浙大版概率论与数理统计答案---第五章
- 格式:doc
- 大小:446.50 KB
- 文档页数:5
《概率论与数理统计》习题解答教材:《概率论与数理统计及其应用》,浙江大学盛骤、谢式千编,高等教育出版社,2004年7月第一版目录第一章随机事件及其概率1第二章随机变量及其分布9第三章随机变量的数字特征25第四章正态分布33第五章样本及抽样分布39第六章参数估计42第七章假设检验53第一章 随机事件及其概率1、解:(1){}67,5,4,3,2=S (2){} ,4,3,2=S (3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S =2、设A , B 是两个事件,已知81)(,21)(,41)(===AB P B P A P ,求)(B A P ,)(B A P ,)(AB P ,)])([(AB B A P 解:81)(,21)(,41)(===AB P B P A P ∴)()()()(AB P B P A P B A P -+= 85812141=-+= )()()(AB P B P B A P -=838121=-=87811)(1)(=-=-=AB P AB P)])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB ⊂218185=-=3、解:用A 表示事件“取到的三位数不包含数字1”2518900998900)(191918=⨯⨯==C C C A P4、在仅由0,1,2,3,4,5组成且每个数字至多出现一次的全体三位数字中,任取一个三位数,(1)该数是奇数的概率;(2)求该数大于330的概率。
解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330”(1) 455443)(2515141413⨯⨯⨯⨯==A C C C C A P =0.48 2) 455421452)(251514122512⨯⨯⨯⨯+⨯⨯=+=A C C C A C B P =0.485、袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率 (1)4只中恰有2只白球,1只红球,1只黑球; (2)4只中至少有2只红球; (3)4只中没有白球解:用A 表示事件“4只中恰有2只白球,1只红球,1只黑球”(1)412131425)(C C C C A P ==495120=338(2)用B 表示事件“4只中至少有2只红球”16567)(4124418342824=++=C C C C C C B P 或4124838141)(C C C C B P +-==16567495201= (3)用C 表示事件“4只中没有白球”99749535)(41247===C C C P 6、解:用A 表示事件“某一特定的销售点得到k 张提货单”nkn k n MM C A P --=)1()( 7、解:用A 表示事件“3只球至少有1只配对”,B 表示事件“没有配对”(1)3212313)(=⨯⨯+=A P 或321231121)(=⨯⨯⨯⨯-=A P (2)31123112)(=⨯⨯⨯⨯=B P 8、(1)设1.0)(,3.0)(,5.0)(===AB P B P A P ,求(),(),(),(),P A B P B A P A B P A A B(),()P AB A B P A AB ;(2)袋中有6只白球,5只红球每次在袋中任取一只球,若取到白球,放回,并放入1只白球,若取到红球不放回也不再放回另外的球,连续取球四次,求第一、二次取到白球且第三、四次取到红球的概率。
概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。
表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
第五章 大数定理和中心极限定理1. [一] 据以往经验某种电器元件的寿命服从均值为100小时的指数分布, 现在随机的抽取16只, 设它们的寿命是相互独立的, 求这16只元件寿命总和大于1920小时的概率。
解:设第i 只寿命为Xi, (1≤i ≤16), 故E (Xi )=100, D (Xi )=1002(l=1,2,…,16).依本章定理1知⎪⎪⎪⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎪⎪⎪⎭⎫⎝⎛⨯-≤⨯-=≤∑∑∑===8.040016001001616001920100161600)1920(1616161i i i i i i X P X P X P.7881.0)8.0(=Φ=从而.2119.07881.01)1920(1)1920(161161=-=≤-=>∑∑==i ii iXP XP3. [三] 计算机在进行加法时, 对每个加数取整(取为最接近它的整数), 设所有的取整误差是相互独立的, 且它们都在(-0.5, 0.5)上服从均匀分布,(1)若将1500个数相加, 问误差总和的绝对值超过15的概率是多少? (2)几个数相加在一起使得误差总和的绝对值小于10的概率不小于0.90 解:(1)设取整误差为Xi ( , 1500), 它们都在(-0.5, 0.5)上服从均匀分布。
于是:12112)]5.0(5.0[)(2=--=i X D 18.111251211500)(,0)(==⨯==i i X nD X nE ⎭⎬⎫⎩⎨⎧≤≤--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>∑∑∑===1515115115150011500115000i i i i i i X P X P X P⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤≤--=∑=18.111518.1118.1115115001i i X P1802.0]9099.01[2)]34.1(1[2)]34.1()34.1([1=-⨯=Φ-=-Φ-Φ-=8. 某药厂断言, 该厂生产的某种药品对于医治一种疑难的血液病的治愈率为0.8, 医院检验员任意抽查100个服用此药品的病人, 如果其中多于75人治愈, 就接受这一断言, 否则就拒绝这一断言。
第二章 随机变量及其分布1.[一] 一袋中有5只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为也可列为下表 X : 3, 4,5 P :106,103,101 3.[三] 设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。
解:任取三只,其中新含次品个数X 可能为0,1,2个。
3522)0(315313===C C X P 3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表X : 0, 1, 2 P :351,3512,3522 4.[四] 进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1) (1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。
(此时称X 服从以p 为参数的几何分布。
)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。
x1 2O P(此时称Y 服从以r, p 为参数的巴斯卡分布。
)(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。
解:(1)P (X=k )=q k -1pk=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p ,或记r+n=k ,则 P {Y=k }= ,1,,)1(11+=----r r k p p C rk r r k (3)P (X=k ) = (0.55)k -10.45k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P 6.[六] 一大楼装有5个同类型的供水设备,调查表明在任一时刻t 每个设备使用的概率为0.1,问在同一时刻(1)恰有2个设备被使用的概率是多少?0729.0)9.0()1.0()2(322525225=⨯⨯===-C q p C X P(2)至少有3个设备被使用的概率是多少?00856.0)1.0()9.0()1.0()9.0()1.0()3(5554452335=⨯+⨯⨯+⨯⨯=≥C C C X P(3)至多有3个设备被使用的概率是多少?3225415505)9.0()1.0()9.0(1.0)9.0()3(⨯⨯+⨯⨯+=≤C C C X P99954.0)9.0()1.0(2335=⨯⨯+C(4)至少有一个设备被使用的概率是多少?40951.059049.01)0(1)1(=-==-=≥X P X P[五] 一房间有3扇同样大小的窗子,其中只有一扇是打开的。
概率论与数理统计第五章课后习题及参考答案1.用切比雪夫不等式估计下列各题的概率.(1)废品率为03.0,1000个产品中废品多于20个且少于40个的概率;(2)200个新生儿中,男孩多于80个而少于120个的概率(假设男孩和女孩的概率均为5.0).解:(1)设X 为1000个产品中废品的个数,则X ~)1000,03.0(B ,有30)(=X E ,1.29)(=X D ,由切比雪夫不等式,得)3040303020()4020(-<-<-=<<X P X P )103010(<-<-=X P )1030(<-=X P 709.0101.2912=-≥.(2)设X 为200个新生儿中男孩的个数,则X ~)200,5.0(B ,有100)(=X E ,50)(=X D ,由切比雪夫不等式,得)10012010010080()12080(-<-<-=<<X P X P )2010020(<-<-=X P )20100(<-=X P 87205012=-≥.2.一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<X P .解:设i X 为该骰子掷第i 次出现的点数,则61)(==k X P i ,6,,2,1 =i ,6,,2,1 =k .27)654321(61)(=+++++=i X E ,691)654321(61)(2222222=+++++=i X E ,35)]([)()(22=-=i i i X E X E X D ,4,3,2,1=i .因为4321X X X X X +++=,且1X ,2X ,3X ,4X 相互独立,故有14)(=X E ,335)(=X D .由切比雪夫不等式,得)1418141410()1810(-<-<-=<<X P X P )4144(<-<-=X P )414(<-=X P 271.0433512=-≥.3.袋装茶叶用及其装袋,每袋的净重为随机变量,其期望值为100g ,标准差为10g ,一大盒内装200袋,求一盒茶叶净重大于5.20kg 的概率.解:设i X 为一袋袋装茶叶的净重,X 为一盒茶叶的净重,由题可知∑==2001i i X X ,100)(=i X E ,100)(=i X D ,200,,2,1 =i .因为1X ,2X ,…,200X 相互独立,则20000)()(2001==∑=i i X E X E ,20000)()(2001==∑=i i X D X D .)()(20500)()(()20500(2001X D X E X D X E X P X P i i ->-=>∑=)1020020000205001020020000(⋅->⋅-=X P )2251020020000(>⋅-=X P 由独立同分布的中心极限定理,1020020000⋅-X 近似地服从)1,0(N ,于是0002.0)5.3(1)2251020020000(=Φ-≈>⋅-X P .4.有一批建筑用木桩,其80%的长度不小于3m .现从这批木桩中随机取出100根,试问其中至少有30根短于3m 的概率是多少?解:设X 为100根木桩中短于3m 的根数,则由题可知X ~)2.0,100(B ,有20)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)30(1)30(<-=≥X P X P )42030(1)()((1-Φ-=-Φ-=X D X E X 0062.0)5.2(1=Φ-=.5.某种电器元件的寿命服从均值为100h 的指数分布.现随机选取16只,设它们的寿命是相互独立的.求这16只元件寿命总和大于1920h 的概率.解:设i X 为第i 只电器元件的寿命,由题可知i X ~)01.0(E ,16,,2,1 =i ,且1X ,2X ,…,16X 相互独立,则100)(=i X E ,10000)(=i X D .记∑==161i i X X ,则1600)()(161==∑=i i X E X E ,160000)()(161==∑=i i X D X D .))()(1920)()(()1920(X D X E X D X E X P X P ->-=>)400160019204001600(->-=X P )8.04001600(>-=X P ,由独立同分布的中心极限定理,1600-X 近似地服从)1,0(N ,于是2119.0)8.0(1)8.04001600(=Φ-=>-X P .6.在数值计算中中,每个数值都取小数点后四位,第五位四舍五入(即可以认为计算误差在区间]105,105[55--⨯⨯-上服从均匀分布),现有1200个数相加,求产生的误差综合的绝对值小于03.0的概率.解:设i X 为每个数值的误差,则i X ~)105,105(55--⨯⨯-U ,有0)(=i X E ,1210)(8-=i X D ,1200,,2,1 =i .从而0)()(12001==∑=i i X E X E ,61200110)()(-===∑i i X D X D .由独立同分布的中心极限定理,X 近似地服从)10,0(6-N ,于是)03.0(<X P ))()(03.0)()((X D X E X D X E X P -≤-=12101200003.0121012000(44--⋅-≤⋅-=X P 9974.01)3(2=-Φ=.7.某药厂断言,该厂生产的某药品对医治一种疑难的血液病治愈率为8.0.医院检验员任取100个服用此药的病人,如果其中多于75个治愈,就接受这一断言,否则就拒绝这一断言.(1)若实际上此药对这种病的治愈率是8.0,问接受这一断言的概率是多少?(2)若实际上此药对这种病的治愈率是7.0,问接受这一断言的概率是多少?解:设X 为100个服用此药的病人中治愈的个数,(1)由题可知X ~)8.0,100(B ,则80)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 48075(1))()((1-Φ-=-Φ-=X D X E X 8944.0)25.1(=Φ=.(2)由题可知X ~)7.0,100(B ,则70)(=X E ,21)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 217075(1)()((1-Φ-=-Φ-=X D X E X 1379.0)09.1(1=Φ-=.8.一射手在一次射击中,所得环数的分布律如下表:X678910P 05.005.01.03.05.0求:(1)在100次射击中环数介于900环与930环之间的概率是多少?(2)超过950环的概率是多少?解:设X 为100次射击中所得的环数,i X 为第i 次射击的环数,则∑==1001i i X X ,15.9)(=i X E ,95.84)(2=i X E ,2275.1)]([)()(22=-=i i i X E X E X D ,100,,2,1 =i .由1X ,2X ,…,100X 相互独立,得915)()(1001==∑=i i X E X E ,75.122)()(1001==∑=i i X D X D .由独立同分布的中心极限定理,75.122915-X 近似地服从)1,0(N ,于是(1))930900(≤≤X P ))()(930)()()()(900(X D X E X D X E X X D X E P -≤-≤-=75.12291593075.12291575.122915900(-≤-≤-=X P )75.1221575.122915(≤-=X P 823.01)35.1(2=-Φ≈.(2))950(>X P ))()(950)()((X D X E X D X E X P ->-=75.122915950)()((->-=X D X E X P 001.0)1.3(1=Φ-≈.9.设有30个电子元件1A ,2A ,…,30A ,其寿命分别为1X ,2X ,…,30X ,且且都服从参数为1.0=λ的指数分布,它们的使用情况是当i A 损坏后,立即使用1+i A (29,,2,1 =i ).求元件使用总时间T 不小于350h 的概率.解:由题可知i X ~)1.0(E ,30,,2,1 =i ,则10)(=i X E ,100)(=i X D .记∑==301i i X T ,由1X ,2X ,…,30X 相互独立,得300)()(301==∑=i i X E T E ,3000)()(301==∑=i i X D T D .))()(350)()(()350(T D T E T D T E T P T P ->-=>30103003503010300(⋅->⋅-=T P )91.03010300(>⋅-≈T P ,由独立同分布的中心极限定理,3010300⋅-T 近似地服从)1,0(N ,于是1814.0)91.0(1)91.03010300(=Φ-=>⋅-T P .10.大学英语四级考试,设有85道选择题,每题4个选择答案,只有一个正确.若需要通过考试,必须答对51道以上.试问某学生靠运气能通过四级考试的概率有多大?解:设X 为该学生答对的题数,由题可知X ~41,85(B ,则25.21)(=X E ,9375.15)(=i X D ,85,,2,1 =i .由棣莫弗—拉普拉斯中心极限定理,近似地有9375.1525.21-X ~)1,0(N ,得)8551(≤≤X P ))()(85)()()()(51(X D X E X D X E X X D X E P -≤-≤-=)9375.1525.21859375.1525.219375.1525.2151(-≤-≤-=X P 0)45.7()97.15(=Φ-Φ=.即学生靠运气能通过四级考试的概率为0.。
当零假设H o 成立时,变量:汕 X32.0. 6~N(0, 1)1.10.89 1.9632.0,所以可以认为这批机制砖的平均抗断强度 显着为32.0kg/cm 2。
解:这是检验正态总体数学期望是否大于10提出假设:H 。
:10, H 1 : 10 即:H 0 :10,H 1 :10由题设,样本容量n5,20.12,0.120.1,检验解:这是检验正态总体数学期望提出假设:H 。
:32.0, 由题设,样本容量n 6,是否为H 1 : 32.01.21,1.21 1.1,所以用 U因检验水平 0.05,由 P{| U|0.05,查表得1.96得到拒绝域: |u |1.96计算得:1(32.6 30.0 31.6632.0 31.8 31.6) 31.600-壮叫0.89它没有落入拒绝域,于是不能拒绝H 。
,而接受H 0,即可以认为X 10.1万 km ,所以用U 检验当零假设H o 成立时, 变量: X10一5~N(0,1)0.1因检验水平 0.05,由P{U} 0.05,查表得'1.64得到拒绝域: 1.64计算得:ux 0 斤 10.1n0.110” 52.242.24 1.64它落入拒绝域, 于是拒绝零假设 H 0,而接受备择假设H 1,即可认为 10所以可以认为这批新摩托车的平均寿命 有显者提高。
解:这是检验正态总体数学期望是否小于240提出假设:H 。
:即:H 。
:由题设,样本容量n240, H 1 : 240 240,H 1 : 2402625,、625 25, x 220,所6 以用U 检验当零假设H o 成立时, 变量:因检验水平 0.05, 由P{U得到拒绝域: u1.64计算得:u Xn220U 02406 25”nX 2406 ~ N(0,1)250.05,查表得'1.641.959它落入拒绝域,于是拒绝H o,而接受H i,即可以认为240所以可以认为今年果园每株梨树的平均产量显着减少。
概率论与数理统计及其应用课后答案(浙江大学-盛骤版)
目录
第一章随机变量及其概率. (2)
第二章随机变量及其分布. (13)
第三章随机变量的数字特征. (30)
第四章正态分布. (39)
第五章样本及抽样分布. (49)
第六章参数估计. (55)
第七章假设检验. (68)
第一章随机变量及其概率
1,写出下列试验的样本空间:
(1)连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。
(2)连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。
(3)连续投掷一枚硬币直至正面出现,观察正反面出现的情况。
(4)抛一枚硬币,若出现H则再抛一次;若出现T,则再抛一颗骰子,观察出现的各种结果。
解:(1)S {2,345,6,7} ;(2)S {2,3,4, } ;(3)S
{H ,TH ,TTH ,TTTH , };
(4)S {HH , HT,T1,T2,T3,T4,T5,T6} o
2,设A,B 是两个事件,已知P(A) 0.25,P(B) 0.5,P(AB) 0.125,,求
P(A B), P(AB), P(AB), P[( A B)(AB)]。
解:P(A B) P(A) P(B) P(AB) 0.625,
P(AB) P[(S A)B] P(B) P(AB) 0.375,
P(AB) 1 P(AB) 0.875,
P[(A B)(AB)] P[(A B)(S AB)] P(A B) P[(A B)( AB)] 0.625 P(AB) 0.5。
第五章 大数定律及中心极限定理注意: 这是第一稿(存在一些错误)1、 解(1)由于{0}1P X ≥=,且()36E X =,利用马尔科夫不等式,得(){50}0.7250E X P X ≥≤= (2)2()2D X =,()36E X =,利用切比雪夫不等式,所求的概率为:223{3240}1(364)10.75164P X P X <<=--≥≥-==2、解:()500,0.1i X B :,5005001211500111610%5%192.8%5000.05125i i i i D X P X ==⎛⎫⎪⎧⎫⎝⎭-<≥-==⎨⎬⎩⎭∑∑3、 解 ξ服从参数为的几何分布,11(),(2,3,4)2n P n n ξ-⎛⎫=== ⎪⎝⎭L可求出2()()3,()2n E nP n D ξξξ∞=====∑于是令()2a b E ξ+=,2b aε-=,利用切比雪夫不等式,得 有2()()1(())175%D P a b P E ξξξξεε<<=--≥≥-=从而可以求出()3()3a E b E εξεξε==-=-=+=+4、解:()()()()()()()1,,n nnX n n n x F x P X x P X x X x F x a=≤=≤≤==L ,()0,x a ∈。
则()()()()()11nn n X n nx p x n F x p x a--==,()0,x a ∈。
()()101n n aX n nx n E x x dx a a n -=⋅=+⎰,()()()()21222121n n aX n nx n n D x x dx a a a n n n -⎛⎫=⋅-= ⎪+⎝⎭++⎰。
()()()222121n n n P X a a n n n εε⎧⎫-≥≤⎨⎬+++⎩⎭, 所以(){}lim 0n n P X a ε→∞-≥=。
5、 解 服从大数定律。
由题意得:()2/32/32/3{},()()!kii i i i e P X k E X D X i k -====由1/32/32221111111()()0nn n n i i i i i D X D X i n n n n ->∞===⎛⎫==≤−−−→ ⎪⎝⎭∑∑∑根据马尔科夫大数定律,可判断该序列服从大数定律的。
6、解:(1)()2h x x =,则()h x 连续。
()()22211E h X EX σμ==+<∞,则0ε∀>,有()22211lim 0n i n i P X n σμε→∞=⎧⎫-+≥=⎨⎬⎩⎭∑,则()22211n p i i X n σμ=−−→+∑,()n →∞。
(2)()()2h x x μ=-连续,()()()2211E h X E X μσ=-=<∞,则0ε∀>,有()2211lim 0n i n i P X n μσε→∞=⎧⎫--≥=⎨⎬⎩⎭∑,则()2211n p i i X n μσ=-−−→∑,()n →∞。
(3)12122211lim pnnnnn iii i X X X X X X EXX→∞==++++++−−→∑∑L L12pn X X X X n μ+++=−−→L ,()()2222111np i i X n S nX n n σμ==-+−−→-+∑,故()12222221lim1pnnn ii X X X n n n Xμμσμσμ→∞=+++−−→=-++∑L(4)原式依概率收敛,即lim pn E→∞−−→lim lim n n nX →∞→∞=n XS=)n Sμ=+n Sμ= E Sμ=μσ=7 解 (1)由题意得:221111{}1110n n i i i i P X a P X a n n εε==⎧⎫-≥=--<=-=⎨⎬⎩⎭∑∑根据推论,可求得22122()x a E X x e dx λλλ∞-===⎰(2)由题意得:211(),()i i E X D X λλ==,100100100211112111(),()()5050250025i i i i i i E X D X D X λλ======∑∑∑ 根据中心极限定理,可知10021121~(,)5025ii X N λλ=∑ (3) 2224224(),()i i E X a D X λλ===,利用中心极限定理,可知10022411224~(,)100100ii X N λλ=∑ 从而10022112{}0.5100i i P X λ=≤=∑8、解:()500,150X N -:近似地,()()()506016010.210.27.9%50X P P X P X P -⎛⎫=>=-≤=-≤=-Φ= ⎪⎝⎭9、解 (1)由题意得:记{}20.95 1.050.95 1.05 1.122p P X =<<=--,引入随机变量 10,i i Y i ⎧=⎨⎩L ,第次试验中该事件发生,i=1,2,3第次试验中该事件不发生,且(1)i P Y p ==于是1n ii Y Y ==∑服从二项分布:1001001001()()(1)n k k ii P Y k P Y k Cp p -=====-∑方法一:(Y 的精确分布)10099(2)1(0)(1)1(1)100(1)99.756%P Y P Y P Y p p p >=-=-==----=方法二(泊松分布)Y 近似服从参数为100p 的泊松分布100100(2)1(0)(1)110099.66%p p P Y P Y P Y e pe -->=-=-==--=方法三:(中心极限定理)Y 近似服从(100,100(1))N p p p -于是:(2)1(2)199.55%P Y P Y >=-≤=-Φ=(2)设至少需要n 次观察 记133224q P X ⎧⎫=<<=⎨⎬⎩⎭,这时(1)i P Y q ==于是1ni i Y Y ==∑近似服从(,(1))N nq nq q -95%(80)1P Y P ≤≥=≥=-Φ1.65≈,从而求得n=11710、解:1,0.3,2,0.5,3,0.2. X⎧⎪=⎨⎪⎩10.320.500.2 1.3EX=⨯+⨯+⨯=,2220.30.30.70.5 1.30.20.61 DX=⨯+⨯+⨯=,()80011.30,1iXN-∑:近似地,则8008001110001.3 1.31000iiiXP X P=⎛⎫--⎪⎛⎫>=>⎪⎝⎭∑∑()1.8196.48%=Φ=11 、解(1)由题意得,引入随机变量101000,0iiXi⎧=⎨⎩L,第名选手得分,i=1,2,3,第名选手不得分,且(1)0.3iP X==所求的概率为:100100110.33586.21%iiiXP X P=-⎛⎫≤=≤=Φ=⎪⎝⎭∑∑(2)用iX表示第i名选手的得分,则23(0)0.2,(1)0.2*0.80.16(2)0.2*0.80.128,(4)0.80.512i ii iP X P XP X P X===========并且() 2.464,() 2.793i iE X D X==1002.464*100~(0,1)iXN-∑,于是所求的概率为:1001(220)1(1.58)94.3%iiP X=≥=-Φ=Φ=∑。