:原式=16÷+×(﹣)﹣=﹣﹣=.18.计算:2×(﹣3)2﹣5÷(﹣)×(﹣2)【解答】解:原式=2×9﹣5×(﹣2)×(﹣2)=18﹣20=﹣2.19.计算:(﹣2)3÷+3×|1﹣(﹣2)2|.【解答】解:原式=﹣8×+3×|1﹣4|,=﹣10+3×3,=﹣10+9,20.计算:(﹣)2÷()3﹣12×(﹣)【解答】解:原式=×27﹣9+2=3﹣9+2=﹣4.21.计算:.【解答】解:原式=﹣×﹣×=×(﹣﹣)=﹣.22.计算:﹣13﹣(1﹣0.5)××[2﹣(﹣3)2].【解答】解:原式=﹣1﹣×(2﹣9)=﹣1+=.23.计算:(﹣28)÷(﹣6+4)+(﹣1)×5.【解答】解:原式=﹣28÷(﹣2)﹣5=14﹣5=9.。
人教版七年级数学上册第一章《有理数》课时练习题(含答案)一、单选题1 )A .BC D .32.实数a 的绝对值是54,a 的值是( ) A .54 B .54- C .45± D .54± 3.如图,数轴上两点,M N 所对应的实数分别为,m n ,则m n -的结果可能是( )A .1-B .1C .2D .34.在2,-4,-3,5中,任选两个数的积最小的是( )A .-12B .-15C .-20D .-65.实数2021的相反数是( )A .2021B .2021-C .12021D .12021- 6.2022的相反数是( )A .2022B .2022-C .12022D .12022- 二、填空题7.如图,点A 在数轴上对应的数为2,若点B 也在数轴上,且线段AB 的长为112,C 为OB 的中点,则点C 在数轴上对应的数为__________.8.数轴上一点A ,在原点左侧,离开原点6个单位长度,点A 表示的数是______.9.已知a 、b 为有理数,下列说法:①若a 、b 互为相反数,则“a b =﹣1;②若|a ﹣b |+a ﹣b =0,则b >a ;③若a +b <0,ab >0,则|3a +4b |=﹣3a ﹣4b ;④若|a |>|b |,则(a +b )•(a ﹣b )是正数,其中正确的序号是 _____. 10.如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动:第一次将点A 向左移动3个单位长度到达点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,如果点n A 与原点的距离不小于20,那么n 的最小值是_________.三、解答题11.把下列各数:()4-+,3-,0,213-,1.5 (1)分别在数轴上表示出来:(2)将上述的有理数填入图中相应的圈内.12.(1)写出下列各数的绝对值,并分别把它们和它们的绝对值在数轴上表示出来.11,2,,(3),| 3.5|2-----.(2)已知a ,b 互为相反数,c ,d 互为倒数,m 绝对值等于2的数,求22a b m cd a b c++-++的值.13.已知下列有理数:-4,-212,412,-1,2.5,3(1)在给定的数轴上表示这些数:(2)这些数中是否存在互为相反数的两个数?若存在,请指出来,并写出这两个数之间所有的整数;(3)这些数在数轴上表示的点中是否存在两点之间的距离等于7的两个数?若存在,请指出来。
1.若12a =,3b =,且0a b <,则+a b 的值为( ) A .52 B .52- C .25± D .52± D 解析:D【分析】 根据a b判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0a b< ∴a 和b 异号又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b = 故选D .【点睛】 本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据a b判断出a 和b 异号. 2.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.3.丁丁做了4道计算题:① 2018(1)2018-=;② 0(1)1--=-;③ 1111326-+-=;④11()122÷-=-请你帮他检查一下,他一共做对了( )道 A .1道B .2道C .3道D .4道A 解析:A【分析】根据乘方的意义以及有理数的减法、乘法、除法法则,有理数加减混合运算法则即可判断.【详解】①2018(1)1-=,故本小题错误;②0(1)1--=,故本小题错误; ③1113267-+-=-,故本小题错误; ④11()122÷-=-,正确; 所以,他一共做对了1题.故选A .【点睛】本题考查了有理数的乘方、加法以及除法法则,熟练掌握运算法则是解题关键. 4.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C .本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.5.在-1,2,-3,4,这四个数中,任意三数之积的最大值是( )A .6B .12C .8D .24B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B .【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.6.已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a D 解析:D【解析】【分析】根据数轴表示数的方法得到a <0<b ,且|a|>b ,则-a >b ,-b >a ,然后把a ,b ,-a ,-b 从大到小排列.【详解】∵a <0<b ,且|a|>b ,∴a <-b <b <-a ,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.7.若21(3)0a b -++=,则b a -=( )A .-412B .-212C .-4D .1C解析:C【解析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.8.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7± C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.9.下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2(1)1-=,故选项D 不符合题意,故选:A .【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.10.下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->- A 解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.11.下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=- D 解析:D【分析】 根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D .【详解】A 、()22-2-2441÷=-÷=-,该选项错误;B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D .【点睛】 本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 12.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0C解析:C【解析】从数轴可知m 小于0,n 大于0,从而很容易判断四个选项的正误.解:由已知可得n 大于m ,并从数轴知m 小于0,n 大于0,所以mn 小于0,则A ,B ,D 均错误.故选C .13.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .2C 解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.14.计算(-2)2018+(-2)2019等于( )A.-24037B.-2 C.-22018D.22018C 解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.15.下列计算结果正确的是()A.-3-7=-3+7=4B.4.5-6.8=6.8-4.5=2.3C.-2-13⎛⎫-⎪⎝⎭=-2+13=-213D.-3-12⎛⎫-⎪⎝⎭=-3+12=-212D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.1.若a、b、c、d、e都是大于1、且是不全相等的五个整数,它们的乘积2000abcde=,则它们的和a b c d e++++的最小值为__.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a,b,c,d,e都大于1,得到使a+b+c+d+e尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键.2.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.3.数轴上表示有理数-3.5与4.5两点的距离是___________.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8解析:8【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.故答案为8.4.在数轴上,若点A与表示3-的点相距6个单位,则点A表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.5.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.【解析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值大于10时n是正数;当原数的绝对解析:71.610⨯【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.16000000 =71.610⨯.6.绝对值小于2018的所有整数之和为________.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.7.运用加法运算律填空:212+1(3)3-+612+2(8)3-=1(22+____)+[ ____+2(8)3-].【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可【详解】解:2++6+=)++故答案为:;【点睛】本题考查了有理数的加法掌握加法法则和运算律是解题的关键解析:1621(3)3-【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可.【详解】解:212+1(3)3-+612+2(8)3-=1(22+162)+[1(3)3-+2(8)3-].故答案为:162;1(3)3-. 【点睛】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.8.填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.9.在括号中填写题中每步的计算依据,并将空白处补充完整:(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125______=-(4×2.5)×(8×125)______=____×____=____.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律乘法结合律 -10 1000 -10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可.【详解】(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125(乘法交换律)=-(4×2.5)×(8×125)(乘法结合律)=-10×1000=-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000.【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.++-+++-++++-=_____.【分析】第1 10.计算:(1)(2)(3)(4)(2019)(2020)个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两-解析:1010【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】=-+-++-=-----=-.原式(12)(34)(20192020)11111010-.故答案为:1010【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.11.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解.【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=;当输入2-时,输出的结果为24(3)524350-+---=-++-=.故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键. 1.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58) 解析:(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =154()68-÷⨯- =5468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.2.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值; (2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).解析:(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】 (1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=;①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.3.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.4.计算:(1)13 |38|44⎛⎫--+- ⎪⎝⎭(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦解析:(1)4;(2)13;(3)14-;(4)26.【分析】(1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可;(4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13 |38|44⎛⎫--+- ⎪⎝⎭=13 544 --=5-1 =4;(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭=1 1269-+⨯⨯=-1+4 3=13;(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭=211 1()1 369⨯-÷=519() 3610⨯-⨯=14 -;(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦=157 (48)()(48)(48)2812 -⨯---⨯+-⨯=24+30-28=26.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.。
七年级数学有理数练习题含答案
人教版七年级数学有理数练习题含答案
想要学好数学,一定要多做同步练习,以下所介绍的人教版七年级数学有理数练习题(含参考答案)同步练习,主要是针对每一单元学过的知识来巩固自己所学过的内容,希望对大家有所帮助!
一、耐心填一填,一锤定音(每小题3分,共30分)
1、若太平洋最深处低于海平面11034米,记作-11034米,则珠穆朗玛峰高出海平面8848米,记作______。
2、+10千米表示王玲同学向南走了10千米,那么-9千米表示_______;0千米表示_____。
3、在月球表面上,白天阳光垂直照射的地方温度高达127℃,夜晚温度可降到-183℃,那么-183℃表示的意义为_______。
4、七(8)班数学兴趣小组在一次数学智力大比拼的竞赛中的平均分数为90分,张红得了85分,记作-5分,则小明同学行92分,可记为____,李聪得90分可记为____,程佳+8分,表示______。
5、有理数中,最小的正整数是____,最大的负整数是____。
6、数轴上表示正数的点在原点的___,原点左边的数表示___,____点表示零。
7、数轴上示-5的点离开原点的距离是___个单位长度,数轴上离开原点6个单位长度的点有____个,它们表示的数是____
8、数轴上表示的点到原点的距离是_____
9、在1.5-7.5之间的整数有_____,在-7.5与-1.5之间的整数有_____
10、已知下列各数:-23、-3.14、,其中正整数有__________,整数有______,负分数有______,分数有_________。
二、精心选一选,慧眼识金!(每小题3分,共30分)
1、把向东运动记作“+”,向西运动记作“_”,下列说法正确的是()
A、-3米表示向东运动了3米
B、+3米表示向西运动了3米
C、向西运动3米表示向东运动-3米
D、向西运动3米,也可记作向西运动-3米。
2、下列用正数和负数表示相反意义的量,其中正确的是()
A、一天凌晨的'气温是-5℃,中午比凌晨上升4℃,所以中午的气温是+4℃
B、如果+3.2米表示比海平面高3.2米,那么-9米表示比海平面低5.8米
C、如果生产成本增加5%,记作+5%,那么-5表示生产成本降低5%
D、如果收入增加8元,记作+8元,那么-5表示支出减少5元。
3、下列语句中正确的是()
A、零是自然数
B、零是正数
C、零是负数
D、零不是整数
4、最小的正理数()
A、是0
B、是1
C、是0.00001
D、不存在
5、下列说法中,其中不正确的是()
A、0是整数
B、负分数一定是有理数
C、一个数不是正数,就一定是负数
D、0是有理数
6、正整数集合与负整数集合合并在一起构成的集合是()
A、整数集合
B、有理数集合
C、自然数集合
D、以上说法都不对
7、下列说法中正确的有()
①0是取小的自然数;②0是最小的正数;③0是最小的非负
数;④0既不是奇数,也不是偶数;⑤0表示没有温度。
A、1个
B、2个
C、3个
D、4个8、若字母表示任意一个数,则它表示的数一定是()
A、正数
B、负数
C、0
D、以上情况都有可能
9、一辆汽车向南行驶5千米,再向南行驶-5千米,结果是()
A、向南行驶10千米
B、向北行驶5千米
C、回到原地
D、向北行驶10千米
10、下列说法错误的是()
A、有理数是指整数、分数、正有理数、零、负有理数这五类数
B、一个有理不是整数就是分数
C、正有理数分为正整数和正分数
D、负整数、负分数统称为负有理数
三、用心做一做,马到成功!(共40分)
1、(6分)把下列各数填在相应的集合内:
-23,0.25,,-5.18,18,-38,10,+7,0,+12
正数集合:{………}
整数集合:{………}
分数集合:{………}
2、(6分)如图所示的A、B、C表示三个数集,每个数集中所包含的数都写在各自的大括号内中,请把这些数填在集合圈内的相应位置。
A={-2,-3,-8,6,7………}
B={-3,-5,1,2,6………}
C={-1,-3,-8,2,5………}
3、(7分)数学魔术
如图所示,数轴上的点A、B、C、D分别表示请回答下列问题:
(1)在数轴上描出A、B、C、D四个点
(2)B、C两点间的距离是多少?A、D两点间的距离是多少?
(3)现在把数轴的原点取在点B处,其余都不变,那么点A、B、
C、D、分别表示什么数?
4、(7分)某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男
生的成绩如下表:
2-103-2-310
(1)这8名男生的达标率是百分之几?
(2)这8名男生共做了多少个俯卧撑?
5、(7分)现测和的四位学生身高如下:156㎝,158㎝,153㎝,157㎝:
(1)求这四名学生身高的平均值
(2)以计算的平均值为标准,将平均值记为0,用正负数表示出
每位学生的身高。
6、(7分)学习数轴这节后,中午小明把刚做好的作业放在桌子上,被马虎的小刚把几滴墨水洒在数轴上,根据图中标出的数值,
写出被墨水盖住的所有整数。
参考答案:
一、
1、+8848米
2、向北走了9千米,在原地
3、零下183℃
4、+2分,0分,98分
5、1,-1
6、右边,负,原
7、5,2,±6
8、
9、2,3,4,5,6,7-2,-3,-4,-5,-6,-7
10、38,+1-23,38,0,+1-3.14,-0.1-3.14,
二、
1、C
2、C
3、A
4、D
5、C
6、D
7、B
8、D
9、C10、A
三、
1、
正数集合:{0.25,18,10,+7,+12………}
整数集合:{-23,18,-38,10,+7,0,+12………}
分数集合:{0.25,,-5.18………}
2、
3、
(1)
(2)1.5,7
(3)
4、
(1)50%,(2)56个
5、
6、-10,-9,-8,-7,-6,5,6,7,8。