导数的应用综合练习
- 格式:doc
- 大小:526.50 KB
- 文档页数:8
专题4.4 导数的综合应用(真题测试)一、单选题1.(2017·全国·高考真题(理))已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则=a ( ) A .12-B .13C .12D .12.(2015·陕西·高考真题(理))对二次函数(为非零整数),四位同学分别给出下列结论,其中有且仅有一个结 论是错误的,则错误的结论是 A .是的零点 B .1是的极值点 C .3是的极值D .点在曲线上3.(2022·青海·海东市第一中学模拟预测(理))已知函数()2e 2xx f x a x =-+,若有且仅有两个正整数,使得()0f x <成立,则实数a 的取值范围是( ) A .211,3e e ⎡⎫⎪⎢⎣⎭B .3291,5e e ⎡⎫⎪⎢⎣⎭C .391,5e 3e ⎡⎫⎪⎢⎣⎭D .212,2e e ⎡⎫⎪⎢⎣⎭4.(2014·全国·高考真题(文))已知函数,若存在唯一的零点,且,则的取值范围是( ) A .B .C .D .5.(2022·青海·海东市第一中学模拟预测(理))若函数()()22e e x x f x x ax a a R =+-∈有三个不同的零点,则实数a 的取值范围是( ) A .1,e ⎛⎫+∞ ⎪⎝⎭B .1,1e ⎛⎫ ⎪⎝⎭C .2110,,1e e e ⎛⎫⎛⎫⋃ ⎪ ⎪-⎝⎭⎝⎭D .210,e e ⎛⎫ ⎪-⎝⎭6.(2022·河南·开封市东信学校模拟预测(理))对任意0x >,不等式e ln()(1)0x ax a x -+-≥恒成立,则正数a 的最大值为( ) ABC .1eD .e7.(2015·全国·高考真题(理))设函数()(21)xf x e x ax a =--+,其中1a < ,若存在唯一的整数0x ,使得2()f x ax bx c =++a 1-()f x ()f x ()f x (2,8)()y f x =32()31f x ax x =-+()f x 0x 00x >a ()2,+∞()1,+∞(),2-∞-(),1-∞-0()0f x <,则a 的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭B .33,2e 4⎡⎫-⎪⎢⎣⎭ C .33,2e 4⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭8.(2022·内蒙古·海拉尔第二中学模拟预测(理))已知函数()()e ln e (0)xf x a a a =+>,若对任意实数1x >,不等式()()ln 1f x x ≥-总成立,则实数a 的取值范围为( ) A .210,e ⎛⎫ ⎪⎝⎭B .221,e e ⎛⎤⎥⎝⎦C .21,e ⎛⎫+∞ ⎪⎝⎭D .21,e ⎡⎫+∞⎪⎢⎣⎭二、多选题9.(2022·辽宁实验中学模拟预测)我们把形如(),,0f x y y '=的方程称为微分方程,符合方程的函数()y f x =称为微分方程的解,下列函数为微分方程0xy y xy +-'=的解的是( ) A .e x y = B .e x y x =C .e 1x y x =+D .e (R)x y c x c =⋅∈⋅10.(2022·河北沧州·二模)已知实数,a b 满足e e e a b a b ++=,则( ) A .0ab < B .1a b +> C .e e 4a b +D .e 1a b >11.(2022·湖南·模拟预测)已知1x >,1y >,且()()1e 11e y xx y ++=+,则下列结论一定正确的是( )A .()ln 0x y ->B .122x y +<C .226x y +>D .()ln ln3x y +<12.(2022·全国·高考真题)已知函数,则( )A .有两个极值点B .有三个零点C .点是曲线的对称中心D .直线是曲线的切线三、填空题13.(2020·河南高三其他(理))函数()2222ln x f x x e x ax =--,若0a =,则()f x 在[]1,2的最小值为_______;当0x >时,()1f x ≥恒成立,则a 的取值范围是_____. 14.(2022·全国·模拟预测(理))若曲线ln x y x =与212y kx =-仅有1个公共点,则k 的取值范围是3()1f x x x =-+()f x ()f x (0,1)()y f x =2y x =()y f x =___________.15.(2012·福建·高考真题(理))对于实数a 和b ,定义运算“*”: 设f (x )=(2x -1)*(x -1),且关于x 的方程为f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是_________________16.(2022·江苏·常州高级中学模拟预测)已知函数22()ln 2e f x x x mx =-+,若()0f x ≥的解集中恰有一个整数,则m 的取值范围为________. 四、解答题17.(2018·全国·高考真题(文))已知函数.(1)求曲线在点处的切线方程; (2)证明:当时,.18.(2017·全国·高考真题(理))已知函数(1)讨论的单调性;(2)若有两个零点,求的取值范围.19.(2017·全国·高考真题(文))已知函数.(1)讨论的单调性; (2)当时,证明. 20.(2016·全国·高考真题(文))设函数. (Ⅰ)讨论的单调性; (Ⅱ)证明当时,; (Ⅲ)设,证明当时,.21.(2015·全国·高考真题(理))设函数.(1)证明:在单调递减,在单调递增;(2)若对于任意,都有,求m 的取值范围.22.(2014·四川·高考真题(理))已知函数,其中,为自然对数的底数.(Ⅰ)设是函数的导函数,求函数在区间上的最小值;22,,a ab a ba b b ab a b ⎧-≠=⎨->⎩()21x ax x f x e +-=()y f x =()0,1-1a ≥()0f x e +≥()()2e 2e x xf x a a x =+--()f x ()f x a 2()ln (21)f x x ax a x =+++()f x 0a <3()24f x a≤--()ln 1f x x x =-+()f x (1,)x ∈+∞11ln x x x-<<1c >(0,1)x ∈1(1)xc x c +->2()e mx f x x mx =+-()f x (,0)-∞(0,)+∞12,[1,1]x x ∈-12|()()|1f x f x e -≤-2()1x f x e ax bx =---,a b R ∈ 2.71828e =()g x ()f x ()g x [0,1](Ⅱ)若,函数在区间内有零点,求的取值范围(1)0f ()f x (0,1)a专题4.4 导数的综合应用(真题测试)一、单选题1.(2017·全国·高考真题(理))已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则=a ( ) A .12-B .13C .12D .1【答案】C 【解析】 【分析】 【详解】因为()221111()2()1()1x x x x f x x x a e e x a e e --+--+=-++=-++-,设1t x =-,则()()()21t t f x g t t a e e -==++-,因为()()g t g t =-,所以函数()g t 为偶函数,若函数()f x 有唯一零点,则函数()g t 有唯一零点,根据偶函数的性质可知,只有当0=t 时,()0g t =才满足题意,即1x =是函数()f x 的唯一零点,所以210a -=,解得12a =.故选:C. 2.(2015·陕西·高考真题(理))对二次函数(为非零整数),四位同学分别给出下列结论,其中有且仅有一个结 论是错误的,则错误的结论是 A .是的零点 B .1是的极值点 C .3是的极值 D .点在曲线上【答案】A 【解析】 【详解】若选项A 错误时,选项B 、C 、D 正确,,因为是的极值点,是的极值,所以,即,解得:,因为点在曲线上,所以,即,解得:,所以,,所以,因为,所以不是的零点,所以选项A 错误,选项B 、C 、D 正确,故选A .3.(2022·青海·海东市第一中学模拟预测(理))已知函数()2e 2xx f x a x =-+,若有且仅有两个正整2()f x ax bx c =++a 1-()f x ()f x ()f x (2,8)()y f x =()2f x ax b ='+1()f x 3()f x ()()10{13f f '==203a b a b c +=⎧⎨++=⎩2{3b a c a =-=+()2,8()y f x =()42238a a a +⨯-++=5a =10b =-8c =()25108f x x x =-+()()()21511018230f -=⨯--⨯-+=≠1-()f x数,使得()0f x <成立,则实数a 的取值范围是( ) A .211,3e e ⎡⎫⎪⎢⎣⎭B .3291,5e e ⎡⎫⎪⎢⎣⎭C .391,5e 3e ⎡⎫⎪⎢⎣⎭D .212,2e e ⎡⎫⎪⎢⎣⎭【答案】C 【解析】 【分析】将()0f x <转化为2(2)exx a x +<,再分别求导分析2()e x x g x =和()(2)h x a x =+的图象,再分别求得1,1g ,()()2,2g ,()()3,3g 到()20-,的斜率,分析临界情况即可 【详解】由()0f x <且0x >,得2(2)exx a x +<,设2()e x x g x =,()(2)h x a x =+, 22()exx x g x '-=,已知函数()g x 在(0,2)上单调递增,在(2,)+∞上单调递减, 函数()(2)h x a x =+的图象过点(2,0)-,(1)11(2)3e g =--,2(2)12(2)e g =--,3(3)93(2)5e g =--,结合图象,因为329115e 3e e <<,所以3915e 3ea ≤<. 故选:C4.(2014·全国·高考真题(文))已知函数,若存在唯一的零点,且,则的取值范围是( ) A . B . C . D .【答案】C 【解析】 【详解】试题分析:当时,,函数和,不满足题意,舍去;当时,,令,得或.时,;时,;时,,且,此时在必有零点,故不满足题意,舍去;当时,时,32()31f x ax x =-+()f x 0x 00x >a ()2,+∞()1,+∞(),2-∞-(),1-∞-0a =2()31f x x =-+()f x 0a >2()36f x ax x '=-()0f x '=0x =2x a =(,0)x ∈-∞()0f x '>2(0,)x a ∈()0f x '<2(,)x a∈+∞()0f x '>(0)0f >(,0)x ∈-∞0a <2(,)x a∈-∞;时,;时,,且,要使得存在唯一的零点,且,只需,即,则,选C .5.(2022·青海·海东市第一中学模拟预测(理))若函数()()22e e x xf x x ax a a R =+-∈有三个不同的零点,则实数a 的取值范围是( ) A .1,e ⎛⎫+∞ ⎪⎝⎭B .1,1e ⎛⎫ ⎪⎝⎭C .2110,,1e e e ⎛⎫⎛⎫⋃ ⎪ ⎪-⎝⎭⎝⎭D .210,e e ⎛⎫ ⎪-⎝⎭【答案】D 【解析】 【分析】令()0f x =得20e e x xx xa a ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,利用导数研究()e x x g x =的图像,由函数()f x 有三个零点可知,若令1e e xxt t ⎛⎫=≤ ⎪⎝⎭,则可知方程20t at a +-=的一根1t 必在10,e ⎛⎫ ⎪⎝⎭内,另一根21e t =或20t =或()2,0t ∈-∞上,分类讨论即可求解. 【详解】由22e e 0xxx ax a +-=得20e ex xx xa a ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,令()e x x g x =, 由()10e xxg x -'==,得1x =,因此函数()g x 在(),1-∞上单调递增,在()1,+∞上单调递减,且()00g =,当0x >时,()0e x x g x =>,则()ex xg x =的图像如图所示: 即函数()g x 的最大值为()11eg =,令1e e xx t t ⎛⎫=≤ ⎪⎝⎭,则()20h t t at a =+-=,由二次函数的图像可知,二次方程的一根1t 必在10,e ⎛⎫ ⎪⎝⎭内,另一根21e t =或20t =或()2,0t ∈-∞上,当21e t =时,21e ea =-,则另一根111e t =-,不满足题意,当20t =时,a =0,则另一根10t =,不满足题意,()0f x '<2(,0)x a ∈()0f x '>(0,)x ∈+∞()0f x '<(0)0f >()f x 0x 00x >2()0f a>24a >2a <-当()2,0t ∈-∞时,由二次函数()20h t t at a =+-=的图像可知22000110e e a a a a ⎧+⋅-<⎪⎨⎛⎫+⋅->⎪ ⎪⎝⎭⎩, 解得210e ea <<-, 则实数a 的取值范围是210,e e ⎛⎫ ⎪-⎝⎭,故选:D.6.(2022·河南·开封市东信学校模拟预测(理))对任意0x >,不等式e ln()(1)0x ax a x -+-≥恒成立,则正数a 的最大值为( ) ABC .1eD .e【答案】D 【解析】 【分析】将不等式化为ln()e ln()e x ax x ax +≥+,构造()e x f x x =+有()(ln())f x f ax ≥,利用函数的单调性及参变分离法有e xa x ≤在0x >上恒成立,应用导数求右侧最小值,即可得结果.【详解】∵e ln()(1)0x ax a x -+-≥,∴ln()e ln()ln()e x ax x ax ax ax +≥+=+.令()e x f x x =+,则不等式化为()(ln())f x f ax ≥. ∵()e (0)x f x x x =+>为增函数,∴ln()x ax ≥,即e xa x≤.令e ()=x g x x ,则2(1)e ()x x g x x '-=,当01x <<时,()0g x '<,即()g x 递减;当1x >时,()0g x '>,即()g x 递增; 所以()()min 1e e g x g a ⇒≤==. ∴实数a 的最大值为e . 故选:D7.(2015·全国·高考真题(理))设函数()(21)xf x e x ax a =--+,其中1a < ,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭B .33,2e 4⎡⎫-⎪⎢⎣⎭C .33,2e 4⎡⎫⎪⎢⎣⎭D .3,12e ⎡⎫⎪⎢⎣⎭【答案】D 【解析】 【分析】设()()21xg x e x =-,()1y a x =-,问题转化为存在唯一的整数0x 使得满足()()01g x a x <-,求导可得出函数()y g x =的极值,数形结合可得()01a g ->=-且()312g a e-=-≥-,由此可得出实数a 的取值范围.【详解】设()()21xg x e x =-,()1y a x =-,由题意知,函数()y g x =在直线y ax a =-下方的图象中只有一个点的横坐标为整数,()()21x g x e x '=+,当12x <-时,()0g x '<;当12x >-时,()0g x '>.所以,函数()y g x =的最小值为12122g e -⎛⎫-=- ⎪⎝⎭.又()01g =-,()10g e =>.直线y ax a =-恒过定点()1,0且斜率为a , 故()01a g ->=-且()31g a a e -=-≥--,解得312a e≤<,故选D.8.(2022·内蒙古·海拉尔第二中学模拟预测(理))已知函数()()e ln e (0)xf x a a a =+>,若对任意实数1x >,不等式()()ln 1f x x ≥-总成立,则实数a 的取值范围为( )A .210,e ⎛⎫ ⎪⎝⎭B .221,e e ⎛⎤⎥⎝⎦C .21,e ⎛⎫+∞ ⎪⎝⎭D .21,e ⎡⎫+∞⎪⎢⎣⎭【答案】D 【解析】 【分析】将所求不等式变形为()()ln 1ln eln eln 1x x ax a x -+++≥+-,构造函数()e xg x x =+,可知该函数在R 上为增函数,由此可得出()ln ln 1a x x ≥--,其中1x >,利用导数求出()()ln 1h x x x =--的最大值,即可求得实数a 的取值范围. 【详解】当1x >时,由()()ln 1f x x ≥-可得()ln eln 1ln 1x aa x +++≥-, 即()()()ln 1ln eln 1ln 1eln 1x x ax a x x x -+++≥-+-=+-,构造函数()e xg x x =+,其中x ∈R ,则()e 10x g x '=+>,所以,函数()g x 在R 上为增函数, 由()()ln 1ln eln eln 1x x ax a x -+++≥+-可得()()ln ln 1g x a g x +≥-⎡⎤⎣⎦,所以,()ln ln 1x a x +≥-,即()ln ln 1a x x ≥--,其中1x >, 令()()ln 1h x x x =--,其中1x >,则()12111xh x x x -'=-=--. 当12x <<时,()0h x '>,函数()h x 单调递增, 当2x >时,()0h x '<,函数()h x 单调递减, 所以,()()max ln 22a h x h ≥==-,21e a ∴≥. 故选:D.二、多选题9.(2022·辽宁实验中学模拟预测)我们把形如(),,0f x y y '=的方程称为微分方程,符合方程的函数()y f x =称为微分方程的解,下列函数为微分方程0xy y xy +-'=的解的是( ) A .e x y = B .e x y x =C .e 1x y x =+D .e (R)x y c x c =⋅∈⋅【答案】CD 【解析】 【分析】根据导数的运算求得导函数y ',代入微分方程检验即可. 【详解】选项A ,e x y =,则e x y '=,e e e e 0x x x x xy y xy x x '+-=+-=≠,不是解;选项B ,e x y x =,e e x x y x '=+,22e e e e 0x x x x xy y xy x x x x '+-=+--=,是方程的解;选项C ,e 1x y x =+,e e x x y x '=+,22e e 1e e 10x x x x xy y xy x x x x x x '+-=+++--=+≠,不是方程的解; 选项D ,e (R)x y c x c =⋅∈⋅,e e x x y c cx '=+,22e e e e 0x x x x xy y xy cx cx cx cx '+-=+--=,是方程的解. 故选:CD .10.(2022·河北沧州·二模)已知实数,a b 满足e e e a b a b ++=,则( ) A .0ab < B .1a b +> C .e e 4a b + D .e 1a b >【答案】BCD 【解析】 【分析】A.由e e e a b a b ++=得到111e ea b +=判断;BC.由e e e 2e e a b a b a b ++==2b 判断;D. 由111e e a b +=,得到e e e 1e 11e 1e 1b b b ab b b b b -+-=-=--,令()e e 1,0b b f b b b =-+>,用导数法判断. 【详解】 由e e e a b a b ++=得111e ea b +=,又e 0,e 0a b >>,所以e 1,e 1a b >>,所以0,0a b >>,所以0ab >,选项A 错误;因为e e e 2e e a b a b a b ++==2b ,即e e e 4a b a b ++=,所以ln41a b +>,选项B C ,正确,因为111e e a b +=,所以e e e 1b ab =-,所以e e e 1e 11e 1e 1b b b a bbb b b -+-=-=--.令()e e 1,0b b f b b b =-+>,则()e 0b f b b '=>,所以f b 在区间()0,∞+上单调递增,所以()()00f b f >=,即e e 10b b b -+>,又e 10b ->,所以e 10a b ->,即e 1a b >,选项D 正确. 故选:BCD11.(2022·湖南·模拟预测)已知1x >,1y >,且()()1e 11e y xx y ++=+,则下列结论一定正确的是( )A .()ln 0x y ->B .122x y +<C .226x y +>D .()ln ln3x y +<【答案】AC 【解析】 【分析】构造函数()e xf x x=,利用导数判断函数的单调性,得出1x y >+,结合不等式以及指、对数函数的性质逐一判断即可. 【详解】令()e x f x x=,则()()2e 1e e xx x x x f x x x --'==, 所以当1x >时,()0f x '>,所以()f x 在()1,+∞上单调递增; 由()()1e 11e yxx y ++=+得1e e 111x y x y y +=+++,即1e e 111x y x y y +-=++,∵1y >,∴11012y <<+, ∴1e e 1012x y x y +<-<+,即()()1012f x f y <-+<, ∴1x y >+,即1->x y ,∴()ln 0x y ->,A 正确;由1x y >+知12x y +>+,所以12222x y y ++>>,所以选项B 错误; 由1x y >+知12222326x y y y y ++>+=⋅>,所以选项C 正确.由1x y >+,1y >知213x y y +>+>,所以()()ln ln 21ln3x y y +>+>, 所以D 错误,故选:AC .12.(2022·全国·高考真题)已知函数,则( )A .有两个极值点B .有三个零点C .点是曲线的对称中心D .直线是曲线的切线【答案】AC 【解析】 【分析】利用极值点的定义可判断A ,结合的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义3()1f x x x =-+()f x ()f x (0,1)()y f x =2y x =()y f x =()f x判断D. 【详解】由题,,令得或令得, 所以在上单调递减,在,上单调递增, 所以是极值点,故A 正确;因,,, 所以,函数在上有一个零点, 当时,,即函数在上无零点, 综上所述,函数有一个零点,故B 错误;令,该函数的定义域为,,则是奇函数,是的对称中心, 将的图象向上移动一个单位得到的图象, 所以点是曲线的对称中心,故C 正确;令,可得,又,当切点为时,切线方程为,当切点为时,切线方程为, 故D 错误.故选:AC.三、填空题13.(2020·河南高三其他(理))函数()2222ln x f x x e x ax =--,若0a =,则()f x 在[]1,2的最小值为_______;当0x >时,()1fx ≥恒成立,则a 的取值范围是_____.【答案】e (],1-∞ 【解析】当0a =时,∵()222ln x f x x ex =-,∴()222222x x f x xe x xe x'=+⋅-. 当1x >时,()0f x '>恒成立,()231f x x '=-()0fx '>x >x <()0f x '<x <()f x ((,-∞)+∞x =(10f =+>10f =>()250f -=-<()f x ,⎛-∞ ⎝⎭x ≥()0f x f ≥>⎝⎭()f x ⎫∞⎪⎪⎝⎭()f x 3()h x x x =-R ()()()()33h x x x x x h x -=---=-+=-()h x (0,0)()h x ()h x ()f x (0,1)()y f x =()2312f x x '=-=1x =±()(1)11f f =-=(1,1)21y x =-(1,1)-23y x =+∴()f x 在[]1,2上单调递增.∴()f x 在[]1,2上最小值为()1f e =.又0x >时,()1f x ≥恒成立,令 ()1xg x e x =--,()()100xg x e g ''=->=,所以()g x 在()0,∞+ 递增,()()00g x g >= 所以1x e x >+ ∴()22222ln 22ln 2ln x x x f x x e x ax e x ax +=--=--()2222ln 12ln 111x x x ax a x ≥++--=-+≥恒成立,∴1a ≤.故答案为e ;(],1-∞.14.(2022·全国·模拟预测(理))若曲线ln x y x =与212y kx =-仅有1个公共点,则k 的取值范围是___________. 【答案】(]1,02⎧⎫-∞⋃⎨⎬⎩⎭##1|02k k k ⎧⎫≤=⎨⎬⎩⎭或【解析】 【分析】将原问题转化为32ln 12x k x x =+只有一个解,令()()32ln 102x g x x x x =+>,利用导数求出()g x 的单调性及最值即可得答案. 【详解】 由题意可得:2ln 12x kx x =-只有一个解()0x >, 即32ln 12x k x x=+只有一个解. 令()32ln 12x g x x x=+, ()0x >原问题等价于y k =与()y g x =只有一个交点. 因为()43413ln 113ln x x xg x x x x '---=-= 因为13ln y x x =--在()0,∞+上单调递减, 且在1x =处的值为0 ,所以当()0,1x ∈时, ()()0,g x g x '>单调递增,当()1,x ∈+∞时, ()()0,g x g x '<单调递减且恒为正, 所以()()max 112g x g ==, 又因为y k =与()y g x =只有一个交点, 所以(]1,02k ⎧⎫∈-∞⎨⎬⎩⎭.故答案为: (]1,02⎧⎫-∞⋃⎨⎬⎩⎭.15.(2012·福建·高考真题(理))对于实数a 和b ,定义运算“*”: 设f (x )=(2x -1)*(x -1),且关于x 的方程为f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是_________________ 【答案】【解析】 【详解】由定义运算“*”可知 即,该函数图像如下:由,假设当关于x 的方程为f (x )=m (m ∈R )恰有三个互不相等的实数根时, m 的取值范围是,且满足方程,所以令则, 所以令22,,a ab a ba b b ab a b ⎧-≠=⎨->⎩⎫⎪⎪⎝⎭22(21)(21)(1)0()?(1)(21)(1)0x x x x f x x x x x ⎧----=⎨---->⎩2220()0x x x f x x x x ⎧-=⎨-+>⎩1124f ⎛⎫= ⎪⎝⎭1230x x x <<<10,4⎛⎫⎪⎝⎭23,x x 2-+=x x m 23=x x m 22-=x x m 1=x 123==x x x m 10,4⎛⎫=∈ ⎪⎝⎭y m所以, 又在递增的函数, 所以,所以,所以在递减, 则当时,;当时,所以.16.(2022·江苏·常州高级中学模拟预测)已知函数22()ln 2e f x x x mx =-+,若()0f x ≥的解集中恰有一个整数,则m 的取值范围为________.【答案】22ln 22e ,4e 2⎡⎫-⎪⎢⎣⎭【解析】【分析】由()0f x ≥且0x >,得出2ln 2e x x m x -+≥-,构造函数()ln =-xg x x,利用导数研究()g x 的单调性,画出()ln =-x g x x 和22e y x =-的大致图象,由图可知0m >,设0x 为()ln =-xg x x和22e y x m =-+的交点的横坐标,结合题意可知该整数为1,即012x ≤<,当直线22e y x m =-+过1,0A 和ln 22,2B ⎛⎫- ⎪⎝⎭时,即可求出求出m 的值,从而得出m 的取值范围.【详解】由题可知,22()ln 2e f x x x mx =-+,0x >, 由于()0f x ≥的解集中恰有一个整数,即22ln 2e 0x x mx -+≥,即222e ln x mx x -+≥-,因为0x >,所以2ln 2e xx m x-+≥-的解集中恰有一个整数, 令()ln =-x g x x ,则()2ln 1-'=x g x x , 当1e x <<时,()0g x '<;当e x >时,()0g x '>, 所以()g x 在()1,e 上单调递减,在()e,+∞上单调递增, 画出()ln xy xg x ==-和22e y x =-的大致图象,如图所示: 要使得2ln 2e xx m x-+≥-,可知0m >, 114'⎛= ⎝y ()=h m 10,4⎛⎫⎪⎝⎭()()01>=h m h 0y '<=y 10,4⎛⎫ ⎪⎝⎭0m =0y =14m ==y 123⎫∈⎪⎪⎝⎭x x x设0x 为()ln =-xg x x和22e y x m =-+的交点的横坐标, 而2ln 2e xx m x-+≥-的解集中恰有一个整数,可知该整数为1,即012x ≤<, 当01x =时,得()10g =;当02x =时,得()ln 222g =-, 即1,0A ,ln 22,2B ⎛⎫- ⎪⎝⎭,当直线22e y x m =-+过点1,0A 时,得22e m =,当直线22e y x m =-+过点ln 22,2B ⎛⎫- ⎪⎝⎭时,得2ln 24e 2m =-, 所以m 的取值范围为22ln 22e ,4e 2⎡⎫-⎪⎢⎣⎭.故答案为:22ln 22e ,4e 2⎡⎫-⎪⎢⎣⎭四、解答题17.(2018·全国·高考真题(文))已知函数.(1)求曲线在点处的切线方程; (2)证明:当时,.【答案】(1)切线方程是(2)证明见解析 【解析】 【分析】(1)求导,由导数的几何意义求出切线方程.(2)当时,,令,只需证明即可.【详解】()21x ax x f x e +-=()y f x =()0,1-1a ≥()0f x e +≥210x y --=a 1≥()12f x e 1x x e x x e +-+≥++-()12gx 1x e x x +=++-gx 0≥(1),.因此曲线在点处的切线方程是.(2)当时,.令,则,当时,,单调递减;当时,,单调递增; 所以 .因此.18.(2017·全国·高考真题(理))已知函数(1)讨论的单调性;(2)若有两个零点,求的取值范围. 【答案】(1)见解析;(2). 【解析】 【详解】试题分析:(1)讨论单调性,首先进行求导,发现式子特点后要及时进行因式分解,再对按,进行讨论,写出单调区间;(2)根据第(1)问,若,至多有一个零点.若,当时,取得最小值,求出最小值,根据,,进行讨论,可知当时有2个零点.易知在有一个零点;设正整数满足,则.由于,因此在有一个零点.从而可得的取值范围为.试题解析:(1)的定义域为,,(ⅰ)若,则,所以在单调递减. (ⅱ)若,则由得.当时,;当时,,所以在单调递减,在单调递增.(2)(ⅰ)若,由(1)知,至多有一个零点.(ⅱ)若,由(1)知,当时,取得最小值,最小值为. ()()2212xax a x f x e-++'-=()02f '=()y f x =()0,1-210x y --=1a ≥()()211x xf x e x x e e +-+≥+-+()211xg x x x e +=+-+()121x g x x e +=++'()120x g x e +''=+>1x <-()()10g x g '-'<=()g x 1x >-()()10g x g '-'>=()g x ()g x ()1=0g ≥-()0f x e +≥()()2e 2e x xf x a a x =+--()f x ()f x a (0,1)()f x a 0a ≤0a >0a ≤()f x 0a >ln x a =-()f x 1(ln )1ln f a a a-=-+1a =(1,)∈+∞a (0,1)a ∈(0,1)a ∈()f x (,ln )a -∞-0n 03ln(1)n a>-00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->3ln(1)ln a a->-()f x (ln ,)a -+∞a (0,1)()f x (),-∞+∞()()()()2221121x x x xf x ae a e ae e =+---'=+0a ≤()0f x '<()f x (),-∞+∞0a >()0f x '=ln x a =-(),ln x a ∈-∞-()0f x '<()ln ,x a ∈-+∞()0f x '>()f x (),ln a -∞-()ln ,a -+∞0a ≤()f x 0a >ln x a =-()f x ()1ln 1ln f a a a-=-+①当时,由于,故只有一个零点; ②当时,由于,即,故没有零点; ③当时,,即. 又,故在有一个零点.设正整数满足,则.由于,因此在有一个零点. 综上,的取值范围为.19.(2017·全国·高考真题(文))已知函数.(1)讨论的单调性; (2)当时,证明. 【答案】(1)见解析;(2)见解析. 【解析】 【分析】(1)先求函数导数,再根据导函数符号的变化情况讨论单调性:当时,,则在单调递增;当时,在单调递增,在单调递减. (2)证明,即证,而,所以需证,设g (x )=ln x -x +1 ,利用导数易得,即得证. 【详解】(1) 的定义域为(0,+),. 若a ≥0,则当x ∈(0,+)时,,故f (x )在(0,+)单调递增.若a <0,则当时,时;当x ∈时,. 故f (x )在单调递增,在单调递减. (2)由(1)知,当a <0时,f (x )在取得最大值,最大值为. 1a =()ln 0f a -=()f x ()1,a ∈+∞11ln 0a a-+>()ln 0f a ->()f x ()0,1a ∈11ln 0a a-+<()ln 0f a -<()()4222e 2e 22e 20f a a ----=+-+>-+>()f x (),ln a -∞-0n 03ln 1n a ⎛⎫>- ⎪⎝⎭()()00000000e e 2e 20n n n nf n a a n n n =+-->->->3ln 1ln a a ⎛⎫->- ⎪⎝⎭()f x ()ln ,a -+∞a ()0,12()ln (21)f x x ax a x =+++()f x 0a <3()24f x a≤--(21)(1)'()(0)ax x f x x x++=>0a ≥'()0f x >()f x (0,)+∞0a <()f x 1(0,)2a -1(,)2a-+∞3()24f x a ≤--max 3()24f x a ≤--max 1()()2f x f a=-11ln()1022a a -++≤max ()(1)0g x g ==()f x ∞()()‘1211)22(1x ax f x ax a x x++=+++=∞’)(0f x >∞10,2x a ⎛⎫∈- ⎪⎝⎭()0f x '>1()2a ∞-+,’)(0f x <’)(0f x >1()2a∞-+,12x a=-111()ln()1224f a a a -=---所以等价于,即. 设g (x )=ln x -x +1,则. 当x ∈(0,1)时,;当x ∈(1,+)时,.所以g (x )在(0,1)单调递增,在(1,+)单调递减.故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时,,即. 20.(2016·全国·高考真题(文))设函数.(Ⅰ)讨论的单调性; (Ⅱ)证明当时,; (Ⅲ)设,证明当时,.【答案】(Ⅰ)当时,单调递增;当时,单调递减;(Ⅱ)见解析;(Ⅲ)见解析. 【解析】 【详解】试题分析:(Ⅰ)首先求出导函数,然后通过解不等式或可确定函数的单调性;(Ⅱ)左端不等式可利用(Ⅰ)的结论证明,右端将左端的换为即可证明;(Ⅲ)变形所证不等式,构造新函数,然后通过利用导数研究函数的单调性来处理. 试题解析:(Ⅰ)由题设,的定义域为,,令,解得. 当时,,单调递增;当时,,单调递减. (Ⅱ)由(Ⅰ)知,在处取得最大值,最大值为. 所以当时,. 故当时,,,即. (Ⅲ)由题设,设,则,令,解得.当时,,单调递增;当时,,单调递减. 由(Ⅱ)知,,故,又,故当时,. 所以当时,.3()24f x a≤--113ln()12244a a a ---≤--11ln()1022a a -++≤’1(1)g x x=-()0g x '>∞()0g x '<∞11ln()1022a a -++≤3()24f x a≤--()ln 1f x x x =-+()f x (1,)x ∈+∞11ln x x x-<<1c >(0,1)x ∈1(1)xc x c +->01x <<()f x 1x >()f x ()f x '()0f x '>()0f x '<()f x x 1x()f x (0,)+∞1()1f x x=-'()0f x '=1x =01x <<()0f x '>()f x 1x >()0f x '<()f x ()f x 1x =(1)0f =1x ≠ln 1x x <-(1,)x ∈+∞ln 1x x <-11ln1x x <-11ln x x x-<<1c >()1(1)x g x c x c =+--'()1ln xg x c c c =--'()0g x =01lnln ln c c x c-=0x x <'()0g x >()g x 0x x >'()0g x <()g x 11ln c c c-<<001x <<(0)(1)0g g ==01x <<()0g x >(0,1)x ∈1(1)xc x c +->21.(2015·全国·高考真题(理))设函数.(1)证明:在单调递减,在单调递增;(2)若对于任意,都有,求m 的取值范围.【答案】(1)在单调递减,在单调递增;(2).【解析】【详解】(Ⅰ).若,则当时,,;当时,,.若,则当时,,;当时,,.所以,在单调递减,在单调递增.(Ⅱ)由(Ⅰ)知,对任意的,在单调递减,在单调递增,故在处取得最小值.所以对于任意,的充要条件是:即①,设函数,则.当时,;当时,.故在单调递减,在单调递增.又,,故当时,.当时,,,即①式成立.当时,由的单调性,,即;当时,,即.综上,的取值范围是.22.(2014·四川·高考真题(理))已知函数,其中,为自然对数的底数.(Ⅰ)设是函数的导函数,求函数在区间上的最小值;(Ⅱ)若,函数在区间内有零点,求的取值范围【答案】(Ⅰ)当时, ;当 时, ; 当时, .(Ⅱ) 的范围为. 【解析】【详解】试题分析:(Ⅰ)易得,再对分情况确定的单调区间,根据在上的单调性即可得在上的最小值.(Ⅱ)设为在区间内的一个零点,注意到2()e mx f x x mx =+-()f x (,0)-∞(0,)+∞12,[1,1]x x ∈-12|()()|1f x f x e -≤-()f x (,0)-∞(0,)+∞[1,1]-()(1)2mx f x m e x -'=+0m ≥(,0)x ∈-∞10mx e -≤()0f x '<(0,)x ∈+∞10mx e -≥()0f x '>0m <(,0)x ∈-∞10mx e ->()0f x '<(0,)x ∈+∞10mx e -<()0f x '>()f x (,0)-∞(0,)+∞m ()f x [1,0]-[0,1]()f x 0x =12,[1,1]x x ∈-12()()1f x f x e -≤-(1)(0)1,{(1)(0)1,f f e f f e -≤---≤-1,{1,m m e m e e m e --≤-+≤-()1t g t e t e =--+()1t g t e =-'0t <()0g t '<0t >()0g t '>()g t (,0)-∞(0,)+∞(1)0g =1(1)20g e e --=+-<[1,1]t ∈-()0g t ≤[1,1]m ∈-()0g m ≤()0g m -≤1m >()g t ()0g m >1m e m e ->-1m <-()0g m ->1m e m e -+>-m [1,1]-2()1x f x e ax bx =---,a b R ∈ 2.71828e =()g x ()f x ()g x [0,1](1)0f =()f x (0,1)a 12a ≤()(0)1g x g b ≥=-122e a <≤()22ln(2)g x a a a b ≥--2e a >()2g x e a b ≥--a ()2,1e -()2,()2x x g x e ax b g x e a -='=--a ()g x ()g x [0,1]()g x [0,1]0x ()f x (0,1).联系到函数的图象可知,导函数在区间内存在零点,在区间内存在零点,即在区间内至少有两个零点. 由(Ⅰ)可知,当及时,在内都不可能有两个零点.所以.此时,在上单调递减,在上单调递增,因此,且必有.由得:,代入这两个不等式即可得的取值范围.试题解答:(Ⅰ)①当时,,所以.②当时,由得.若,则;若,则. 所以当时,在上单调递增,所以. 当时,在上单调递减,在上单调递增,所以. 当时,在上单调递减,所以. (Ⅱ)设为在区间内的一个零点,则由可知,在区间上不可能单调递增,也不可能单调递减.则不可能恒为正,也不可能恒为负.故在区间内存在零点.同理在区间内存在零点.所以在区间内至少有两个零点.由(Ⅰ)知,当时,在上单调递增,故在内至多有一个零点. 当时,在上单调递减,故在内至多有一个零点. 所以. 此时,在上单调递减,在上单调递增,因此,必有.由得:,有(0)0,(1)0f f ==()g x 0(0,)x 1x ()g x 0(),1x 2x ()g x (0,1)12a ≤2e a ≥()g x (0,1)122e a <<()g x [0,ln 2]a [ln 2,1]a 12(0,ln(2)],(ln(2),1)x a x a ∈∈(0)10,(1)20g b g e a b =->=-->(1)10f e a b =---=1b e a =--a ()2,()2x xg x e ax b g x e a -='=--0a ≤()20x g x e a -'=>()(0)1g x g b ≥=-0a >()20x g x e a -'=>2,ln(2)x e a x a >>12a >ln(2)0a >2e a >ln(2)1a >102a <≤()g x [0,1]()(0)1g x g b ≥=-122e a <≤()g x [0,ln 2]a [ln 2,1]a ()(ln 2)22ln 2g x g a a a a b ≥=--2e a >()g x [0,1]()(1)2g x g e a b ≥=--0x ()f x (0,1)0(0)()0f f x ==()f x 0(0,)x ()g x ()g x 0(0,)x 1x ()g x 0(),1x 2x ()g x (0,1)12a ≤()g x [0,1]()g x (0,1)2e a ≥()g x [0,1]()g x (0,1)122e a <<()g x [0,ln 2]a [ln 2,1]a 12(0,ln(2)],(ln(2),1)x a x a ∈∈(0)10,(1)20g b g e a b =->=-->(1)10f e a b =---=12a b e +=-<.解得.当时,在区间内有最小值.若,则,从而在区间上单调递增,这与矛盾,所以.又,故此时在和内各只有一个零点和.由此可知在上单调递增,在上单调递减,在上单调递增.所以,,故在内有零点.综上可知,的取值范围是. (0)120,(1)210g b a e g e a b a =-=-+>=--=->21e a -<<21e a -<<()g x [0,1](ln(2))g a (ln(2))0g a ≥()0([0,1])g x x ≥∈()f x [0,1](0)(1)0f f ==(ln(2))0g a <(0)20,(1)10g a e g a =-+>=->()g x (0,ln(2))a (ln(2),1)a 1x 2x ()f x 1[0,]x 1(,x 2)x 2[,1]x 1()(0)0f x f >=2()(1)0f x f <=()f x 1(,x 2)x a (2,1)e -。
课外作业 一.选择题,1. .函数x x x x f +--=23)(的单调减区间是 ( )A .()1,-∞- B.),31(∞ C .()1,-∞-和),31(∞ D.)31,1(-解: 'f (x )=-32x -2x+1<0,所以x>31或x<-1,故选C 2.函数xxx f sin )(=,则 ( ) A .)(x f 在),0(π内是减函数 B. )(x f 在),0(π内是增函数C .)(x f 在)2,2(ππ-内是减函数 D. )(x f 在)2,2(ππ-内是增函数 解: 'f (x )=2sin cos xx x x -,当x ∈),0(π时'f (x )<0,故选A 3. .函数()(1)x f x x e 的单调递增区间是 ( )A .[0,+∞)B . [2,+∞)C .(-∞,2]D .(-∞,1]解:令'f (x )=x e -(x-1)xe >0,得2-x>0,x<2,故选C4..()f x '是f (x )的导函数,()f x '的图象如右图所示,则f (x )的图象只可能是( )A B C DA .B .C .D . 解:)('x f 越大表示曲线f (x )递增(减)速度越快,故选D5.下列函数中,在),0(+∞上为增函数的是 ( ) A.y=sinx+1, B.xxe y = C.x x y -=3D.x x y -+=)1ln(解:y=sinx+1是周期函数,不满足条件; xxe y =,则'y =x e +x xe ,当x>0时'y >0成立。
故选B6.对于R 上可导的任意函数,若满足()()01/≥-x fx ,则必有( )A . ()()()1220f f f <+ B. ()()()1220f f f >+ C . ()()()1220f f f ≥+ D. ()()()1220f f f ≤+解:x ≥1时'f (x )≥0;x ≤1时'f (x )≤0。
导数及其应用专题训练导数及其应用专题训练一、选择题(本大题共12小题,每小题5分,共60分)1.若函数 $y=e^x+mx$ 有极值,则实数 $m$ 的取值范围是A。
$m$。
B。
$m1$。
D。
$m<1$2.函数 $f(x)=x^2+x-\ln x$ 的零点的个数是()A。
B。
1.C。
2.D。
33.函数 $f(x)=\frac{x^2-1}{e^x}$ 的图象大致为()4.已知函数$f(x)=a+x-x\ln a$,对任意的$x_1,x_2\in[0,1]$,不等式 $|f(x_1)-f(x_2)|\leq a^{-2}$ 恒成立,则 $a$ 的取值范围为()A。
$[e^2,+\infty)$。
B。
$[e,+\infty)$。
C。
$[2,e]$。
D。
$[e,e^2]$5.已知定义在 $R$ 上的函数 $f(x)$,其导函数为 $f'(x)$,若 $f'(x)-f(x)e^x+3$ 的解集是()A。
$(-\infty,1)$。
B。
$(1,+\infty)$。
C。
$(0,+\infty)$。
D。
$(-\infty,0)$6.已知函数 $f(x)$ 在 $R$ 上满足 $f(x)=2f(2-x)-x+8x-8$,则曲线 $y=f(x)$ 在点 $(1,f(1))$ 处的切线方程是()A。
$y=-2x+3$。
B。
$y=x$。
C。
$y=3x-2$。
D。
$y=2x-1$7.若正项递增等比数列 $\{a_n\}$ 满足 $1+(a_2-a_4)+\lambda(a_3-a_5)=0$($\lambda\in R$),则$a_6+\lambda a_7$ 的最小值为()A。
$-2$。
B。
$-4$。
C。
$2$。
D。
$4$8.已知函数 $f(x)$ 为 $R$ 内的奇函数,且当 $x\geq 0$ 时,$f(x)=-e^{1-\cos x}$,记 $a=-2f(-2)$,$b=-f(-1)$,$c=3f(3)$,则 $a,b,c$ 之间的大小关系是()A。
11.导数的综合应用(含答案)(高二)1.(15北京理科)已知函数()1ln 1xf x x+=-.(Ⅰ)求曲线()y f x =在点()()00f ,处的切线方程; (Ⅱ)求证:当()01x ∈,时,()323x f x x ⎛⎫>+ ⎪⎝⎭; (Ⅲ)设实数k 使得()33x f x k x ⎛⎫>+ ⎪⎝⎭对()01x ∈,恒成立,求k 的最大值. 【答案】(Ⅰ)20x y -=,(Ⅱ)证明见解析,(Ⅲ)k 的最大值为2.试题解析:(Ⅰ)212()ln,(1,1),(),(0)2,(0)011x f x x f x f f x x+''=∈-===--,曲线()y f x =在点()()00f ,处的切线方程为20x y -=;(Ⅱ)当()01x ∈,时,()323x f x x ⎛⎫>+ ⎪⎝⎭,即不等式3()2()03x f x x -+>,对(0,1)x ∀∈成立,设331()ln 2()ln(1)ln(1)2()133x x x F x x x x x x +=-+=+---+-,则422()1x F x x'=-,当()01x ∈,时,()0F x '>,故()F x 在(0,1)上为增函数,则()(0)0F x F >=,因此对(0,1)x ∀∈,3()2()3x f x x >+成立;(Ⅲ)使()33x f x k x ⎛⎫>+ ⎪⎝⎭成立,()01x ∈,,等价于31()ln ()013x x F x k x x +=-+>-,()01x ∈,;422222()(1)11kx k F x k x x x+-'=-+=--, 当[0,2]k ∈时,()0F x '≥,函数在(0,1)上位增函数,()(0)0F x F >=,符合题意;当2k >时,令402()0,(0,1)k F x x k-'==∈,()(0)F x F <,显然不成立,综上所述可知:k 的最大值为2.考点:1.导数的几何意义;2.利用导数研究函数的单调性,证明不等式;3.含参问题讨论.2.(15年安徽理科)设函数2()f x x ax b =-+.(1)讨论函数(sin )22f x ππ在(-,)内的单调性并判断有无极值,有极值时求出极值;(2)记20000(),(sin )(sin )f x x a x b f x f x =-+-求函数在22ππ(-,)上的最大值D ;(3)在(2)中,取2000,D 14aa b z b ===-≤求满足时的最大值。
导数运算法则的应用试题及答案导数运算法则的应用试题1.若函数()f x 在R 上可导,且满足'()()f x xf x < ,则( ) A.2(1)(2)f f < B.2(1)(2)f f > C.2(1)(2)f f = D.(1)(2)f f =2.已知函数()f x 的导函数为 '()f x ,满足 ln '()2()x xf x f x x +=,且1()2f e e=,则()f x 的单调性情况为( )A .先增后减B 单调递增C .单调递减D 先减后增3.定义在(0,)+∞上的单调递减函数()f x ,若()f x 的导函数存在且满足'()()f x x f x >,则下列不等式成立的是( ) A .3(2)2(3)f f < B .3(4)4(3)f f < C .2(3)3(4)f f < D .(2)2(1)f f <4.定义在R 上的函数()f x 满足:()()1,(0)4,f x f x f '+>=则不等式()3x x e f x e >+(其中e为自然对数的底数)的解集为( ) A .()0,+∞ B .()(),03,-∞+∞C .()(),00,-∞+∞D .()3,+∞5.)0)()((),(≠x g x g x f 分别是定义在R 上的奇函数和偶函数,当0x <时,()()()()f x g x f x g x ''<,且0)()(,0)3(<=-x g x f f的解集为( ) A .(-∞,-3)∪(3,+∞) B .(-3,0)∪(0,3) C .(-3,0)∪(3,+∞) D .(-∞,-3)∪(0,3)6.若定义在R 上的函数f(x)的导函数为()f x ',且满足()()f x f x '>,则(2011)f 与2(2009)f e 的大小关系为( ).A 、(2011)f <2(2009)f eB 、(2011)f =2(2009)f eC 、(2011)f >2(2009)f eD 、不能确定7.定义在(0,)2π上的函数()f x ,()f x '是它的导函数,且恒有()()tan f x f x x '<⋅成立,则( ) Aππ()2()43f B .(1)2()sin16πf f C ππ()()64f D ππ()()63f8.定义在(0,)+∞上的单调递减函数()f x ,若()f x 的导函数存在且满足x x f x f >')()(,则下列不等式成立的是( ) A .3(2)2(3)f f < B .3(4)4(3)f f < C .2(3)3(4)f f < D .(2)2(1)f f <9.函数f(x)的定义域是R ,f(0)=2,对任意x ∈R ,f(x)+f′(x)>1,则不等式e x ·f(x)>e x +1的解集为( ) A .{x|x>0} B .{x|x<0}C .{x|x<-1或x>1}D .{x|x<-1或0<x<1}10.设函数在R 上存在导数,对任意的R ,有,且(0,+)时,.若,则实数a 的取值范围为( )(A)[1,+∞) (B)(-∞,1] (C)(-∞,2] (D)[2,+∞)()f x '()f x x ∈2()()f x f x x -+=x ∈∞'()f x x >(2)()22f a f a a --≥-11.设()f x 是定义在R 上的可导函数,且满足()()f x f x '<-,对于任意的正数a ,下面不等式恒成立的是( )A.()()0a f a e f <B.()()0a f a e f >C.()()0a f f a e <D.()()0af f a e>12.已知函数f (x )的定义域为R ,对任意x R ∈,有()3f x '>,且()13f -=,则f (x )<3x +6的解集为( ) A.(-1, 1) B.(-1,+∞) C.(-∞,-1) D.(-∞,+∞)13.已知()f x 为定义在(,)-∞+∞上的可导函数,()()f x f x '>对于x R ∈恒成立,且e 为自然对数的底数,则( ) A .20132014(2014)(2013)e f e f ⋅<⋅ B .20132014(2014)(2013)e f e f ⋅=⋅ C .20132014(2014)(2013)e f e f ⋅>⋅D .2013(2014)e f ⋅与2014(2013)e f ⋅的大小不能确定14.设)(x f 是定义在R 上的奇函数,且0)2(=f ,当0>x 时,有2()()0xf x f x x '-<恒成立,则不等式2()0x f x >的解集是( ) A. (-2,0) ∪(2,+∞) B. (-2,0) ∪(0,2) C. (-∞,-2)∪(2,+∞) D . (-∞,-2)∪(0,2)15.已知定义在R 上的函数)(x f 满足1)1(=f ,且)(x f 的导函数)(x f '在R 上恒有21)(<'x f ,则不等式212)(+<x x f 的解集为( ) A. ),1(+∞ B. )1,(-∞ C. )1,1(- D. )1,(-∞),1(+∞16.已知函数()y f x =是定义在数集R 上的奇函数,且当(,0)x ∈-∞时,()()xf x f x '<-成立,若)3(3f a =,)3(lg )3(lg f b =,)41(log )41(log 22f c =,则,,a b c 的大小关系是( )A. c a b >>B. c b a >>C. a b c >>D. a c b >>17.设函数()f x 的导函数为'()f x ,对任意x R ∈都有'()()f x f x >成立,则( ) A .3(ln 2)2(ln3)f f > B. 3(ln 2)2(ln3)f f =C. 3(ln 2)2(ln3)f f <D. 3(ln 2)f 与2(ln 3)f 的大小不确定导数运算法则的应用试题参考答案1.【答案】A试题分析:设x x f x g )()(=,则2)()()(xx f x f x x g -'=', ∵'()()f x xf x <,∴0)(>'x g ,即g (x )在(0,+∞)上单调递增,∴),2()1(g g <即)2()1(22)2(1)1(f f f f <⇒<,故选:A .2.【答案】C试题分析:由ln '()2()xxf x f x x+=知,22()2()(())ln x f x xf x x f x x ''+==,故2()x f x =ln x x x c -+,所以()f x =2ln 1x c x x x -+,因为1()2f e e =,所以c=2e ,所以()f x =2ln 12x ex x x-+,所以()f x ' =2231ln 1x e x x x -+-=32ln x x x ex --,设()h x =2ln x x x e --,所以()h x '=1ln x -,当0<x <e 时,()h x '>0,当x >e 时,()h x '<0,则()h x 在(0,e )是增函数,在(e ,+∞)上是减函数,所以当x e =时,()h x 取最大值()h e =0,所以当x >0时,()h x ≤0,即()f x '≤0,所以()f x 单调递减,故选C . 3.【答案】A 试题分析:∵()f x 为(0,)上的单调递减函数,∴0fx ,又∵'()()f x x f x ,∴>0⇔<0⇔[]′<0,设h (x )=,则h (x )=为(0,+∞)上的单调递减函数,∵>x >0,f′(x )<0,∴f (x )<0.∵h (x )=为(0,)上的单调递减函数,∴>⇔>0⇔2f (3)﹣3f (2)>0⇔2f (3)>3f (2),故A 正确;由2f (3)>3f (2)>3f (4),可排除C ;同理可判断3f (4)>4f (3),排除B ;1•f(2)>2f (1),排除D ;故选A . 4.【答案】A 试题分析:令()()3--=x x e x f e x g ,由于()()03100=--=f g ,()()()x x x e x f e x f e x g -'+='()()()01>-'+=x f x f e x 所用()x g 在R 上是增函数,()()0,0>∴>∴x g x g5.【答案】C .试题分析:由题意()()f xg x 是奇函数,当0x <时,()()()()f x g x f x g x ''<时,2()()()()()0()()f x f x g x f x g x g x g x '''⎡⎤-=<⎢⎥⎣⎦,则()()f x g x 在(),0-∞上为减函数,在()0,+∞上也为减函数,又有(3)0f -=,则有(3)(3)0,0(3)(3)f f g g -==-,可知()0()f xg x <的解集为()3,0(3,)-⋃+∞.6.【答案】C 试题分析:构造函数x e x f x g )()(=,则x e x f x f x g )()()(''-=,因为()()f x f x '>,所以0)('>x g ;即函数)(x g 在R 上为增函数,则20092011)2009()2011(ef e f >,即2)2009()2011(e f f >. 7.【答案】D 【解析】()()tan f x f x x '<⋅0cos sin )(cos )(0cos sin )()('<'-⇔<⋅-⇔xxx f x x f x x x f x f ,又因为0cos ),2,0(>∴∈x x π,从而有:0sin )(cos )(<'-x x f x x f ;构造函数,sin )()(xx f x F =则)2,0(,0sin cos )(sin )()(2π∈>-'='x xx x f x x f x F ,从而有)(x F 在(0,)2π上是增函数,所以有)3()6(ππF F <即:)3()6(33sin )3(6sin )6(ππππππf f f f <⇒<,故选D.8.【答案】A 试题分析:∵f(x)在(0,)+∞上单调递减,∴'()0f x <,又∵x x f x f >')()(,∴f(x)<'()xf x ,令0)()(')('g ,)()(g 2>-=∴=x x f x xf x x x f x ,∴g(x)在(0,)+∞上单调递增,∴g(2)>g(1),即2)2(f 3)3(f >,即3f(2)<2f(3),A 正确. 9.【答案】A 【解析】构造函数g(x)=e x ·f(x)-e x ,因为g′(x)=e x ·f(x)+e x ·f′(x)-e x =e x [f(x)+f′(x)]-e x >e x -e x =0, 所以g(x)=e x ·f(x)-e x 为R 上的增函数. 又因为g(0)=e 0·f(0)-e 0=1, 所以原不等式转化为g(x)>g(0), 解得x>0.故选A.10.【答案】B 【解析】()221)(x x f x g -=,()()0>-'='x x f x g ,()()()()02=--+=-+x x f x f x g x g ,所以()x g 既是增函数又是奇函数,()()()()()()22221,2221222122a a f a g a a a f a a f a g -=-+--=---=-,由已知,得()()⇔≥-a g a g 21222≤⇒≥⇒≥-a a a a ,故选B.11.【答案】C 【解析】试题分析:构造函数()()x g x e f x =,则''()()()x x g x e f x e f x =+0<,∴()g x 在R 内单调递减,所以(a)g(0)g <,即:()(0)a e f a f <,∴()()0af f a e<. 12.【答案】C 试题分析:构造函数()()36g x f x x =--,则()()30g x f x ''=->,所以函数()g x 是增函数,又()()1130g f -=--=,所以()0g x <的解集是(),1-∞-,即()36f x x <+的解集是(),1-∞-.13.【答案】A 试题分析:函数()f x 为定义在(,)-∞+∞上的可导函数,满足()()f x f x '>,则函数为指数函数,可设函数()()xf xg x e=,则导函数'''22()()(()())()x x x x xf x e f x e f x f x eg x e e --==,因为()()f x f x '>,所以'()0g x <,()g x 在(,)-∞+∞上为减函数,(2013)(2014)g g >,即20132014(2013)(2014)f f e e>,从而得20132014(2014)(2013)e f e f ⋅<⋅.(2)()22f a f a a --≥-14.【答案】D 试题分析:根据2()()0xf x f x x '-<和构造的函数()()f x g x x=在(0,+∞)上单调递减,又)(x f 是定义在R 上的奇函数,故)(x f 是定义在R 上单调递减. 因为f (2)=0,所以在(0,2)内恒有f (x )>0;在(2,+∞)内恒有f (x )<0.又因为f (x )是定义在R 上的奇函数,所以在(-∞,-2)内恒有f (x )>0;在(-2,0)内恒有f (x )<0.又不等式x 2f (x )>0的解集,即不等式f (x )>0的解集.所以答案为(-∞,-2)∪(0,2).15.【答案】A 试题分析:212)(+<x x f 可化为0212)(<--x x f ,令212)()(--=x x f x g ,则21)()(-'='x f x g ,因为21)(<'x f ,所以0)(<'x g 0,所以)(x g 在R 上单调递减,当1>x 时,02121)1()1()(=--=<f g x g ,即212)(+<x x f .所以不等式212)(+<x x f 的解集为),1(+∞.故选A .16.【答案】12试题分析:因为(,0)x ∈-∞时,()()xf x f x '<-,所以当(,0)x ∈-∞时,()()0xf x f x '--<,又因为函数()y f x =是定义在R 上的奇函数,所以当(,0)x ∈-∞时,()()0xf x f x '+<,构造函数()()g x xf x =,则()()()0,(,0)g x xf x f x x ''=+<∈-∞,所以()g x 在(,0)-∞上是减函数,又()()g x g x -=,所以()g x 是R 上的偶函数,所以()g x 在(0,)+∞上是增函数,因2lg 30>>>,所以(2)(lg 3)g g g >>,而21(2)(2)(log )4g g g =->,所以有c a b >>,选A.17.【答案】C 试题分析:令()()x f x g x e=,则'''2()()()()()x x x xf x e f x e f x f xg x e e --==,因为对任意x R ∈都有'()()0f x f x ->,所以'()0g x >,即()g x 在R 上单调递增,又ln 2ln3<,所以(ln 2)(ln3)g g <,即ln 2ln3(ln 2)(ln 3)f f e e <,所以(ln 2)(ln 3)23f f <,即3(ln 2)2(ln3)f f <,故选C .。
考点1 利用导数证明不等式考点2 利用导数研究不等式恒(能)成立问题考点3 利用导数研究函数零点问题目 录综合拔高练1综合拔高练22024高考数学习题 导数的综合运用训练册考点1 利用导数证明不等式1.(2023天津,20节选,中)已知函数f (x )= ln(x +1).(1)求曲线y =f (x )在x =2处切线的斜率;(2)当x >0时,证明: f (x )>1.112x ⎛⎫+ ⎪⎝⎭解析 (1)f '(x )= - ln(x +1),故曲线y =f (x )在x =2处的切线斜率为f '(2)= - .(2)指数找朋友法.证明:当x >0时, f (x )>1⇔ln(x +1)- >0,令g (x )=ln(x +1)- ,x >0,g '(x )= >0,故g (x )在(0,+∞)上单调递增,因此g (x )>g (0)=0,原不等式得证.22(1)x x x ++21x13ln 3422x x +22x x +22(1)(2)x x x ++2.(2017课标Ⅲ,21,12分,中)已知函数f (x )=ln x +ax 2+(2a +1)x .(1)讨论f (x )的单调性;(2)当a <0时,证明f (x )≤- -2.34a解析 (1)f (x )的定义域为(0,+∞), f '(x )= +2ax +2a +1= .若a ≥0,则当x ∈(0,+∞)时, f '(x )>0,故f (x )在(0,+∞)单调递增.若a <0,则当x ∈ 时, f '(x )>0;当x ∈ 时, f '(x )<0,故f (x )在 单调递增,在 单调递减.(2)证明:由(1)知,当a <0时, f (x )在x =- 取得最大值,最大值为f =ln -1- .1x (1)(21)x ax x++10,2a ⎛⎫- ⎪⎝⎭1,2a ⎛⎫-+∞ ⎪⎝⎭10,2a ⎛⎫- ⎪⎝⎭1,2a ⎛⎫-+∞ ⎪⎝⎭12a 12a ⎛⎫- ⎪⎝⎭12a ⎛⎫- ⎪⎝⎭14a所以f (x )≤- -2等价于ln -1- ≤- -2,即ln + +1≤0.设g (x )=ln x -x +1,则g '(x )= -1.当x ∈(0,1)时,g '(x )>0;当x ∈(1,+∞)时,g '(x )<0.所以g (x )在(0,1)单调递增,在(1,+∞)单调递减.故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时,ln + +1≤0,即f (x )≤- -2.34a 12a ⎛⎫- ⎪⎝⎭14a 34a 12a ⎛⎫- ⎪⎝⎭12a1x12a ⎛⎫- ⎪⎝⎭12a34a3.(2021全国乙理,20,12分,中)设函数f (x )=ln(a -x ),已知x =0是函数y =xf (x )的极值点.(1)求a ;(2)设函数g (x )= .证明:g (x )<1.()()x f x xf x +解析 (1)第一步,利用x =0是函数y =xf (x )的极值点求a .由题意得y =xf (x )=x ln(a -x ),x ∈(-∞,a ),∴y '=ln(a -x )+x · ·(-1)=ln(a -x )- ,∵x =0是函数y =xf (x )的极值点,∴ln(a -0)- =0,可得a =1.1a x -x a x -00a -第二步,证明求出的a 满足条件.当a =1时,y '=ln(1-x )- ,x ∈(-∞,1),令p (x )=ln(1-x )- ,x ∈(-∞,1),1x x -1x x-则p '(x )= - = ,易知当x ∈(-∞,1)时,p '(x )<0恒成立.∴p (x )在(-∞,1)上为减函数,又p (0)=0,∴当x ∈(-∞,0)时,p (x )>0;当x ∈(0,1)时,p (x )<0,∴函数y =xf (x )=x ln(1-x )在(-∞,0)上为增函数,在(0,1)上为减函数.∴当a =1时,x =0是函数y =xf (x )的极值点.∴a =1.11x -21(1)x -22(1)x x --(2)证明:由(1)知a =1,∴f (x )=ln(1-x ),x ∈(-∞,1),当x ∈(0,1)时, f (x )=ln(1-x )<0,∴xf (x )<0;当x ∈(-∞,0)时, f (x )=ln(1-x )>0,∴xf (x )<0,∴要证g (x )= <1(g (x )的定义域为(-∞,0)∪(0,1)),只需证x +f (x )>xf (x ).只需证x +ln(1-x )>x ln(1-x ),只需证x +(1-x )ln(1-x )>0,令h (x )=x +(1-x )ln(1-x ),x <1且x ≠0,()()x f x xf x则h'(x)=1-ln(1-x)-1=-ln(1-x),∴当x∈(0,1)时,h'(x)>0,h(x)单调递增,当x∈(-∞,0)时,h'(x)<0,h(x)单调递减,∴当x∈(-∞,0)∪(0,1)时,h(x)>h(0)=0,∴x+(1-x)ln(1-x)>0在(-∞,0)∪(0,1)上恒成立.∴g(x)<1.4.(2021新高考Ⅰ,22,12分,难)已知函数f (x )=x (1-ln x ).(1)讨论f (x )的单调性;(2)设a ,b 为两个不相等的正数,且b ln a -a ln b =a -b ,证明:2< + <e.1a 1b解析 (1)函数f (x )的定义域为(0,+∞), f '(x )=-ln x ,令f '(x )>0,解得0<x <1,令f '(x )<0,解得x >1,所以函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.(2)证明:由b ln a -a ln b =a -b 得 (1+ln a )= (1+ln b ),即 = ,令x 1= ,x 2= ,则x 1,x 2为f (x )=k 的两个实根,当x →0+时,f (x )→0+,当x →+∞时, f (x )→-∞,且f (1)=1,故k ∈(0,1),不妨令x 1∈(0,1),x 2∈(1,e),则2-x 1>1,e-x 1>1,先证明x 1+x 2>2,即证x 2>2-x 1,即证f (x 2)=f (x 1)<f (2-x 1).1a 1b 1a 11ln a ⎛⎫- ⎪⎝⎭1b 11ln b ⎛⎫- ⎪⎝⎭1a 1b令h(x)=f(x)-f(2-x),x∈(0,1),则h'(x)=f '(x)+f '(2-x)=-ln x-ln(2-x) =-ln[x(2-x)].∵x∈(0,1),∴x(2-x)∈(0,1),∴h'(x)>0恒成立,∴h(x)为增函数,∴h(x)<h(1)=0.∴f(x1)-f(2-x1)<0,即f(x1)<f(2-x1),∴f(x2)<f(2-x1),∴x2>2-x1,∴x1+x2>2.再证x 1+x 2<e.设x 2=tx 1,则t >1,结合 = , =x 1, =x 2可得x 1(1-ln x 1)=x 2(1-ln x 2),即1-ln x 1=t (1-ln t -ln x 1),故ln x 1= ,要证x 1+x 2<e,即证(t +1)x 1<e,即证ln(t +1)+ln x 1<1,即证ln(t +1)+ <1,即证(t -1)ln(t +1)-t ln t <0,令S (t )=(t -1)ln(t +1)-t ln t ,t >1,ln 1a a +ln 1b b +1a 1b1ln 1t t t t ---1ln 1t t t t ---则S '(t )=ln(t +1)+ -1-ln t =ln - .因为ln(x +1)≤x (x >-1,当且仅当x =0时等号成立),所以可得当t >1时,ln ≤ < ,故S '(t )<0恒成立,故S (t )在(1,+∞)上为减函数,故S (t )<S (1)=0,故(t -1)ln(t +1)-t ln t <0成立,即x 1+x 2<e 成立.综上所述,2< + <e.11t t -+11t ⎛⎫+ ⎪⎝⎭21t +11t ⎛⎫+ ⎪⎝⎭1t 21t +1a 1b考点2 利用导数研究不等式恒(能)成立问题1.(2019课标Ⅰ文,20,12分,中)已知函数f (x )=2sin x -x cos x -x , f '(x )为f (x )的导数.(1)证明: f '(x )在区间(0,π)存在唯一零点;(2)若x ∈[0,π]时, f (x )≥ax ,求a 的取值范围.解析 (1)证明:设g (x )=f '(x ),则g (x )=cos x +x sin x -1,g '(x )=x cos x .当x ∈ 时,g '(x )>0;当x ∈ 时,g '(x )<0,所以g (x )在 上单调递增,在 上单调递减.0,2π⎛⎫ ⎪⎝⎭,2ππ⎛⎫ ⎪⎝⎭0,2π⎛⎫ ⎪⎝⎭,2ππ⎛⎫ ⎪⎝⎭又g (0)=0,g >0,g (π)=-2,故g (x )在(0,π)存在唯一零点.所以f '(x )在(0,π)存在唯一零点.(2)由题设知f (π)≥a π, f (π)=0,可得a ≤0.由(1)知, f '(x )在(0,π)只有一个零点,设为x 0,且当x ∈(0,x 0)时, f '(x )>0;当x ∈(x 0,π)时, f '(x )<0,所以f (x )在(0,x 0)上单调递增,在(x 0,π)上单调递减.2π⎛⎫ ⎪⎝⎭又f (0)=0, f (π)=0,所以,当x ∈[0,π]时,f (x )≥0.又当a ≤0,x ∈[0,π]时,ax ≤0,故f (x )≥ax .因此,a 的取值范围是(-∞,0].2.(2020新高考Ⅰ,21,12分,难)已知函数f (x )=a e x -1-ln x +ln a .(1)当a =e 时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积;(2)若f (x )≥1,求a 的取值范围.解析 (1)当a =e 时, f (x )=e x-ln x +1, f '(1)=e-1,曲线y =f (x )在点(1,f (1))处的切线方程为y -(e +1)=(e-1)(x -1),即y =(e-1)x +2.直线y =(e-1)x +2在x 轴,y 轴上的截距分别为 ,2.因此所求三角形的面积为 易错:容易忽略三角形的面积应大于0而把结果写成 . (6分)(2)当0<a <1时, f (1)=a +ln a <1.2e 1--2e 1-2e 1--当a =1时, f (x )=e x -1-ln x , f '(x )=e x -1- .当x ∈(0,1)时,f '(x )<0;当x ∈(1,+∞)时, f '(x )>0.所以当x =1时, f (x )取得最小值,最小值为f (1)=1,从而f (x )≥1.1x 当a >1时, f (x )=a e x -1-ln x +ln a >e x -1-ln x ≥1.综上,a 的取值范围是[1,+∞). (12分)3.(2020课标Ⅱ文,21,12分,难)已知函数f (x )=2ln x +1.(1)若f (x )≤2x +c ,求c 的取值范围;(2)设a >0,讨论函数g (x )= 的单调性.()()f x f a x a--解析 (1)设h (x )=f (x )-2x -c ,则h (x )=2ln x -2x +1-c ,其定义域为(0,+∞),h '(x )= -2= .当0<x <1时,h '(x )>0;当x >1时,h '(x )<0.所以h (x )在区间(0,1)单调递增,在区间(1,+∞)单调递减.从而当x =1时,h (x )取得最大值,最大值为h (1)=-1-c .故当且仅当-1-c ≤0,即c ≥-1时, f (x )≤2x +c .所以c 的取值范围为[-1,+∞).2x 2(1)x x-(2)g (x )= = ,x ∈(0,a )∪(a ,+∞),g '(x )= =()()f x f a x a --2(ln ln )x a x a --22ln ln ()x a a x x x a -⎛⎫+- ⎪⎝⎭- .取c =-1得h (x )=2ln x -2x +2,h (1)=0,则由(1)知,当x ≠1时,h (x )<0,即1-x +ln x <0.故当x ∈(0,a )∪(a ,+∞)时,1- +ln <0,从而g '(x )<0.所以g (x )在区间(0,a ),(a ,+∞)单调递减.221ln ()a a x x x a ⎛⎫-+ ⎪⎝⎭-a x a x4.(2022新高考Ⅱ,22,12分,难)已知函数f (x )=x e ax -e x .(1)当a =1时,讨论f (x )的单调性;(2)当x >0时, f (x )<-1,求a 的取值范围;(3)设n ∈N *,证明: + +…+ >ln(n +1).2111+2122+21n n +解析 (1)当a=1时, f(x)=x e x-e x,则f '(x)=x e x,当x∈(-∞,0)时, f '(x)<0, f(x)单调递减,当x∈(0,+∞)时, f '(x)>0, f(x)单调递增. (2)当x>0时, f(x)<-1,即x e ax-e x<-1在(0,+∞)上恒成立,令F(x)=x e ax-e x+1(x>0),则F(x)<0在(0,+∞)上恒成立.易得F(0)=0,F'(x)=e ax+ax e ax-e x,F'(0)=0, F″(x)=a e ax+a e ax+a2x e ax-e x,F″(0)=2a-1.若F ″(0)>0,则F '(x )必定存在一个单调递增区间(0,x 0),又F '(0)=0,∴F (x )也必定存在一个单调递增区间(0,x '0).于是F (x )>F (0)=0在(0,x '0)上恒成立,与F (x )<0矛盾,∴F ″(0)≤0,∴a ≤ .∵e ax≤ 在(0,+∞)上成立,∴F (x )≤x -e x +1在(0,+∞)上成立,故只需证x -e x +1<0在(0,+∞)上成立.令G (x )=x -e x +1(x >0),122e x 2e x 2e x 2e x则G '(x )= + -e x = .∵e x>x +1在(0,+∞)上成立,∴ > +1在(0,+∞)上成立.∴G '(x )<0,故G (x )在(0,+∞)上单调递减,∴G (x )<G (0)=0.∴x -e x +1<0在(0,+∞)上成立.故当a ≤ 时,x e ax -e x <-1在(0,+∞)成立.∴a 的取值范围为 .2e x 2x 2e x 2e x 21e 2x x ⎛⎫+- ⎪⎝⎭2e x 2x 2e x121,2⎛⎤-∞ ⎥⎝⎦(3)构造函数h (x )=x - -2ln x (x >1),则h '(x )=1+ - = = ,易知h '(x )>0,∴h (x )在(1,+∞)上单调递增,∴h (x )>h (1)=0,∴x - >2ln x ,令x = ,则有 - >2ln ,∴ >ln ,∴ + +…+ >ln +ln +…+ln =ln(n +1).原式得证.1x 21x 2x2221x x x -+22(1)x x -1x 11n+11n +111n +11n +21n n +1n n +2111+2122+21n n +21321n n +考点3 利用导数研究函数零点问题1.(2021全国甲文,20,12分,中)设函数f(x)=a2x2+ax-3ln x+1,其中a>0.(1)讨论f(x)的单调性;(2)若y=f(x)的图象与x轴没有公共点,求a的取值范围.解析 (1)由题意得f '(x )=2a 2x +a - = ,x ∈(0,+∞).∵a >0,x >0,∴ >0,当x ∈ 时, f '(x )<0;当x ∈ 时, f '(x )>0,∴函数f (x )在 上单调递减,在 上单调递增.(2)∵y =f (x )的图象与x 轴没有公共点,∴函数f (x )在(0,+∞)上没有零点,又函数f (x )在 上单调递减,在 上单调递增,∴f (x )min =f =3-3ln =3+3ln a >0,∴ln a >-1,解得a > ,故实数a 的取值范围是 .3x (23)(1)ax ax x +-23ax x +10,a ⎛⎫ ⎪⎝⎭1,a ⎛⎫+∞ ⎪⎝⎭10,a ⎛⎫ ⎪⎝⎭1,a ⎛⎫+∞ ⎪⎝⎭10,a ⎛⎫ ⎪⎝⎭1,a ⎛⎫+∞ ⎪⎝⎭1a ⎛⎫ ⎪⎝⎭1a 1e 1,e ⎛⎫+∞ ⎪⎝⎭2.(2020课标Ⅰ文,20,12分,中)已知函数f (x )=e x -a (x +2).(1)当a =1时,讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.解析 (1)当a =1时, f (x )=e x -x -2,则f '(x )=e x-1.当x <0时, f '(x )<0;当x >0时, f '(x )>0.所以f (x )在(-∞,0)单调递减,在(0,+∞)单调递增.(2)若f (x )有两个零点,则e x-a (x +2)=0有两个解,由方程可知,x =-2不成立,即a = 有两个解, 将问题转化为曲线y = 和直线y =a 有两个交点 e 2x x +e 2xx +令h (x )= (x ≠-2),则有h '(x )= = ,令h '(x )>0,解得x >-1,令h '(x )<0,解得x <-2或-2<x <-1,e 2x x +2e (2)e (2)x x x x +-+2e (1)(2)xx x ++所以函数h (x )在(-∞,-2)和(-2,-1)上单调递减,在(-1,+∞)上单调递增,且当x <-2时,h (x )<0,当x →-2+时,h (x )→+∞,当x →+∞时,h (x )→+∞,所以当a = 有两个解时,有a >h (-1)= ,所以满足条件的a 的取值范围是 .e 2xx +1e 1,e ⎛⎫+∞ ⎪⎝⎭3.(2022新高考Ⅰ,22,12分,难)已知函数f(x)=e x-ax和g(x)=ax-ln x有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.解析 (1)f '(x )=e x-a ,g '(x )=a - .当a ≤0时, f '(x )>0恒成立, f (x )在R 上无最小值,不符合题意.∴a >0.令f '(x )=0,得x =ln a ,令g '(x )=0,得x = .易知f (x )min =f (ln a )=a -a ln a ,g (x )min =g =1+ln a ,∴a -a ln a =1+ln a ,即ln a = ①.令h (x )=ln x - (x >0),1x 1a1a ⎛⎫ ⎪⎝⎭11a a -+11x x -+则h '(x )= - = >0,∴h (x )在(0,+∞)上单调递增,则h (x )最多有一个零点.又h (1)=ln 1- =0,∴方程①有且仅有一解,为a =1,即为所求.(2)由(1)知, f (x )=e x-x ,g (x )=x -ln x ,当x <0时, f (x )单调递减,当x >0时, f (x )单调递增;当0<x <1时,g (x )单调递减,当x >1时,g (x )单调递增.不妨设直线y =b 与y =f (x )的图象的两交点的横坐标分别为x 1,x 2,与y =g (x )的图象的两交点的横坐标分别为x 2,x 3,且x 1<x 2<x 3.1x 22(1)x +221(1)x x x ++1111-+则 -x 1= -x 2=x 2-ln x 2=x 3-ln x 3,∴ -x 1=x 2-ln x 2= -ln x 2.易知x 1∈(-∞,0),x 2∈(0,1),则ln x 2∈(-∞,0),又f (x )在(-∞,0)上单调递减,∴x 1=ln x 2,同理x 2=ln x 3,x 3= .又 -x 2=x 2-ln x 2,∴ln x 2+ =2x 2.∴x 1+x 3=ln x 2+ =2x 2.∴x 1,x 2,x 3成等差数列.∴存在直线y =b ,其与两条曲线y =f (x )和y =g (x )共有三个不同的交点,并且从左到右的三1e x 2e x 1e x 2ln e x 2e x 2e x 2e x 2e x 个交点的横坐标成等差数列.4.(2021全国甲理,21,12分,难)已知a >0且a ≠1,函数f (x )= (x >0).(1)当a =2时,求f (x )的单调区间;(2)若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围.a x x a解析 (1)当a =2时,f (x )= , f '(x )= = ,令f '(x )=0,得x = ,当0<x < 时, f '(x )>0,当x > 时, f '(x )<0,∴函数f (x )在 上单调递增,在 上单调递减.(2)第一步,将曲线y =f (x )与直线y =1的交点问题转化为方程的根的问题.22x x 22222ln 2(2)x x x x x ⋅-⋅(2ln 2)2x x x -2ln 22ln 22ln 220,ln 2⎛⎤ ⎥⎝⎦2,ln 2⎡⎫+∞⎪⎢⎣⎭令f (x )=1,则 =1,所以x a =a x .第二步,将幂指数形式转化为对数形式,并参变量分离.两边同时取对数,可得a ln x =x ln a ,即 = .第三步,将方程的根的个数转化为两个函数图象的交点个数,并构造函数研究单调性.根据题意可知,方程 = 有两个实数解.设g (x )= ,则g '(x )= ,令g '(x )=0,则x =e.当x ∈(0,e)时,g '(x )>0,g (x )单调递增;ax x aln x x ln a aln x x ln a a ln x x 21ln x x当x ∈(e,+∞)时,g '(x )<0,g (x )单调递减.第四步,根据交点个数,数形结合写出参数范围.又知g (1)=0, g (x )=0,g (x )max =g (e)= ,所以要使曲线y =f (x )与直线y =1有且仅有两个交点,则只需 ∈ ,即g (a )= ∈ ,所以a ∈(1,e)∪(e,+∞).综上,实数a 的取值范围为(1,e)∪(e,+∞).lim x →+∞1ea a ln 10,e ⎛⎫ ⎪⎝⎭a a ln 10,e ⎛⎫ ⎪⎝⎭1.(2024届湖北宜昌一中月考,22)已知函数f (x )=ln x + ,g (x )= .(1)讨论函数f (x )的单调性;(2)求证:当0≤a ≤1时, f (x )>g (x ).1a x -(sin 1)2a x x+-解析 (1)f '(x )= - = (x ∈(0,+∞)),当a -1<0,即a <1时, f '(x )>0,函数f (x )在(0,+∞)上单调递增;当a -1>0,即a >1时,令f '(x )=0,得x =a -1,∴函数f (x )在(0,a -1)上单调递减,在(a -1,+∞)上单调递增.综上所述,当a <1时,函数f (x )在(0,+∞)上单调递增;当a >1时,函数f (x )在(0,a -1)上单调递减,在(a -1,+∞)上单调递增.(2)证明:令F (x )=f (x )-g (x )=ln x + - = (x >0,0≤a ≤1),欲证f (x )>g (x ),即证F (x )>0,即证x ln x -a sin x +1>0,即证x ln x >a sin x -1.1x 21a x -2(1)x a x--1a x -(sin 1)2a x x +-ln sin 1x x a x x-+先证:x ln x≥ax-1.设g(x)=x ln x-ax+1,则g'(x)=1+ln x-a=ln x+1-a,令g'(x)=0,得x=e a-1,∴g(x)在(0,e a-1)上单调递减,在(e a-1,+∞)上单调递增,∴g(x)≥g(e a-1)=(a-1)e a-1-a e a-1+1=1-e a-1,∵0≤a≤1,∴1-e a-1≥0,则g(x)≥0,即x ln x≥ax-1,当且仅当x=1,a=1时取等号.再证:ax-1≥a sin x-1.设h(x)=x-sin x,则h'(x)=1-cos x≥0.∴h(x)在(0,+∞)上单调递增,则h(x)>h(0)=0,即x>sin x.∵0≤a≤1,∴ax-1≥a sin x-1,当且仅当a=0时取等号.又x ln x≥ax-1与ax-1≥a sin x-1两个不等式的等号不能同时取到,∴x ln x>a sin x-1成立,即当0≤a≤1时, f(x)>g(x)成立.2.(2024届山东烟台校考模拟预测,21)设函数f(x)=(x2-2x)e x,g(x)=e2ln x-a e x.(1)若函数g(x)在(e,+∞)上存在最大值,求实数a的取值范围;(2)当a=2时,求证: f(x)>g(x).解析 (1)对g (x )求导得g '(x )= -a e= (x >0).①当a ≤0时,g '(x )>0,所以g (x )在(0,+∞)上单调递增,在(e,+∞)上不存在最大值.②当a >0时,令g '(x )=0,解得x = >0,当x ∈ 时,g '(x )>0,g (x )在 上单调递增,当x ∈ 时,g '(x )<0,g (x )在 上单调递减,所以g (x )在x = 处取得最大值g ,又函数g (x )在(e,+∞)上存在最大值,因此 >e,解得a <1.2e x 2e e a x x -e ae 0,a ⎛⎫ ⎪⎝⎭e 0,a ⎛⎫ ⎪⎝⎭e ,a ⎛⎫+∞ ⎪⎝⎭e ,a ⎛⎫+∞ ⎪⎝⎭e a e a ⎛⎫ ⎪⎝⎭e a所以a 的取值范围为(0,1).(2)证明:欲证f (x )>g (x ),即证当x >0时,(x 2-2x )e x >e 2ln x -2e x ,即证当x >0时,(x 2-2x )e x +2e x >e 2ln x ,即证(x -2)e x +2e> .设φ(x )=(x -2)e x +2e(x >0),则φ'(x )=(x -1)e x,当0<x <1时,φ'(x )<0,当x >1时,φ'(x )>0,所以φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增,故φ(x )≥φ(1)=e,当x =1时,等号成立.2e ln x x设h (x )= (x >0),则h '(x )= ,当0<x <e 时,h '(x )>0,当x >e 时,h '(x )<0,所以h (x )在(0,e)上单调递增,在(e,+∞)上单调递减,故h (x )≤h (e)=e,当x =e 时,等号成立.综上,x >0时,φ(x )≥h (x ),但等号不同时成立,所以x >0时,φ(x )>h (x ),即f (x )>g (x )得证.2e ln x x 22e (1ln )x x3.(2024届河北邯郸校考模拟,21)已知函数f (x )= x 2-a e x (a ∈R).(1)已知曲线f (x )在(0, f (0))处的切线与圆x 2+y 2-2x -2y -3=0相切,求实数a 的值;(2)已知x ≥0时, f (x )≤-x 2-ax -a 恒成立,求实数a 的取值范围.12解析 (1)圆的方程可化为(x -1)2+(y -1)2=5,则圆心为(1,1),半径为 ,对函数f (x )求导得f '(x )=x -a e x ,则f '(0)=-a ,又f (0)=-a ,于是曲线f (x )在(0, f (0))处的切线方程为y +a =-ax ,即ax +y +a =0,因为直线ax +y +a =0与圆相切,5所以 = ,则a =2,所以实数a 的值为2.(2)设g (x )=f (x )+x 2+ax +a = x 2-a e x +ax +a (x ≥0),22|1|1a a a +++532则g (x )≤0在[0,+∞)上恒成立.对g (x )求导得g '(x )=3x -a e x+a ,设h (x )=3x -a e x +a ,x ≥0,则h '(x )=3-a e x ,当a ≥3时,当x ≥0时,a e x ≥3e x≥3,即有h '(x )≤0,所以函数h (x ),即g '(x )在[0,+∞)上单调递减,于是当x ≥0时,g '(x )≤g '(0)=0,则函数g (x )在[0,+∞)上单调递减,因此当x ≥0时,g (x )≤g (0)=0,故a ≥3.当0<a <3时,令h '(x )>0,得0<x <ln ,3a则函数h (x ),即g '(x )在 上单调递增,于是当0≤x <ln 时,g '(x )>g '(0)=0,即函数g (x )在 上单调递增,因此当0≤x <ln 时,g (x )≥g (0)=0,不合题意.所以实数a 的取值范围为[3,+∞).30,ln a ⎡⎫⎪⎢⎣⎭3a30,ln a ⎡⎫⎪⎢⎣⎭3a4.(2024届江苏南京二中校考,22)已知函数f (x )=4ln x -ax + (a ≥0).(1)当a = 时,求f (x )的极值;(2)当a ≥1时,设g (x )=2e x -4x +2a ,若存在x 1,x 2∈ ,使得f (x 1)>g (x 2),求实数a 的取值范围.(e=2.718 28…为自然对数的底数)3a x +121,22⎡⎤⎢⎥⎣⎦解析 (1)f (x )的定义域为(0,+∞).当a = 时, f (x )=4ln x - + ,∴f '(x )= - - =- ,令f '(x )>0,可得1<x <7,令f '(x )<0,可得0<x <1或x >7,∴f (x )在(0,1),(7,+∞)上单调递减,在(1,7)上单调递增,∴f (x )极小值=f (1)=3, f (x )极大值=f (7)=4ln 7-3.(2)f '(x )= (x >0),122x 72x 4x 12272x 2(1)(7)2x x x--224(3)ax x a x -+-+。
导数的应用试卷一、选择题(每题5分,共30分)1. 设函数f(x)在区间(a,b)内可导,若f'(x)>0,则函数f(x)在(a,b)内()A. 单调递减B. 单调递增C. 是常数函数D. 有极大值答案:B。
解析:根据导数的性质,导数大于零函数单调递增。
2. 函数y = x³ - 3x的极小值点为()A. -1B. 1C. 0D. 不存在答案:A。
解析:先求导y' = 3x² - 3,令y' = 0,解得x = ±1,再通过判断导数在x = - 1两侧的正负性可知x = - 1为极小值点。
3. 函数y = sinx在区间[0,2π]上,导数为零的点有()个。
A. 1B. 2C. 3D. 4答案:C。
解析:y' = cosx,在[0,2π]上cosx = 0时,x = π/2,3π/2,5π/2,有3个点。
二、填空题(每题5分,共20分)1. 函数y = lnx的导数是______。
答案:1/x。
解析:根据对数函数的求导公式。
2. 曲线y = x²在点(1,1)处的切线方程为______。
答案:y = 2x - 1。
解析:先求导得y' = 2x,在点(1,1)处切线斜率为2,再利用点斜式得到切线方程。
三、解答题(每题20分,共40分)1. 求函数y = x⁴ - 2x² + 3的单调区间和极值。
答案:先求导y' = 4x³ - 4x = 4x(x² - 1)=4x(x + 1)(x - 1)。
令y' = 0,解得x = - 1,0,1。
当x < - 1时,y' < 0,函数单调递减;当- 1 < x < 0时,y' > 0,函数单调递增;当0 < x < 1时,y' < 0,函数单调递减;当x > 1时,y' > 0,函数单调递增。
导数的综合应用(分层练习)[基础训练]1.已知函数f (x )=a e x +x 2-bx (a ,b ∈R ,e =2.718 28…是自然对数的底数),其导函数为y =f ′(x ).(1)设a =-1,若函数y =f (x )在R 上是单调减函数,求b 的取值范围;(2)设b =0,若函数y =f (x )在R 上有且只有一个零点,求a 的取值范围. 解:(1)函数f (x )=-e x +x 2-bx 的导函数为f ′(x )=-e x +2x -b .函数y =f (x )在R 上是单调减函数,可得f ′(x )≤0恒成立,即为-b ≤e x -2x ,令g (x )=e x -2x .g ′(x )=e x -2,当x >ln 2时,g ′(x )>0,g (x )单调递增,当x <ln 2时,g ′(x )<0,g (x )单调递减.则g (x )在x =ln 2处取得极小值,且为最小值,g (ln 2)=2-2ln 2,即有-b ≤2-2ln 2,即b ≥2ln 2-2,则b 的取值范围是[2ln 2-2,+∞).(2)由b =0,可得f (x )=a e x +x 2,令f (x )=0,即有-a =x 2e x ,设h (x )=x 2e x ,h ′(x )=x (2-x )e x ,当0<x <2时,h ′(x )>0,h (x )在(0,2)上单调递增,当x >2或x <0时,h ′(x )<0,h (x )在(-∞,0),(2,+∞)上单调递减, 可得h (x )在x =0处取得极小值0,在x =2处取得极大值4e 2,且x →+∞,h (x )→0,因为函数y =f (x )在R 上有且只有一个零点,则-a =0或-a >4e 2.即为a =0或a <-4e 2,即a 的取值范围是{0}∪⎝⎛⎭⎪⎫-∞,-4e 2.2.[2020重庆九校联盟联考]设函数f (x )=e x -a sin x .(1)当a =1时,证明:∀x ∈(0,+∞),f (x )>1;(2)若∀x ∈[0,+∞),f (x )≥0都成立,求实数a 的取值范围.(1)证明:由a =1知f (x )=e x -sin x ,当x ∈(0,+∞)时,f ′(x )=e x -cos x >0,故f (x )在(0,+∞)上是增函数.又f (0)=1,故∀x ∈(0,+∞),f (x )>f (0)=1,即当a =1时,∀x ∈(0,+∞),f (x )>1.(2)解:当a =0时,f (x )=e x ,符合条件;当a >0时,设y 1=e x与y 2=a sin x 在点(x 0,y 0)处有公切线⎝ ⎛⎭⎪⎫x 0∈⎝ ⎛⎭⎪⎫0,π2,3.某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =a x -3+10(x -6)2,其中3<x <6,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定使商场每日销售该商品所获得的利润最大的销售价格x 的值.解:(1)因为x =5时,y =11,所以a 2+10=11,a =2.(2)由(1)知,该商品每日的销售量y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2 =2+10(x -3)(x -6)2,3<x <6.则f ′(x )=10[(x -6)2+2(x -3)(x -6)]=30(x -4)·(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,当x =4时,函数f (x )取得最大值,且最大值等于42.答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.4.[2020河南洛阳一模]已知函数f (x )=e x -ax 2-1(x ∈R ).(1)若曲线y =f (x )在x =1处的切线的斜率为e ,求a 的值;(2)若0≤a ≤e 2,求证:当x >0时,f (x )的图象恒在x 轴上方.(1)解:∵函数f (x )=e x -ax 2-1(x ∈R )的导数为f ′(x )=e x -2ax ,且曲线y =f (x )在x =1处的切线的斜率为e ,∴f ′(1)=e -2a =e ,∴a =0.(2)证明:由(1)得f ′(x )=e x -2ax ,令h (x )=e x -2ax ,则h ′(x )=e x -2a (x >0).①当0≤a ≤12时,h ′(x )>0,∴f ′(x )单调递增,∴f ′(x )>f ′(0)=1,即f (x )单调递增,∴f (x )>f (0)=0,满足题意.②当12<a ≤e 2时,令h ′(x )=e x -2a =0,解得x =ln 2a .当x ∈(0,ln 2a )时,h ′(x )<0,f ′(x )单调递减;当x ∈(ln 2a ,+∞)时,h ′(x )>0,f ′(x )单调递增.∴f ′(x )min =f ′(ln 2a )=e ln 2a -2a ln 2a =2a (1-ln 2a ).∵a ≤e 2,∴1-ln 2a ≥0,即f ′(x )min ≥0,∴f (x )单调递增,f (x )>f (0)=0,满足题意.综上可得,当0≤a ≤e 2且x >0时,f (x )的图象恒在x 轴上方.[强化训练]1.[2020辽宁锦州联考]已知函数f (x )=e x +ax -a (a ∈R 且a ≠0).(1)若函数f (x )在x =0处取得极值,求实数a 的值,并求此时f (x )在[-2,1]上的最大值;(2)若函数f (x )不存在零点,求实数a 的取值范围.解:(1)由f (x )=e x +ax -a ,得f ′(x )=e x +a .∵函数f (x )在x =0处取得极值,∴f ′(0)=e 0+a =0,∴a =-1.∴f ′(x )=e x -1.∴当x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减,当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增.易知f (x )在[-2,0)上单调递减,在(0,1]上单调递增,且f (-2)=1e 2+3,f (1)=e ,f (-2)>f (1),∴f (x )在[-2,1]上的最大值为1e 2+3.(2)f ′(x )=e x +a ,由于e x >0,①当a >0时,f ′(x )>0,f (x )是增函数,且当x >1时,f (x )=e x +a (x -1)>0.当x <0时,取x =-1a ,则f ⎝ ⎛⎭⎪⎫-1a <1+a ⎝ ⎛⎭⎪⎫-1a -1=-a <0, ∴函数f (x )存在零点,不满足题意.②当a <0时,令f ′(x )=e x +a =0,x =ln(-a ).当x ∈(-∞,ln(-a ))时,f ′(x )<0,f (x )单调递减,当x ∈(ln(-a ),+∞)时,f ′(x )>0,f (x )单调递增,∴x =ln(-a )时,f (x )取得最小值.函数f (x )不存在零点,等价于f (ln(-a ))=e ln(-a )+a ln(-a )-a=-2a +a ln(-a )>0,解得-e 2<a <0.综上所述,所求实数a 的取值范围是(-e 2,0).2.函数f (x )=13x 3+ax 2+bx +c (a ,b ,c ∈R )的导函数的图象如图所示.(1)求a ,b 的值并写出f (x )的单调区间;(2)函数y =f (x )有三个零点,求c 的取值范围.解:(1)因为f (x )=13x 3+ax 2+bx +c ,所以f ′(x )=x 2+2ax +b .由题图知f ′(x )=0的两个根为-1,2,所以⎩⎪⎨⎪⎧ 1-2a +b =0,4+4a +b =0,解得⎩⎨⎧ a =-12,b =-2,由导函数的图象可知,当-1<x <2时,f ′(x )<0,函数单调递减, 当x <-1或x >2时,f ′(x )>0,函数单调递增,故函数f (x )的单调递增区间为(-∞,-1)和(2,+∞),单调递减区间为(-1,2).(2)由(1)得f (x )=13x 3-12x 2-2x +c ,函数f (x )在(-∞,-1),(2,+∞)上是增函数,在(-1,2)上是减函数,所以函数f (x )的极大值为f (-1)=76+c ,极小值为f (2)=c -103.而函数f (x )恰有三个零点,故必有⎩⎪⎨⎪⎧ 76+c >0,c -103<0,解得-76<c <103.所以使函数f (x )恰有三个零点的实数c 的取值范围是⎝ ⎛⎭⎪⎫-76,103. 3.[2020江西九江一模]已知函数f (x )=x 2-(2a -1)x -a ln x (a ∈R ).(1)试讨论函数f (x )的单调性;(2)若函数f (x )存在最小值f (x )min ,求证:f (x )min <34.(1)解:由题可得f ′(x )=(2x +1)(x -a )x,x ∈(0,+∞). ①当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,故f (x )在(0,+∞)上单调递增;②当a >0时,由f ′(x )>0,解得x >a ,由f ′(x )<0,解得0<x <a .故f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.(2)证明:由(1)知要使f (x )存在最小值,则a >0且f (x )min =f (a )=a -a 2-a ln a .令g (x )=x -x 2-x ln x (x >0),则g ′(x )=-2x -ln x 在(0,+∞)上单调递减.又g ′⎝ ⎛⎭⎪⎫1e =1-2e >0,g ′⎝ ⎛⎭⎪⎫12=ln 2-1<0, 故存在x 0∈⎝ ⎛⎭⎪⎫1e ,12,使得g ′(x 0)=0. 故g (x )在(0,x 0)上单调递增,在(x 0,+∞)上单调递减.∵g ′(x 0)=0,∴-2x 0-ln x 0=0,故ln x 0=-2x 0.∴g (x )max =g (x 0)=x 0+x 20=⎝ ⎛⎭⎪⎫x 0+122-14.又∵x 0∈⎝ ⎛⎭⎪⎫1e ,12,∴g (x )max =⎝ ⎛⎭⎪⎫x 0+122-14<⎝ ⎛⎭⎪⎫12+122-14=34,故f (x )min <34.。
导数应用练习题答案1.下列函数在给定区间上是否满足罗尔定理的所有条件?如满足,请求出定理中的数值ξ。
2(1)()23[1,1.5]f x x x =---; 21(2)()[2,2]1f x x =-+;(3)()[0,3]f x =; 2(4)()1[1,1]x f x e =--解:2(1)()23[1,1.5]f x x x =---该函数在给定闭区间上连续,其导数为()41f x x '=-,在开区间上可导,而且(1)0f -=,(1.5)0f =,满足罗尔定理,至少有一点(1,1.5)ξ∈-, 使()410f ξξ'=-=,解出14ξ=。
解:21(2)()[2,2]1f x x =-+该函数在给定闭区间上连续,其导数为222()(1)x f x x -'=+,在开区间上可导,而且1(2)5f -=,1(2)5f =,满足罗尔定理,至少有一点(2,2)ξ∈-, 使222()0(1)f ξξξ-'==+,解出0ξ=。
解:(3)()[0,3]f x =该函数在给定闭区间上连续,其导数为()f x '=,在开区间上可导,而且(0)0f =,(3)0f =,满足罗尔定理,至少有一点(0,3)ξ∈,使()0f ξ'==,解出2ξ=。
解:2(4)()e 1[1,1]x f x =--该函数在给定闭区间上连续,其导数为2()2e x f x x '=,在开区间上可导,而且(1)e 1f -=-,(1)e 1f =-,满足罗尔定理,至少有一点ξ,使2()2e 0f ξξξ'==,解出0ξ=。
2.下列函数在给定区域上是否满足拉格朗日定理的所有条件?如满足,请求出定理中的数值ξ。
3(1)()[0,](0)f x x a a =>; (2)()ln [1,2]f x x=;32(3)()52[1,0]f x x x x =-+--解:3(1)()[0,](0)f x xa a =>该函数在给定闭区间上连续,其导数为2()3f x x '=,在开区间上可导,满足拉格朗日定理条件,至少有一点(0,)a ξ∈,使()(0)()(0)f a f f a ξ'-=-,即3203(0)a a ξ-=-,解出ξ=。
高考大题专项(一) 导数的综合应用突破1 利用导数研究与不等式有关的问题1.(2020全国1,理21)已知函数f (x )=e x +ax 2-x. (1)当a=1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.2.(2020山东潍坊二模,20)已知函数f (x )=1x +a ln x ,g (x )=e x x .(1)讨论函数f (x )的单调性; (2)证明:当a=1时,f (x )+g (x )-(1+ex 2)ln x>e .3.已知函数f (x )=ln x+a x(a ∈R )的图象在点1e ,f (1e)处的切线斜率为-e,其中e 为自然对数的底数.(1)求实数a 的值,并求f (x )的单调区间; (2)证明:xf (x )>x ex .4.(2020广东湛江一模,文21)已知函数f (x )=ln ax-bx+1,g (x )=ax-ln x ,a>1. (1)求函数f (x )的极值;(2)直线y=2x+1为函数f (x )图象的一条切线,若对任意的x 1∈(0,1),x 2∈[1,2]都有g (x 1)>f'(x 2)成立,求实数a 的取值范围.5.(2020山东济宁5月模拟,21)已知两个函数f(x)=e xx ,g(x)=lnxx+1x-1.(1)当t>0时,求f(x)在区间[t,t+1]上的最大值;(2)求证:对任意x∈(0,+∞),不等式f(x)>g(x)都成立.6.(2020湖北武汉二月调考,理21)已知函数f(x)=(x-1)e x-kx2+2.(1)略;(2)若∀x∈[0,+∞),都有f(x)≥1成立,求实数k的取值范围.7.(2020山东济南一模,22)已知函数f(x)=a(e x-x-1)x2,且曲线y=f(x)在(2,f(2))处的切线斜率为1.(1)求实数a的值;(2)证明:当x>0时,f(x)>1;(3)若数列{x n}满足e x n+1=f(x n),且x1=13,证明:2n|e x n-1|<1.8.(2020湖南长郡中学四模,理21)已知函数f(x)=x ln x.(1)若函数g(x)=f'(x)+ax2-(a+2)x(a>0),试研究函数g(x)的极值情况;(2)记函数F(x)=f(x)-xe x 在区间(1,2)上的零点为x0,记m(x)=min f(x),xe x,若m(x)=n(n∈R)在区间(1,+∞)上有两个不等实数解x1,x2(x1<x2),证明:x1+x2>2x0.突破2 利用导数研究与函数零点有关的问题1.(2020山东烟台一模,21)已知函数f (x )=1+lnxx -a (a ∈R ).(1)若f (x )≤0在(0,+∞)上恒成立,求a 的取值范围,并证明:对任意的n ∈N *,都有1+12+13+ (1)>ln(n+1); (2)设g (x )=(x-1)2e x ,讨论方程f (x )=g (x )的实数根的个数.2.(2020北京通州区一模,19)已知函数f (x )=x e x ,g (x )=a (e x -1),a ∈R . (1)当a=1时,求证:f (x )≥g (x );(2)当a>1时,求关于x 的方程f (x )=g (x )的实数根的个数.3.(2020湖南长郡中学四模,文21)已知函数f(x)=2a e2x+2(a+1)e x.(1)略;(2)当a∈(0,+∞)时,函数f(x)的图象与函数y=4e x+x的图象有唯一的交点,求a的取值集合.4.(2020天津和平区一模,20)已知函数f(x)=ax+be x,a,b∈R,且a>0.x,求函数f(x)的解析式;(1)若函数f(x)在x=-1处取得极值1e(2)在(1)的条件下,求函数f(x)的单调区间;的取值范(3)设g(x)=a(x-1)e x-f(x),g'(x)为g(x)的导函数,若存在x0∈(1,+∞),使g(x0)+g'(x0)=0成立,求ba围.x3+2(1-a)x2-8x+8a+7.5.已知函数f(x)=ln x,g(x)=2a3(1)若曲线y=g(x)在点(2,g(2))处的切线方程是y=ax-1,求函数g(x)在[0,3]上的值域;(2)当x>0时,记函数h(x)={f(x),f(x)<g(x),g(x),f(x)≥g(x),若函数y=h(x)有三个零点,求实数a的取值集合.参考答案高考大题专项(一)导数的综合应用突破1利用导数研究与不等式有关的问题1.解(1)当a=1时,f(x)=e x+x2-x,f'(x)=e x+2x-1.故当x∈(-∞,0)时,f'(x)<0;当x∈(0,+∞)时,f'(x)>0.所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)f(x)≥12x3+1等价于12x3-ax2+x+1e-x≤1.设函数g(x)=(12x3-ax2+x+1)e-x(x≥0),则g'(x)=-12x3-ax2+x+1-32x2+2ax-1e-x=-12x[x2-(2a+3)x+4a+2]e-x=-12x(x-2a-1)(x-2)e-x.①若2a+1≤0,即a≤-12,则当x∈(0,2)时,g'(x)>0.所以g(x)在(0,2)上单调递增,而g(0)=1,故当x∈(0,2)时,g(x)>1,不合题意.②若0<2a+1<2,即-12<a<12,则当x ∈(0,2a+1)∪(2,+∞)时,g'(x )<0;当x ∈(2a+1,2)时,g'(x )>0.所以g (x )在(0,2a+1),(2,+∞)上单调递减,在(2a+1,2)上单调递增.由于g (0)=1,所以g (x )≤1当且仅当g (2)=(7-4a )e -2≤1,即a ≥7-e 24.所以当7-e 24≤a<12时,g (x )≤1.③若2a+1≥2,即a ≥12,则g (x )≤12x 3+x+1e -x .由于0∈7-e 24,12,故由②可得(12x 3+x +1)e -x ≤1.故当a ≥12时,g (x )≤1.综上,a 的取值范围是[7-e 24,+∞).2.(1)解 函数的定义域为(0,+∞),f'(x )=-1x 2+ax =ax -1x 2,当a ≤0时,f'(x )<0,所以f (x )在(0,+∞)上单调递减; 当a>0时,由f'(x )>0,得x>1a ,由f'(x )<0,得0<x<1a , 所以f (x )在(0,1a )上单调递减,在(1a ,+∞)上单调递增, 综上可知:当a ≤0时,f (x )在(0,+∞)上单调递减;当a>0时,f (x )在(0,1a )上单调递减,在(1a ,+∞)上单调递增. (2)证明 因为x>0,所以不等式等价于e x -e x+1>elnxx ,设F (x )=e x -e x+1,F'(x )=e x -e,所以当x ∈(1,+∞)时,F'(x )>0,F (x )单调递增;当x ∈(0,1)时,F'(x )<0,F (x )单调递减,所以F (x )min =F (1)=1.设G (x )=elnxx ,G'(x )=e (1-lnx )x 2, 所以当x ∈(0,e)时,G'(x )>0,G (x )单调递增,当x ∈(e,+∞)时,G'(x )<0,G (x )单调递减,所以G (x )max =G (e)=1.虽然F (x )的最小值等于G (x )的最大值,但1≠e,所以F (x )>G (x ),即e x -e x+1>elnxx ,故原不等式成立.3.(1)解因为函数f(x)的定义域为(0,+∞),f'(x)=1x −ax2,所以f'(1e)=e-a e2=-e,所以a=2e,所以f'(x)=1x−2ex2.令f'(x)=0,得x=2e,当x∈(0,2e)时,f'(x)<0,当x∈(2e,+∞)时,f'(x)>0,所以f(x)在(0,2e)上单调递减,在(2e,+∞)上单调递增.(2)证明设h(x)=xf(x)=x ln x+2e ,由h'(x)=ln x+1=0,得x=1e,所以当x∈(0,1e)时,h'(x)<0;当x∈(1e,+∞)时,h'(x)>0,所以h(x)在(0,1e)上单调递减,在(1e,+∞)上单调递增,所以h(x)min=h(1e )=1e.设t(x)=xe x(x>0),则t'(x)=1-xe x,所以当x∈(0,1)时,t'(x)>0,t(x)单调递增,当x∈(1,+∞)时,t'(x)<0,t(x)单调递减,所以t(x)max=t(1)=1e.综上,在(0,+∞)上恒有h(x)>t(x),即xf(x)>x e x .4.解(1)∵a>1,∴函数f(x)的定义域为(0,+∞).∵f(x)=ln ax-bx+1=ln a+ln x-bx+1,∴f'(x)=1x-b=1-bxx.①当b≤0时,f'(x)>0,f(x)在(0,+∞)上为增函数,无极值;②当b>0时,由f'(x)=0,得x=1b.∵当x∈(0,1b)时,f'(x)>0,f(x)单调递增;当x∈(1b,+∞)时,f'(x)<0,f(x)单调递减,∴f(x)在定义域上有极大值,极大值为f(1b )=ln ab.(2)设直线y=2x+1与函数f(x)图像相切的切点为(x0,y0),则y0=2x0+1.∵f'(x)=1x -b,∴f'(x0)=1x0-b=2,∴x0=1b+2,即bx0=1-2x0.又ln ax 0-bx 0+1=2x 0+1,∴ln ax 0=1,∴ax 0=e . ∴x 0=ea .∴ae =b+2.∵对任意的x 1∈(0,1),x 2∈[1,2]都有g (x 1)>f'(x 2)成立, ∴只需g (x 1)min >f'(x 2)max . ∵g'(x )=a-1x =ax -1x, ∴由g'(x )=0,得x=1a . ∵a>1,∴0<1a <1.∴当x ∈(0,1a )时,g'(x )<0,g (x )单调递减; 当x ∈(1a ,1)时,g'(x )>0,g (x )单调递增.∴g (x )≥g (1a )=1+ln a , 即g (x 1)min =1+ln a.∵f'(x 2)=1x 2-b 在x 2∈[1,2]上单调递减,∴f'(x 2)max =f'(1)=1-b=3-ae .∴1+ln a>3-ae .即lna+a e -2>0.设h (a )=ln a+ae -2,易知h (a )在(1,+∞)上单调递增.又h (e)=0,∴实数a 的取值范围为(e,+∞). 5.(1)解 由f (x )=e x x 得,f'(x )=xe x -e xx 2=e x (x -1)x 2,∴当x<1时,f'(x )<0,当x>1时,f'(x )>0,∴f (x )在区间(-∞,1)上单调递减,在区间(1,+∞)上单调递增.①当t ≥1时,f (x )在区间[t ,t+1]上单调递增,f (x )的最大值为f (t+1)=e t+1t+1.②当0<t<1时,t+1>1,f (x )在区间(t ,1)上单调递减,在区间(1,t+1)上单调递增,∴f (x )的最大值为f (x )max =max{f (t ),f (t+1)}.下面比较f (t )与f (t+1)的大小.f (t )-f (t+1)=e tt−e t+1t+1=[(1-e )t+1]e tt (t+1).∵t>0,1-e <0,∴当0<t ≤1e -1时,f (t )-f (t+1)≥0,故f (x )在区间[t ,t+1]上的最大值为f (t )=e t t ,当1e -1<t<1时,f (t )-f (t+1)<0,f (x )在区间[t ,t+1]上的最大值为f (t+1)=e t+1t+1.综上可知,当0<t ≤1e -1时,f (x )在区间[t ,t+1]上的最大值为f (t )=e t t ,当t>1e -1时,f (x )在区间[t ,t+1]上的最大值为f (t+1)=e t+1t+1. (2)证明 不等式f (x )>g (x )即为e xx>lnx x +1x -1.∵x>0,∴不等式等价于e x >ln x-x+1,令h (x )=e x -(x+1)(x>0),则h'(x )=e x -1>0,∴h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,即e x >x+1,所以,要证e x >ln x-x+1成立,只需证x+1>ln x-x+1成立即可. 即证2x>ln x 在(0,+∞)上成立. 设φ(x )=2x-ln x ,则φ'(x )=2-1x=2x -1x,当0<x<12时,φ'(x )<0,φ(x )单调递减,当x>12时,φ'(x )>0,φ(x )单调递增,∴φ(x )min =φ(12)=1-ln 12=1+ln 2>0,∴φ(x )>0在(0,+∞)上成立,∴对任意x ∈(0,+∞),不等式f (x )>g (x )都成立. 6.解 (1)略(2)f'(x )=x e x -2kx=x (e x -2k ),①当k ≤0时,e x -2k>0,所以,当x<0时,f'(x )<0,当x>0时,f'(x )>0,则f (x )在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增, 所以f (x )在区间[0,+∞)上的最小值为f (0),且f (0)=1,符合题意; ②当k>0时,令f'(x )=0,得x=0或x=ln 2k ,所以当0<k ≤12时,ln 2k ≤0,在区间(0,+∞)上f'(x )>0,f (x )单调递增, 所以f (x )在区间[0,+∞)上的最小值为f (0),且f (0)=1,符合题意;当k>12时,ln 2k>0,当x ∈(0,ln 2k )时,f'(x )<0,f (x )在区间(0,ln 2k )上单调递减, 所以f (ln 2k )<f (0)=1,不满足对任意的x ∈[0,+∞),f (x )≥1恒成立, 综上,k 的取值范围是(-∞,12].7.(1)解 f'(x )=a [(x -2)e x +x+2)]x 3,因为f'(2)=a2=1,所以a=2.(2)证明 要证f (x )>1,只需证h (x )=e x -12x 2-x-1>0.h'(x )=e x -x-1,令c (x )=e x -x-1,则c'(x )=e x -1.因为当x>0时,c'(x )>0,所以h'(x )=e x -x-1在(0,+∞)上单调递增,所以h'(x)=e x-x-1>h'(0)=0.所以h(x)=e x-12x2-x-1在(0,+∞)上单调递增,所以h(x)=e x-12x2-x-1>h(0)=0成立.所以当x>0时,f(x)>1.(3)证明(方法1)由(2)知当x>0时,f(x)>1.因为e x n+1=f(x n),所以x n+1=ln f(x n).设g(x n)=ln f(x n),则x n+1=g(x n),所以x n=g(x n-1)=g(g(x n-2))=…=g((…(g(x1))…))>0.要证2n|e x n-1|<1,只需证|e x n-1|<12n.因为x1=13,所以|e x1-1|=e13-1.因为e-323=e-278<0,所以e 13<32,所以|e x1-1|=e 13-1<12.故只需证|e x n+1-1|<12|e x n-1|.因为x n∈(0,+∞),故只需证e x n+1-1<12e x n−12,即证f(x n)-1<12e x n−12.只需证当x∈(0,+∞)时,φ(x)=12x2-2e x+12x2+2x+2>0,φ'(x)=12x2+x-2e x+x+2,令α(x)=12x2+x-2e x+x+2,则α'(x)=12x2+2x-1e x+1,令β(x)=12x2+2x-1e x+1,则β'(x)=12x2+3x+1e x>0,所以β(x)在区间(0,+∞)上单调递增,故β(x)=12x2+2x-1e x+1>β(0)=0.所以α(x)在区间(0,+∞)上单调递增,故α(x)=12x2+x-2e x+x+2>α(0)=0.所以φ(x)在区间(0,+∞)上单调递增,所以φ(x)=12x2-2e x+12x2+2x+2>φ(0)=0,所以原不等式成立.(方法2)由(2)知当x>0时,f(x)>1.因为e x n+1=f(x n),所以x n+1=ln f(x n).设g(x n)=ln f(x n),则x n+1=g(x n),所以x n=g(x n-1)=g(g(x n-2))=…=g((…(g(x1))…))>0.要证2n|e x n-1|<1,只需证|e x n-1|<12n.因为x1=13,所以|e x1-1|=e13-1.因为e-323=e-278<0,所以e 13<32,所以|e x1-1|=e 13-1<12.故只需证|e x n+1-1|<12|e x n-1|.因为x n∈(0,+∞),故只需证e x n+1-1<12e x n−12,即证f(x n)-1<12e x n−12.只需证当x∈(0,+∞)时,φ(x)=12x2-2e x+12x2+2x+2>0.因为φ(x)=12(x2-4)e x+12(x2+4x+4)=12(x+2)[(x-2)e x+(x+2)],设u(x)=(x-2)e x+(x+2),故只需证u(x)>0.u'(x)=(x-1)e x+1,令v(x)=(x-1)e x+1,则v'(x)=x e x>0,所以v(x)在区间(0,+∞)上单调递增,故v(x)=(x-1)e x+1>v(0)=0,所以u(x)在区间(0,+∞)上单调递增,故u(x)=(x-2)e x+(x+2)>u(0)=0,所以原不等式成立.8.(1)解由题意,得f'(x)=ln x+1,故g(x)=ax2-(a+2)x+ln x+1,故g'(x)=2ax-(a+2)+1x=(2x-1)(ax-1)x,x>0,a>0.令g'(x)=0,得x1=12,x2=1a.①当0<a<2时,1a >12,由g'(x)>0,得0<x<12或x>1a;由g'(x)<0,得12<x<1a.所以g(x)在x=12处取极大值g12=-a4-ln 2,在x=1a处取极小值g1a=-1a-ln a.②当a=2时,1a =12,g'(x)≥0恒成立,所以不存在极值.③当a>2时,1a <12,由g'(x)>0,得0<x<1a或x>12;由g'(x)<0,得1a<x<12.所以g(x)在x=1a处取极大值g1a=-1a-ln a,在x=12处取极小值g12=-a4-ln 2.综上,当0<a<2时,g(x)在x=12处取极大值-a4-ln 2,在x=1a处取极小值-1a-ln a;当a=2时,不存在极值;当a>2时,g(x)在x=1a处取极大值-1a-ln a,在x=12处取极小值-a4-ln 2.(2)证明F(x)=x ln x-xe x ,定义域为x∈(0,+∞),F'(x)=1+ln x+x-1e x.当x∈(1,2)时,F'(x)>0,即F(x)在区间(1,2)上单调递增.又因为F(1)=-1e<0,F(2)=2ln 2-2e2>0,且F(x)在区间(1,2)上的图像连续不断,故根据函数零点存在定理,F(x)在区间(1,2)上有且仅有一个零点.所以存在x0∈(1,2),使得F(x0)=f(x0)-x0e x0=0.且当1<x<x0时,f(x)<xe x;当x>x0时,f(x)>xe x.所以m(x)=min f(x),xe x={xlnx,1<x<x0,xe x,x>x0.当1<x<x0时,m(x)=x ln x,由m'(x)=1+ln x>0,得m(x)单调递增;当x>x 0时,m (x )=x e x ,由m'(x )=1-xe x <0,得m (x )单调递减. 若m (x )=n 在区间(1,+∞)上有两个不等实数解x 1,x 2(x 1<x 2), 则x 1∈(1,x 0),x 2∈(x 0,+∞).要证x 1+x 2>2x 0,即证x 2>2x 0-x 1.又因为2x 0-x 1>x 0,而m (x )在区间(x 0,+∞)上单调递减, 所以可证m (x 2)<m (2x 0-x 1).由m (x 1)=m (x 2),即证m (x 1)<m (2x 0-x 1),即x 1ln x 1<2x 0-x 1e 2x 0-x 1. 记h (x )=x ln x-2x 0-xe 2x 0-x,1<x<x 0, 其中h (x 0)=0. 记φ(t )=t e t ,则φ'(t )=1-te t . 当t ∈(0,1)时,φ'(t )>0; 当t ∈(1,+∞)时,φ'(t )<0. 故φ(t )max =1e .而φ(t )>0,故0<φ(t )<1e . 因为2x 0-x>1, 所以-1e <-2x 0-xe 2x 0-x<0. 因此h'(x )=1+ln x+1e2x 0-x −2x 0-x e 2x 0-x>1-1e >0,即h (x )单调递增,故当1<x<x 0时,h (x )<h (x 0)=0, 即x 1ln x 1<2x 0-x 1e 2x 0-x 1, 故x 1+x 2>2x 0,得证.突破2 利用导数研究 与函数零点有关的问题1.(1)证明 由f (x )≤0可得,a ≥1+lnxx(x>0),令h (x )=1+lnx x ,则h'(x )=1x ·x -(1+lnx )x 2=-lnxx 2. 当x ∈(0,1)时,h'(x )>0,h (x )单调递增;当x ∈(1,+∞)时,h'(x )<0,h (x )单调递减,故h (x )在x=1处取得最大值,要使a ≥1+lnxx,只需a ≥h (1)=1,故a 的取值范围为[1,+∞). 显然,当a=1时,有1+lnxx≤1,即不等式ln x<x-1在(1,+∞)上成立,令x=n+1n >1(n ∈N *),则有ln n+1n <n+1n -1=1n ,所以ln 21+ln 32+…+ln n+1n <1+12+13+…+1n , 即1+12+13+…+1n >ln(n+1).(2)解 由f (x )=g (x ),可得1+lnxx -a=(x-1)2e x ,即a=1+lnxx -(x-1)2e x ,令t (x )=1+lnxx -(x-1)2e x , 则t'(x )=-lnx x 2-(x 2-1)e x ,当x ∈(0,1)时,t'(x )>0,t (x )单调递增;当x ∈(1,+∞)时,t'(x )<0,t (x )单调递减,故t (x )在x=1处取得最大值t (1)=1,又当x →0时,t (x )→-∞,当x →+∞时,t (x )→-∞,所以,当a=1时,方程f (x )=g (x )有一个实数根;当a<1时,方程f (x )=g (x )有两个不同的实数根; 当a>1时,方程f (x )=g (x )没有实数根. 2.(1)证明 设函数F (x )=f (x )-g (x )=x e x -a e x +a.当a=1时,F (x )=x e x -e x +1,所以F'(x )=x e x . 所以当x ∈(-∞,0)时,F'(x )<0; 当x ∈(0,+∞)时,F'(x )>0.所以F (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. 所以当x=0时,F (x )取得最小值F (0)=0. 所以F (x )≥0,即f (x )≥g (x ).(2)解 设函数F (x )=f (x )-g (x )=x e x -a e x +a.当a>1时,F'(x )=(x-a+1)e x ,令F'(x )>0,即(x-a+1)e x >0,解得x>a-1; 令F'(x )<0,即(x-a+1)e x <0,解得x<a-1.所以F (x )在(-∞,a-1)上单调递减,在(a-1,+∞)上单调递增.所以当x=a-1时,F (x )取得最小值,即F (a-1)=a-e a-1. 令h (a )=a-e a-1,则h'(a )=1-e a-1.因为a>1,所以h'(a )<0.所以h (a )在(1,+∞)上单调递减. 所以h (a )<h (1)=0,所以F (a-1)<0.又因为F (a )=a>0,所以F (x )在区间(a-1,a )上存在一个零点. 所以在[a-1,+∞)上存在唯一的零点.又因为F (x )在区间(-∞,a-1)上单调递减,且F (0)=0, 所以F (x )在区间(-∞,a-1)上存在唯一的零点0.所以函数F (x )有且仅有两个零点,即方程f (x )=g (x )有两个实数根.3.解 (1)略.(2)设t=e x ,则f (t )=2at 2+2(a+1)t 的图像与y=4t+ln t 的图像只有一个交点,其中t>0,则2at 2+2(a+1)t=4t+ln t 只有一个实数解,即2a=2t+lntt 2+t只有一个实数解. 设g (t )=2t+lnt t 2+t,则g'(t )=-2t 2+t -2tlnt+1-lnt(t 2+t )2,g'(1)=0.令h (t )=-2t 2+t-2t ln t+1-ln t , 则h'(t )=-4t-1φ-2ln t-1.设y=1t +2ln t ,令y'=-1t 2+2t =2t -1t 2=0,解得t=12,则y ,y'随t 的变化如表所示0,1212,+∞y' - 0+则当t=12时,y=1t +2ln t 取最小值为2-2ln 2=2×(1-ln 2)>0. 所以-1t -2ln t<0, 即h'(t )=-4t-1t -2ln t-1<0.所以h (t )在(0,+∞)上单调递减. 因此g'(t )=0只有一个根,即t=1. 当t ∈(0,1)时,g'(t )>0,g (t )单调递增; 当t ∈(1,+∞)时,g'(t )<0,g (t )单调递减. 所以,当t=1时,g (t )有最大值为g (1)=1.由题意知,y=2a 与g (t )图像只有一个交点,而a ∈(0,+∞), 所以2a=1,即a=12,所以a 的取值集合为12.4.解 (1)函数f (x )的定义域为(-∞,0)∪(0,+∞).f'(x )=ax 2+bx -b x 2e x,由题知{f '(-1)=0,f (-1)=1e ,即{(a -2b )e -1=0,(-a+b )-1e -1=1e ,解得{a =2,b =1,所以函数f (x )=2x+1x e x (x ≠0). (2)f'(x )=2x 2+x -1x 2e x =(x+1)(2x -1)x 2e x. 令f'(x )>0得x<-1或x>12, 令f'(x )<0得-1<x<0或0<x<12.所以函数f (x )的单调递增区间是(-∞,-1),12,+∞, 单调递减区间是(-1,0),0,12.(3)根据题意易得g (x )=ax-b x -2a e x (a>0), 所以g'(x )=bx 2+ax-bx -a e x .由g (x )+g'(x )=0,得ax-bx -2a e x +bx 2+ax-bx -a e x =0.整理,得2ax 3-3ax 2-2bx+b=0.存在x 0∈(1,+∞),使g (x 0)+g'(x 0)=0成立,等价于存在x 0∈(1,+∞),使2a x 03-3a x 02-2bx 0+b=0成立.设u (x )=2ax 3-3ax 2-2bx+b (x>1),则u'(x )=6ax 2-6ax-2b=6ax (x-1)-2b>-2b. 当b ≤0时,u'(x )>0,此时u (x )在(1,+∞)上单调递增, 因此u (x )>u (1)=-a-b.因为存在x 0∈(1,+∞),使2a x 03-3a x 02-2bx 0+b=0成立, 所以只要-a-b<0即可,此时-1<ba ≤0. 当b>0时,令u (x )=b , 解得x 1=3a+√9a 2+16ab4a>3a+√9a 24a=32>1,x 2=3a -√9a 2+16ab 4a(舍去),x 3=0(舍去),得u (x 1)=b>0.又因为u (1)=-a-b<0,于是u (x )在(1,x 1)上必有零点,即存在x 0>1,使2a x 03-3a x 02-2bx 0+b=0成立,此时ba >0.综上,ba 的取值范围为(-1,+∞). 5.解 (1)因为g (x )=2a3x 3+2(1-a )x 2-8x+8a+7,所以g'(x )=2ax 2+4(1-a )x-8,所以g'(2)=0. 所以a=0,即g (x )=2x 2-8x+7. g (0)=7,g (3)=1,g (2)=-1.所以g (x )在[0,3]上的值域为[-1,7].(2)①当a=0时,g (x )=2x 2-8x+7,由g (x )=0,得x=2±√22∈(1,+∞),此时函数y=h (x )有三个零点,符合题意.②当a>0时,g'(x )=2ax 2+4(1-a )x-8=2a (x-2)x+2a . 由g'(x )=0,得x=2. 当x ∈(0,2)时,g'(x )<0; 当x ∈(2,+∞)时,g'(x )>0.若函数y=h (x )有三个零点,则需满足g (1)>0且g (2)<0,解得0<a<316.③当a<0时,g'(x )=2ax 2+4(1-a )x-8=2a (x-2)x+2a . 由g'(x )=0,得x 1=2,x 2=-2a .(ⅰ)当-2a <2,即a<-1时,因为g (x )极大值=g (2)=163a-1<0,此时函数y=h (x )至多有一个零点,不符合题意.(ⅱ)当-2a =2,即a=-1时,因为g'(x )≤0,此时函数y=h (x )至多有两个零点,不符合题意. (ⅲ)当-2a >2,即-1<a<0时,若g (1)<0,函数y=h (x )至多有两个零点,不符合题意; 若g (1)=0,得a=-320;因为g -2a =1a 28a 3+7a 2+8a+83,所以g -2a >0,此时函数y=h (x )有三个零点,符合题意;若g (1)>0,得-320<a<0. 由g -2a =1a 28a 3+7a 2+8a+83.记φ(a)=8a3+7a2+8a+83,则φ'(a)>0.所以φ(a)>φ-320>0,此时函数y=h(x)有四个零点,不符合题意.综上所述,满足条件的实数a∈-220∪0,316.。
导数的应用综合练习【达标测试】 一. 选择题:1. 函数y=1+3x -x 3有( ) A. 极小值-1,极大值1 B. 极小值-2,极大值3 C. 极小值-2,极大值2D. 极小值-1,极大值32. 函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是( ) A. 1,-1B. 1,-17C. 3,-17D. 9,-193. 函数1)(3++=x ax x f 有极值的充要条件是 ( )A. 0>aB. 0≥aC. 0<aD. 0≤a4. 若函数f x x bx c ()=++2的图象的顶点在第四象限,则函数f x '()的图象是( )5. 设)(),(x g x f 分别是定义在R 上的奇函数和偶函数,当0<x 时,,0)()()()(>'+'x g x f x g x f 且,0)3(=-g 则不等式0)()(<x g x f 的解集是( )A. ),3()0,3(+∞⋃-B. )3,0()0,3(⋃-C. ),3()3,(+∞⋃--∞D. )3,0()3,(⋃--∞6. 函数x x x y sin cos -=在下面哪个区间内是增函数( )A. )23,2(ππB. )2,(ππC. )25,23(ππD. )3,2(ππ7. 设)(x f '是函数)(x f 的导函数,)(x f y '=的图象如图所示,则)(x f y =的图象最有可能是( )8. 某质点的运动方程是2)12(--=t t s ,则在t=1s 时的瞬时速度为( ) A. -1B. -3C. 7D. 13二. 填空题:9. 已知曲线24x x y -=上有点A (4,0),过点A 处的切线的斜率AT k =_______。
10. 求曲线2432+-=x x y 在点M (2,6)处的切线方程_______。
11. 求曲线32x x y -=在1-=x 处的切线的斜率_______。
12. 求抛物线241x y =在2=x 处的切线的方程_______。
三. 解答题:13. 已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围。
14. 求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值。
15. 已知函数3()(0)f x ax cx d a =++≠是R 上的奇函数,当1x =时()f x 取得极值2-。
求()f x 的单调区间和极大值;【综合测试】一. 选择题:1. 设函数f x x x x ()=--+22132,则下列结论:①)(lim 1x f x →不存在;②)(lim 2x f x →不存在;③)(x f 在1=x 处连续;④)(x f 在(1,2)内连续。
其中正确的是( ) A. ①② B. ①②③C. ②④D. ②③④2. 对函数),(x f y =下列结论中不正确的是( ) A. 若)(0x f '存在,则)()(lim 00x f x f x x =→B. 在区间I 内,0)(>'x f 是)(x f 在I 内递增的充分条件C. 若0)(0='x f ,则)(x f 在0x x =处有极值D. 若)(x f 在0x 处可导,则)(x f y =的图象在点))(,(00x f x 处有不与x 轴垂直的切线3. 若函数⎩⎨⎧≥++<-+=0,,0),10lg()cos (sin )(2x c bx ax x x x x x f 在R 上连续,则c 的值为( )A. 1B. 2C. 0D. 不能确定4. 设,2)(2x e x f x -=则=-'→1)(lim 0x x e x f ( )A. 0B. 1C. 2D. 45. 设),(),()(,),()(),()(,cos )(112010N n x f x f x f x f x f x f x x f n n ∈'='='==+ 则=)(2005x f ( ) A. x sinB. x sin -C. x cosD. x cos -6. 三次函数b bx x y 333+-=在[1 , 2]上恒为正值的充要条件是( ) A. 1≤b ≤2B. b <0C. 1<b <2D. b <2.257. 已知函数)(,31)(x f x x f 则处的导数为在=的解析式可能为( )A. )1(3)1()(2-+-=x x x f B. )1(2)(-=x x fC. 2)1(2)(-=x x fD. 1)(-=x x f8. 曲线1323+-=x x y 在点(1,-1)处的切线方程为 ( )A. 43-=x yB. 23+-=x yC. 34+-=x yD. 54-=x y二. 填空题9. 过原点作曲线xe y =的切线,则切点的坐标为_____________,切线方程为_______________。
10. 已知R x b ax ax x y ∈++-=,3323既没有极大值又没有极小值,则a 的取值范围是________________,b 的取值范围是______________。
11. 设函数⎪⎩⎪⎨⎧=≠π=)0(0)0(sin )(2x x xx x f ,则0≠x 时=')(x f _____________;而=')0(f ______________。
12. 已知函数⎩⎨⎧≥+<+=)0(2sin )0(1)(x xb x e x f ax 在R 上可导,则a =____________,b=__________。
三. 解答题:13. 设函数a x x x x f +--=23)(。
(1)求)(x f 的极大值和极小值;(2)当a 在什么范围取值时,曲线)(x f y =与x 轴仅有一个公共点。
14. 已知c x bx ax x f +-+=2)(23在2-=x 时有极大值6,在1=x 时有极小值,求c b a ,,的值;并求)(x f 在区间[-3,3]上的最大值和最小值。
15. (04,湖南,理)已知函数e a e x x f ax,0,)(2≤=其中为自然对数的底数。
(Ⅰ)讨论函数)(x f 的单调性;(Ⅱ)求函数)(x f 在区间[0,1]上的最大值。
【达标测试答案】二. 填空题:9. - 4 10. 8x -y -10=0 11. - 1 12. x -y -1=0三. 解答题:13. 解:函数f (x )的导数:163)(2-+='x ax x f 。
(Ⅰ)当0)(<'x f (R x ∈)时,)(x f 是减函数。
)(01632R x x ax ∈<-+ .3012360-<⇔<+=∆<⇔a a a 且所以,当))((,0)(,3R x x f x f a ∈<'-<知由时是减函数;(II )当3-=a 时,133)(23+-+-=x x x x f =,98)31(33+--x 由函数3x y =在R 上的单调性,可知 当3-=a 时,R x x f ∈)(()是减函数;(Ⅲ)当3->a 时,在R 上存在一个区间,其上有,0)(>'x f 所以,当3->a 时,函数))((R x x f ∈不是减函数。
综上,所求a 的取值范围是(]3,-∞-。
14. 解:,2111)(x x x f -+=' 令,02111=-+x x 化简为,022=-+x x 解得1),(221=-=x x 舍去当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少 所以412ln )1(-=f 为函数)(x f 的极大值 又因为),2()1(,013ln )2(,0)0(f f f f >>-==所以0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f 在[0,2]上的最大值。
15. 解:由奇函数定义,应有()(),f x f x x R -=-∈ 即33,0.ax cx d ax cx d d --+=---∴= 因此,3(),f x ax cx =+2'()3.f x ax c =+由条件(1)2f =-为()f x 的极值,必有'(1)0,f =故230a c a c +=-⎧⎨+=⎩解得1, 3.a c ==-因此,32()3,'()333(1)(1),'(1)'(1)0.f x x x f x x x x f f =-=-=+--==当(,1)x ∈-∞-时,'()0f x >,故()f x 在单调区间(,1)-∞-上是增函数 当(1,1)x ∈-时,'()0f x <,故()f x 在单调区间(1,1)-上是减函数 当(1,)x ∈+∞时,'()0f x >,故()f x 在单调区间(1,)+∞上是增函数 所以,()f x 在1x =-处取得极大值,极大值为(1) 2.f -=【综合测试答案】一. 选择题:二. 填空题:9. (1,e ),y =ex ; 10. [0,1],R ; 11. 2xsinx π-πcos xπ,0; 12. R ,2。
三. 解答题13. 解:(1)f '(x )=3x 2-2x -1=(3x +1)(x -1)由f '(x )=0,解得x 1=1,x 2 =1- ∴ x =31-时,f (x )极大值=f (31-)=a +275; x =1时,f (x )极小值=f ( 1)=a -1(2)∵a +275<0或a -1>0 ∴ a <-275或a >1时,曲线y =f (x )与x 轴仅有一个公共点。
14. 解:(1),223)(2-+='bx ax x f 由条件知38,21,31.6448)2(,0223)1(,02412)2(===⎪⎩⎪⎨⎧=+++-=-=-+='=--=-'c b a c b a f b a f b a f 解得 (2),2)(,3822131)(223-+='+-+=x x x f x x x x f由上表知,在区间[-3,3]上,当3=x 时,,6110max =f 1=x 时,23min =f 15. 解:(Ⅰ)ax e ax x x f )2()(+=' (i )当a =0时,令 0,0)(=='x x f 得若),0()(,0)(,0+∞>'>在从而则x f x f x 上单调递增; 若)0,()(,0)(,0-∞<'<在从而则x f x f x 上单调递减。