fluent经验之谈(过来人的总结)(可编辑修改word版)
- 格式:docx
- 大小:13.36 KB
- 文档页数:5
fluent经验之谈(过来人的总结).docFluent经验之谈(过来人的总结)引言Fluent作为计算流体动力学(CFD)领域内一款强大的软件工具,被广泛应用于工程设计、科研和教育等多个领域。
它能够帮助工程师和研究人员模拟和分析流动、热传递和化学反应等复杂现象。
本文档将基于个人使用Fluent的经验,提供一些实用的技巧和建议,以帮助新用户更高效地学习和使用Fluent。
Fluent软件概述Fluent的主要功能流动模拟:包括层流、湍流等流动特性的模拟。
热传递分析:涉及导热、对流和辐射等热传递方式。
化学反应模拟:模拟燃烧、化学反应等过程。
Fluent的应用领域航空航天:飞机设计、发动机性能分析等。
汽车工业:汽车空气动力学、冷却系统设计等。
能源领域:风力发电、太阳能热利用等。
环境工程:污染物扩散、室内空气质量等。
Fluent学习路径基础知识流体力学基础:理解流体的基本性质和流动规律。
数值方法:了解有限体积法、有限元法等数值求解方法。
Fluent界面熟悉用户界面:熟悉Fluent的图形用户界面(GUI)。
命令行操作:学习使用Fluent的命令行工具。
实践操作案例练习:通过实际案例练习来加深理解。
参数调整:学习如何调整模型参数以获得更准确的结果。
Fluent建模技巧几何建模精确建模:确保几何模型的准确性,避免简化过度。
边界条件:合理设置边界条件,如入口、出口、壁面等。
网格划分网格质量:生成高质量的网格,避免过度拉伸或扭曲。
网格细化:在关键区域进行网格细化,提高模拟精度。
物理模型选择流动模型:根据流动特性选择合适的流动模型,如k-ε、k-ω等。
湍流模型:选择适合流动特性的湍流模型。
Fluent求解设置求解器配置压力-速度耦合:选择合适的耦合求解器,如SIMPLE、PISO等。
迭代方法:设置适当的迭代方法和收敛标准。
监控和收敛残差监控:监控残差曲线,判断模拟是否收敛。
收敛标准:根据问题特性设置合理的收敛标准。
1. Fluent计算中对网格质量的要求1)网格质量参数:Skewness (不能高于0.95,最好在0.90以下;越小越好)Change in Cell-Size (也是Growth Rate,最好在1.20以内,最高不能超过1.40)Aspect Ratio (一般控制在5:1以内,边界层网格可以适当放宽)Alignment with the Flow(就是估计一下网格线与流动方向是否一致,要求尽量一致,以减少假扩散)2)网格质量对于计算收敛的影响:高Skewness的单元对计算收敛影响很大,很多时候计算发散的原因就是网格中的仅仅几个高Skewness的单元。
举个例子:共有112,000个单元,仅有7个单元的Skewness超过了0.95,在进行到73步迭代时计算就发散了!高长宽比的单元使离散方程刚性增加,使迭代收敛减慢,甚至困难。
也就是说,Aspect Ratio 尽量控制在推荐值之内。
3)网格质量对精度的影响:相邻网格单元尺寸变化较大,会大大降低计算精度,这也是为什么高连续方程残差的原因。
网格线与流动是否一致也会影响计算精度。
4)网格单元形状的影响:非结构网格比结构网格的截断误差大,因此,为提高计算精度计,请大家尽量使用结构网格,对于复杂几何,在近壁这些对流动影响较大的地方尽量使用结构网格,在其他次要区域使用非结构网格。
2. 关于fluent模拟的论文不好发发CFD专业期刊估计不行,但发一些应用型的期刊应该可以,见过不少。
数值与实验结果对比是必不可少的,如果没有实验对比,就难了。
好不好发看你模拟的什么?模拟的深度!简单的两维的常温常压的空气流场模拟应该不好发!你要是模拟的3维的模拟国际前沿问题,考虑了别人没有考虑的东西,好发的很!Fluent做出的东西,一来看,有没有相关的实验数据作对比,或者是验证你做的模型.二来,你自己做理论模型的研究,加入到Fluent中去;还是有希望的.一般的比较好发,我们实验室全是做模拟的,就发有个叫计算机与应用化学的。
1对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢?答:学习任何一个软件,对于每一个人来说,都存在入门的时期。
认真勤学是必须的,什么是最好的学习方法,我也不能妄加定论,在此,我愿意将我三年前入门FLUENT心得介绍一下,希望能给学习FLUENT的新手一点帮助。
由于当时我需要学习FLUENT来做毕业设计,老师给了我一本书,韩占忠的《FLUENT流体工程仿真计算实例与应用》,当然,学这本书之前必须要有两个条件,第一,具有流体力学的基础,第二,有FLUENT 安装软件可以应用。
然后就照着书上二维的计算例子,一个例子,一个步骤地去学习,然后学习三维,再针对具体你所遇到的项目进行针对性的计算。
不能急于求成,从前处理器GAMBIT,到通过FLUENT进行仿真,再到后处理,如TECPLOT,进行循序渐进的学习,坚持,效果是非常显著的。
如果身边有懂得FLUENT的老师,那么遇到问题向老师请教是最有效的方法,碰到不懂的问题也可以上网或者查找相关书籍来得到答案。
另外我还有本《计算流体动力学分析》王福军的,两者结合起来学习效果更好。
2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。
A.理想流体(Ideal Fluid)和粘性流体(Viscous Fluid):流体在静止时虽不能承受切应力,但在运动时,对相邻的两层流体间的相对运动,即相对滑动速度却是有抵抗的,这种抵抗力称为粘性应力。
流体所具备的这种抵抗两层流体相对滑动速度,或普遍说来抵抗变形的性质称为粘性。
粘性的大小依赖于流体的性质,并显著地随温度变化。
实验表明,粘性应力的大小与粘性及相对速度成正比。
当流体的粘性较小(实际上最重要的流体如空气、水等的粘性都是很小的),运动的相对速度也不大时,所产生的粘性应力比起其他类型的力如惯性力可忽略不计。
Fluent学习总结报告学号:班级:姓名:指导老师:前言FLUENT是世界上流行的商用CFD软件包,包括基于压力的分离求解器、基于压力的耦合求解器、基于密度的隐式求解器、基于密度的显示求解器。
它具有丰富的物理模型、先进的数值方法和强大的前后处理功能,可对高超音速流场、传热与相变、化学与相变、化学反应与燃烧、多相流、旋转机械、变/动网络、噪声、材料加工复杂激励等流动问题进行精确的模拟,具有较高的可信度,。
用户自定义函数也为改进和完善模型,处理个性化问题和给出更合理的边界条件提供了可能。
经过这一个学期对 Fluent的初步入门学习,我对其有了初步的了解,通过练习一些例子,掌握了用 Fluent 求解分析的大概步骤和对鼠标的操作,也大概清楚这些分析有什么用。
由于软件和指导资料几乎全部都是英文书写,还没能完全地理解软件上各个选项的意义和选项之间的联系,目前仅仅是照着实例练操作,要想解决实际问题还远远不够,不过孰能生巧,我相信经过大量的练习,思考,感悟,我一定可以熟练掌握并运用 Fluent。
本学习报告将从Fluent的应用总结分析和几个算例的操作来叙述。
fluent 简单操作指南1.读入文件file--read--case找到.msh文件打开2.网格检查grid-check网格检查会报告有关网格的任何错误,特别make sure最小体积不能使负值;3.平滑和交换网格grid-smooth/swap---点击smooth再点击swap,重复多次;4.确定长度单位grid-scale----在units conversion中的grid was created in中选择相应的单位,点击change length units给出相应的范围,点击scal,然后关闭;5.显示网格display--grid建立求解模型1.define-models-solver(求解器)2.设置湍流模型define-models-viscous3.选择能量方程define-models-energy4 设置流体物理属性define-materials,进行设置,然后点击change/create,弹出的对话框点NO。
FLUENT心得湍流与黏性有什么关系?湍流和粘性都是客观存在的流动性质。
湍流的形成需要一定的条件,粘性是一切流动都具有的。
流体流动方程本身就是具非线性的。
NS方程中的粘性项就是非线性项,当然无粘的欧拉方程也是非线性的。
粘性是分子无规则运动引起的,湍流相对于层流的特性是由涡体混掺运动引起的。
湍流粘性是基于湍流体的parcel湍流混掺是类比于层流体中的分子无规则运动,只是分子无规则运动遥远弱些吧了。
不过,这只是类比于,要注意他们可是具有不同的属性。
粘性是耗散的根源,实际流体总是有耗散的。
而粘性是制约湍流的。
LANDAU说,粘性的存在制约了湍流的自由度。
湍流粘性系数和层流的是不一样的,层流的粘性系数基本可认为是常数,可湍流中层流底层中粘性系数很小,远小于层流时的粘性系数;而在过渡区,与之相当,在一个数量级;在充分发展的湍流区,又远大于层流时的粘性系数.这是鮑辛内斯克1987年提出的。
1 FLUENT的初始化面板中有一项是设置从哪个地方开始计算(compute from),选择从不同的边界开始计算有很大的区别吗?该怎样根据具体问题选择从哪里计算呢?比如有两个速度入口A和B,还有压力出口等等,是 ......紊动能强度和长度尺度的设定方法:*Exhaust of a turbine----Intensity=20%, Length scale=1-10% of blade span *Downstream of perforated plate or screen-- Intensity=10% ,Length scale=screen /hole size*Fully-developed flow in aduct or pipeIntensity=5% ,Length scale=hydrulic diameterFLUENT里的压强系数是怎么定义的?Cp =( p-p(far field))/(1/2*rho*U**2)采用Uer Define Function即可如何设置courant number?在fluent中,用courant number来调节计算的稳定性与收敛性。
1什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?1、亚松驰(Under Relaxation):所谓亚松驰就是将本层次计算结果与上一层次结果的差值作适当缩减,以避免由于差值过大而引起非线性迭代过程的发散。
用通用变量来写出时,为松驰因子(Relaxation Factors)。
《数值传热学-214》2、FLUENT中的亚松驰:由于FLUENT所解方程组的非线性,我们有必要控制的变化。
一般用亚松驰方法来实现控制,该方法在每一部迭代中减少了的变化量。
亚松驰最简单的形式为:单元内变量等于原来的值加上亚松驰因子a与变化的积, 分离解算器使用亚松驰来控制每一步迭代中的计算变量的更新。
这就意味着使用分离解算器解的方程,包括耦合解算器所解的非耦合方程(湍流和其他标量)都会有一个相关的亚松驰因子。
在FLUENT中,所有变量的默认亚松驰因子都是对大多数问题的最优值。
这个值适合于很多问题,但是对于一些特殊的非线性问题(如:某些湍流或者高Rayleigh数自然对流问题),在计算开始时要慎重减小亚松驰因子。
使用默认的亚松驰因子开始计算是很好的习惯。
如果经过4到5步的迭代残差仍然增长,你就需要减小亚松驰因子。
有时候,如果发现残差开始增加,你可以改变亚松驰因子重新计算。
在亚松驰因子过大时通常会出现这种情况。
最为安全的方法就是在对亚松驰因子做任何修改之前先保存数据文件,并对解的算法做几步迭代以调节到新的参数。
最典型的情况是,亚松驰因子的增加会使残差有少量的增加,但是随着解的进行残差的增加又消失了。
如果残差变化有几个量级你就需要考虑停止计算并回到最后保存的较好的数据文件。
注意:粘性和密度的亚松驰是在每一次迭代之间的。
而且,如果直接解焓方程而不是温度方程(即:对PDF计算),基于焓的温度的更新是要进行亚松驰的。
要查看默认的亚松弛因子的值,你可以在解控制面板点击默认按钮。
对于大多数流动,不需要修改默认亚松弛因子。
fluent使用总结(本站推荐)第一篇:fluent使用总结(本站推荐)3.1计算流体力学基础与FLUENT软件介绍 3.1.1计算流体力学基础计算流体力学(Computational Fluid Dynamics,简称CFD)是利用数值方法通过计算机求解描述流体运动的数学方程,揭示流体运动的物理规律,研究定常流体运动的空间物理特性和非定常流体运动的时空物理特征的学科[}ss}。
其基本思想可以归纳为:把原来在时间域和空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关十这些离散点上场变量之间的关系的代数方程组,然后求解代数方程组获得场变量的近似值[f=}}l计算流体力学可以看作是在流动基本方程(质量守恒方程、动量守恒方程、能量守恒方程)控制下对流动的数值仿真。
通过这种数值仿真,可以得到流场内各个位置上的基本物理量(如速度、压力、温度和浓度等)的分布以及这些物理量随时间的变化规律。
还可计算出相关的其它物理量,如旋转式流体机械的转矩、水力损失和效率等。
此外,与CAD联合还可进行结构优化设计等。
过去,流体力学的研究主要有实验研究和理论分析两种方法。
实验研究主要以实验为研究手段,得到的结果真实可信,是理论分析和数值计算的基础,其重要性不容低估。
然}fu实验往往受到模型尺寸、流场扰动和测量精度等的限制,有时可能难以通过实验的方法得到理想的结果。
此外,实验往往经费投入较大、人力和物力耗费较大及周期较长;理论分析方法通常是利用简化的流动模型假设,给出所研究问题的解析解或简化方程。
然}fu随着时代的发展,这些方法已不能很好地满足复杂非线性流体运动规律的研究。
理论分析方法的优点是所得结果具有普遍适用性,各种影响因素清晰可见,是指导试验研究和验证新的数值计算方法的理论基础。
但是,它往往要求对计算对象进行抽象和简化,才有可能得出理论解。
}fU对十非线性情况,只有少数流动才能得到解析结果。
FLUENT学习总结1 概述:FLUENT是目前处于世界领先地位的商业CFD软件包之一,最初由FLUENT Inc.公司发行。
2006年2月ANSYS Inc.公司收购FLUENT Inc.公司后成为全球最大的CAE软件公司。
FLUENT是一个用于模拟和分析复杂几何区域内的流体流动与传热现象的专用软件。
FLUENT提供了灵活的网格特性,可以支持多种网格。
用户可以自由选择使用结构化或者非结构化网格来划分复杂的几何区域,例如针对二维问题支持三角形网格或四边形网格;针对三维问题支持四面体、六面体、棱锥、楔形、多面体网格;同时也支持混合网格。
用户可以利用FLUENT提供的网格自适应特性在求解过程中根据所获得的计算结果来优化网格。
FLUENT是使用C语言开发的,支持并行计算,支持UNIX和Windows等多种平台,采用用户/服务器的结构,能够在安装不同操作系统的工作站和服务器之间协同完成同一个任务。
FLUENT通过菜单界面与用户进行交互,用户可以通过多窗口的方式随时观察计算的进程和计算结果。
计算结果可以采用云图、等值线图、矢量图、剖面图、XY散点图、动画等多种方式显示、存贮和打印,也可以将计算结果保存为其他CFD软件、FEM软件或后处理软件所支持的格式。
FLUENT还提供了用户编程接口,用户可以在FLUENT的基础上定制、控制相关的输入输出,并进行二次开发。
1.1 FLUENT软件包的组成针对不同的计算对象,CFD软件都包含有3个主要功能部分:前处理、求解器、后处理。
其中前处理是指完成计算对象的建模、网格生成的程序;求解器是指求解控制方程的程序;后处理是指对计算结果进行显示、输出的程序。
FLUENT软件是基于CFD软件的思想设计的。
FLUENT软件包主要由GAMBIT、Tgrid、Filters、FLUENT几部分组成。
(1)前处理器。
包括GAMBIT、Tgrid和Fliters。
其中GAMBIT是由FLUENT Inc.公司自主开发的专用CFD前置处理器,用于模拟对象的几何建模以及网格生成。
10、计算结果后处理1)创建要进行后处理的表面FLUENT中的可视化信息基本都是以表面({surface)为基础的。
有些表面,如计算的进口表面和壁面等,可能已经存在,在对计算结果进行后处理时直接使用即可。
但多数情况下,为了达到对空间任意位置上的某些变量的观察、统计及制作XY散点图,需要创建新的表面。
FLUENT提供了多种方法,用以生成各种类型的表面。
FLUENT在生成这些表确后,将表面的信息存储在案例文件中。
现简要介绍这些表面。
∙区域表面(ZoneSurfaces)。
如果用户想创建一个与现有的单元区域(或单元面区域)包含相同单元(或单元面)的单元区域(或单元面区域).可使用这种方式创建区域表面。
当需要在边界上显示结果时,这类表面非常有用。
用户可通过Surface / Zone命令打开ZoneSurface对话框,来生成这类表面。
∙子域表面(PartitionSurfaces)。
当用户使用FLLENT的并行版本时,可通过两个网格子域的边界来生成表面。
用户可通过Surface/Partition命令打开Partition Surface对话框,来生成这类表面。
∙点表面(PointSurfaces)。
为了监视某一点处的变量或函数的值,需要创建这类表面。
用户可通过Surface / Point命令打开PointSurface对话框,来生成这类表面。
∙线和耙表面(Line and RakeSurfaces)。
为了生成流线.用户必须指定一个表面,粒子将从这个表面释放出来。
线表面和耙表面就是专为此设计的。
一个耙表面由一组在两个指定点间均匀分布的若于个点组成,一个线表面只是一个指定了端点且在计算域内延伸的一条线。
用户可通过Surface/Line/R ake。
命令打开Line / Rake Surface对话框,来生成这类表而。
∙平面(PlaneSurface):如果想显示计算域内指定平面上的流场数据,则可创建这类表面。
0 起因接触Fluent这款软件不到两年。
在此之前一直在使用CFX。
CFX的使用时间其实也不到三个月,伴随着项目的结束也自然的放下了。
再那之前,我甚至还不知道什么是CFX,什么是CFD。
研一的一整年基本上没去过实验室,整天就是在教室或寝室中度过,上课之余玩玩游戏,我以为研究生三年就会这么度过,日子过得很空虚。
我的真正导师并没有什么项目,说出来也许很好笑,在整个研一一年里,我都没有见过他,可以说是一个传奇中的人物,他将我委托给另外一个老师。
当时我不知道这些情况,是后来老师告诉我的我才明白。
先不讲这些无关的。
当时虽然每天上上课打打游戏,表面上看起来日子过得很惬意,其实玩过游戏的人都清楚,玩的时候感觉很过瘾,退出来感觉更无聊。
我当时也是那样,看到其他同学在学习之余跟着老师做项目,学习一些新的东西,其实心里也是蛮羡慕的。
08年4月的一天,老师(不是我的导师,是带我的那位老师)突然打电话让我去他办公室,想和我谈谈。
我当时心情有点紧张还有点期盼。
不到半个小时,我来到老师的办公室,老师五十多岁了,挺和蔼可亲的,几句话就让我放松下来了,然后他问我:“你这三年有什么打算?”。
我当时不知道如何回答,想了半天,说了一句:“老师,我不想像现在这样整天混下去了”。
老师说:“你该进实验室了!”。
那时候不像现在实验室的电脑多得找不到人使用,其实那时电脑还是勉强够研二研三的使用。
第二天,我去了实验室,看了下具体情况,由于我本人性格比较内向,不善于与别人交流,所以看到实验室的位置不够后,连老师的正牌研一的学生都没有位子,我觉得我还是等两个月后研三的毕业了腾出地方了再进实验室了。
其实老师和我谈话的时候问了一下我的基础怎么样,还说实验室现在基本上搞的都是流体,问我有没有兴趣往流体方向发展。
我现在都记不大清楚当初是怎么回答的了,大概意思好像是没问题。
我这个人平时喜欢挑战,可能是无知者无畏吧,当时我对流体模拟是什么都不知道,连流体力学都没有接触过。
FLUENT学习方法精华总结(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(FLUENT学习方法精华总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为FLUENT学习方法精华总结(word版可编辑修改)的全部内容。
1.学习方法首先看两本教材,然后开始看软件的说明.如果说要提高效率的话,在阅读说明的时候可以先读完Getting Start Guide部分,然后大致先浏览一下User’s Guide,之后重点过一遍Tutorial Guide.而且我建议Tutorial Guide部分不要因为跟自己的实际使用的模块不一样就跳过,因为实际上每一个Tutorial都会有前处理后处理,这一部分是通用的.就算是模型部分,你也难保课题在进行过程中会需要换模型,你现在做一天算例,心里有数了,以后想尝试改变模型时心里也有底。
我个人前前后后应该是将Tutorial Guide部分的算例做了近三遍,第一遍基本按操作说明一步一步来。
第一遍做下来对于Fluent这个软件的大体逻辑就有个数了.注意这里有一个问题,那就是计算流体力学的逻辑和软件的操作逻辑还不能等同的。
这里涉及到一个数学模型在软件层面的具体实现路径的问题。
所以你即使学过计算流体力学的课程,细致地做一遍Tutorial Guide部分的算例我觉得也是有很大的必要的.完成Tutorial Guide的第一遍演练之后,我就回头开始看User's Guide部分,并且边看边做第二遍算例演练。
两个部分说明互相对照,开始明白每一步操作的实际目的是什么。
Fluent经典问题及答疑1 对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢?(#61)2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。
(13楼)3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?(#80)4 常见离散格式的性能的对比(稳定性、精度和经济性)(#62)5 在利用有限体积法建立离散方程时,必须遵守哪几个基本原则?(#81)6 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?(#130)7 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?(#55)8 什么叫边界条件?有何物理意义?它与初始条件有什么关系?(#56)9 在一个物理问题的多个边界上,如何协调各边界上的不同边界条件?在边界条件的组合问题上,有什么原则?10 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?(#143)11 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?(#35)12 在GAMBIT的foreground和background中,真实体和虚实体、实操作和虚操作四个之间是什么关系?13 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?(#38)14 画网格时,网格类型和网格方法如何配合使用?各种方法有什么样的应用范围及做网格时需注意的问题?(#169)15 对于自己的模型,大多数人有这样的想法:我的模型如何来画网格?用什么样的方法最简单?这样做网格到底对不对?(#154)16 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?(#40)17 依据实体在GAMBIT建模之前简化时,必须遵循哪几个原则?(#170)18 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?(#128)19 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?(#127)20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的?(#41)21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?(9楼)22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?(7楼)23 在FLUENT运行过程中,经常会出现“turbulence viscous rate”超过了极限值,此时如何解决?而这里的极限值指的是什么值?修正后它对计算结果有何影响?(#28)24 在FLUENT运行计算时,为什么有时候总是出现“reversed flow”?其具体意义是什么?有没有办法避免?如果一直这样显示,它对最终的计算结果有什么样的影响?(#29)25 燃烧过程中经常遇到一个“头疼”问题是计算后温度场没什么变化?即点火问题,解决计算过程中点火的方法有哪些?什么原因引起点火困难的问题? (#183)26 什么叫问题的初始化?在FLUENT中初始化的方法对计算结果有什么样的影响?初始化中的“patch”怎么理解?(12楼)27 什么叫PDF方法?FLUENT中模拟煤粉燃烧的方法有哪些?(#197)28 在利用prePDF计算时出现不稳定性如何解决?即平衡计算失败。
(完整word版)fluent经验之谈(过来人的总结)continuity不收敛的问题(1)连续性方程不收敛是怎么回事?在计算过程中其它指数都收敛了,就continuity不收敛是怎么回事。
这和fluent程序的求解方法SIMPLE有关。
SIMPLE根据连续方程推导出压力修正方法求解压力。
由于连续方程中流场耦合项被过渡简化,使得压力修正方程不能准确反映流场的变化,从而导致该方程收敛缓慢。
你可以试验SIMPLEC方法,应该会收敛快些。
在计算模拟中,continuity总不收敛,除了加密网格,还有别的办法吗?别的条件都已经收敛了,就差它自己了,还有收敛的标准是什么?是不是到了一定的尺度就能收敛了,比如10-e5具体的数量级就收敛了continuity是质量残差,具体是表示本次计算结果与上次计算结果的差别,如果别的条件收敛了,就差它。
可以点report,打开里面FLUX选项,算出进口与出口的质量流量差,看它是否小于0.5%.如果小于,可以判断它收敛.(2) fluent残差曲线图中continuity是什么含义?是质量守恒方程的反映,也就是连续性的残差。
这个收敛的快并不能说明你的计算就一定正确,还要看动量方程的迭代计算。
表示某次迭代与上一次迭代在所有cells积分的差值,continuty表示连续性方程的残差(3) 正在学习Fluent,模拟圆管内的流动,速度入口,出口outflow 运行后xy的速度很快就到1e-06了,但是continuity老是降不下去,维持在1e-00和1e-03之间,减小松弛因子好像也没什么变化大家有什么建议吗?你查看了流量是否平衡吗?在report->flux里面操作,mass flow rate,把所有进出口都选上,compute一下,看看nut flux是什么水平,如果它的值小于总进口流量的1%,并且其他检测量在继续迭代之后不会发生波动,也可以认为你的解是收敛的。
fluent个⼈学习经验与技巧专业词汇:Fluxes:流出, 变迁,使出⾎; 使熔化Iterate:迭代vector:向量,⽮量Coefficient:系数lift:升⼒drag:阻⼒positive:正⾯Negative:负⾯specification:定义turbulence:瑞流intensity:强度Hydraulic diameter:⽔利直径学习经验:1 reset:清除所有东西reset mesh:清除⽹格保留⼏何体2 ⼀定要记得保存dbs⽂件3 jounal⽂件是可以执⾏的,相当于⼀个回放⽂件。
4 ⿏标键使⽤left:旋转middle:平移right:缩放Shift+ :选择:切换到下⼀个:确认接收Ctrl+ :开窗放⼤:把窗⼝延伸放⼤按住⿏标右键想上是缩放,向下时放⼤"Ctrl-right-click" 按下Ctrl键然后⽤⿏标右键点击⽣成顶点的节点5 检查⼏何体:橘黄⾊:⼀条线和⼀个⾯相关⼀般有问题蓝⾊:⼀条线和⼆个⾯相关粉红⾊:⼀条线和三个⾯相关6gambit中的图标还可以点击⿏标右键来选择相关选项7 虚⾯的每⼀个点都是缺省投影到实⾯上去,所以可以保证精度,虚⼏何产⽣的条件只要实⼏何相邻或者共边就可以了。
三个⾯合并成⼀个虚⾯后,并且在虚⾯上划分⽹格,则原来两个⾯相交的地⽅并不⼀定存在⽹格。
划分⽹格后的形状是否是真不是由虚⼏何引起的,⽽是由划分⽹格的密度说控制的。
8 gambit中有三种坐标系:笛卡尔坐标系,柱⾯坐标系,球⾯坐标系9 align :对齐第⼀个对齐第⼆个旋转第三个旋转10 gambit中的⽹格要是连接的,连接的⽹格是连续的。
Connect是把⼏何位置⼏乎重合的多个⼏何变成⼀个⼏何merge是把两条相邻的线变成⼀条线11 删除⼏何体的时候取消选择lower…可以保留底层的⾯等12 要把两个体合并成⼀个体必须要⽤unite,哪怕做得刚好也要⽤unite。
Fluent学习总结报告学号:班级:姓名:指导老师:前言FLUENT是世界上流行的商用CFD软件包,包括基于压力的分离求解器、基于压力的耦合求解器、基于密度的隐式求解器、基于密度的显示求解器。
它具有丰富的物理模型、先进的数值方法和强大的前后处理功能,可对高超音速流场、传热与相变、化学与相变、化学反应与燃烧、多相流、旋转机械、变/动网络、噪声、材料加工复杂激励等流动问题进行精确的模拟,具有较高的可信度,。
用户自定义函数也为改进和完善模型,处理个性化问题和给出更合理的边界条件提供了可能。
经过这一个学期对 Fluent的初步入门学习,我对其有了初步的了解,通过练习一些例子,掌握了用 Fluent 求解分析的大概步骤和对鼠标的操作,也大概清楚这些分析有什么用。
由于软件和指导资料几乎全部都是英文书写,还没能完全地理解软件上各个选项的意义和选项之间的联系,目前仅仅是照着实例练操作,要想解决实际问题还远远不够,不过孰能生巧,我相信经过大量的练习,思考,感悟,我一定可以熟练掌握并运用 Fluent。
本学习报告将从Fluent的应用总结分析和几个算例的操作来叙述。
fluent 简单操作指南1.读入文件file--read--case找到.msh文件打开2.网格检查grid-check网格检查会报告有关网格的任何错误,特别make sure最小体积不能使负值;3.平滑和交换网格grid-smooth/swap---点击smooth再点击swap,重复多次;4.确定长度单位grid-scale----在units conversion中的grid was created in中选择相应的单位,点击change length units给出相应的范围,点击scal,然后关闭;5.显示网格display--grid建立求解模型1.define-models-solver(求解器)2.设置湍流模型define-models-viscous3.选择能量方程define-models-energy4 设置流体物理属性define-materials,进行设置,然后点击change/create,弹出的对话框点NO。
FLUENT学习经验1. 什么是结构化网格和非结构化网格1.1结构化网格从严格意义上讲,结构化网格是指网格区域内所有的内部点都具有相同的毗邻单元。
它可以很容易地实现区域的边界拟合,适于流体和表面应力集中等方面的计算。
它的主要优点是:网格生成的速度快。
网格生成的质量好。
数据结构简单。
对曲面或空间的拟合大多数采用参数化或样条插值的方法得到,区域光滑,与实际的模型更容易接近。
它的最典型的缺点是适用的范围比较窄,只适用于形状规则的图形。
尤其随着近几年的计算机和数值方法的快速发展,人们对求解区域的几何形状的复杂性的要求越来越高,在这种情况下,结构化网格生成技术就显得力不从心了。
1.2非结构化网格同结构化网格的定义相对应,非结构化网格是指网格区域内的内部点不具有相同的毗邻单元。
即与网格剖分区域内的不同内点相连的网格数目不同。
从定义上可以看出,结构化网格和非结构化网格有相互重叠的部分,即非结构化网格中可能会包含结构化网格的部分。
2.如果一个几何造型中既有结构化网格,也有非结构化网格,分块完成的,分别生成网格后,也可以直接就调入fluent中计算。
3.在fluent中,对同一个几何造型,如果既可以生成结构化网格,也可生成非结构化网格,当然前者要比后者的生成复杂的多,那么应该选择哪种网格,两者计算结果是否相同,哪个的计算结果更好些呢?一般来说,结构网格的计算结果比非结构网格更容易收敛,也更准确。
但后者容易做。
影响精度主要是网格质量,和你是用那种网格形式关系并不是很大,如果结构话网格的质量很差,结果同样不可靠,相对而言,结构化网格更有利于计算机存储数据和加快计算速度。
结构化网格据说计算速度快一些,但是网格划分需要技巧和耐心。
非结构化网格容易生成,但相对来说速度要差一些。
4.在gambit中,只有map和submap生成的是结构化网格,其余均为非结构化网格。
5 我们经常遇到计算区是对称的问题,如同心圆环内的自然对流,圆柱绕流,我们为了节省计算资源,许多时候都把计算区域趣味一半,但有些问题的真实情况是两步分的流场及物理量的分布并不对称呀,问我们如何判断该不该区一般呢? 对称的问题一般用在流场稳态解..需满足 1.几何图形对秤..2.边界条件对秤.. 也就是物理条件对秤..3.structral网格..所以对秤轴的Flux和properties gradient必须为0...6 按照算例学习了一段时间,有些简单的问题还可以分析对错,但是对于一些头脑里没有概念的问题,是做出了很多图行了,矢量图了,但是如何比较仔细全面的分析其合理性,觉得有些困难答:一般来讲计算应该辅助以高精度的实验作为证明,无法或不容易用实验实现的往往是计算一个经典的或别人算过的例子对比一下。
一、基本设置1.Double Precision的选择启动设置如图,这里着重说说Double Precision(双精度)复选框,对于大多数情况,单精度求解器已能很好的满足精度要求,且计算量小,这里我们选择单精度。
然而对于以下一些特定的问题,使用双精度求解器可能更有利[1]。
a.几何特征包含某些极端的尺度(如非常长且窄的管道),单精度求解器可能不能足够精确地表达各尺度方向的节点信息。
b.如果几何模型包含多个通过小直径管道相互连接的体,而某一个区域的压力特别大(因为用户只能设定一个总体的参考压力位置),此时,双精度求解器可能更能体现压差带来的流动(如渐缩渐扩管的无粘与可压缩流动模拟)。
c.对于某些高导热系数比或高宽纵比的网格,使用单精度求解器可能会遇到收敛性不佳或精确度不足不足的问题,此时,使用双精度求解器可能会有所帮助。
[1] 李鹏飞,徐敏义,王飞飞.精通CFD工程仿真与案例实战:FLUENT GAMBIT ICEM CFD Tecplot[M]. 北京,人民邮电出版社,2011:114-1162.网格光顺化用光滑和交换的方式改善网格:通过Mesh下的Smooth/Swap来实现,可用来提高网格质量,一般用于三角形或四边形网格,不过质量提高的效果一般般,影响较小,网格质量的提高主要还是在网格生成软件里面实现,所以这里不再用光滑和交换的方式改善网格,其原理可参考《FLUENT全攻略》(已下载)。
3.Pressure-based与Density-based求解器设置如图。
下面说一说Pressure-based和Density-based 的区别:Pressure-Based Solver是Fluent的优势,它是基于压力法的求解器,使用的是压力修正算法,求解的控制方程是标量形式的,擅长求解不可压缩流动,对于可压流动也可以求解;Fluent 6.3以前的版本求解器,只有Segregated Solver和Coupled Solver,其实也是Pressure-Based Solver的两种处理方法;Density-Based Solver是Fluent 6.3新发展出来的,它是基于密度法的求解器,求解的控制方程是矢量形式的,主要离散格式有Roe,AUSM+,该方法的初衷是让Fluent具有比较好的求解可压缩流动能力,但目前格式没有添加任何限制器,因此还不太完善;它只有Coupled的算法;对于低速问题,他们是使用Preconditioning方法来处理,使之也能够计算低速问题。
学习Fluent的经验汇总(转摘) qq虚桌面是怎么样操作的时间:2010-05-19 11:36来源:[]1 现在用FLUENT的UDF来插手模块,可是用compiled udf时,共享库老是连不上?解决办法:1〉你的计算机必须安装C语言编译器。
2〉请你按照以下结构构建文件夹和存放文件:libudf/src/*.c (*.c为你的源程序);libudf/ntx86/2d(二维为2d,三维为3d)/makefile(由makefile_nt.udf 自新来的)libudf/ntx86/2d(二维为2d,三维为3d)/user_nt.udf(对文件中的SOURCE,VERSION,PARALLEL_NODE进行响应地编辑)3〉通过命令提示符步入文件夹libudf/ntx86/2d/中,运行C语言命令nmake,如果C预言编译器按装正确和你的源程序无错误,那么此时会编译出Fluent需要的库文件(*.lib)这时候再启动Fluent就不会堕落了。
2 在使用UDF中用编译连接,按照帮助文件中给出的步调去做了,结果在连接中报错“体系找不到指定文件”。
udf 文件可能不在工作目录中,应该把它拷到工作目录下,或输入它的全部路径.3 这个1e-3或1e-4的收敛标准是相对而言的。
在FLUENT中残差是以开始5步的平均值为基准进行比较的。
如果你的初值取得好,你的迭代会很快收敛,可是你的残差却傲然很高;可是当你改变初场到比较不同的值时,你的残差开始会很大,但随即却可以很快减低到很低的水平,让你看起来心情很好。
其实两种环境下流场是基本相同的。
由此来看,判断是否收敛其实不是严格根据残差的走向而定的。
可以选定流场中具备特征意义的点,监测其速度,压力,温度等的变化环境。
如果变化很小,切合你的要求,即可认为是收敛了。
一般来说,压力的收敛相对比较慢一些的。
是否收敛不克不及简略看残差图,还有许多其他的重要标准,好比进出口流量差、压力系数波动等等只管残差仍然维持在较高数据,但凭其他监测也可判断是否收敛。
continuity 不收敛的问题
(1)连续性方程不收敛是怎么回事?
在计算过程中其它指数都收敛了,就 continuity 不收敛是怎么回事。
这和 fluent 程序的求解方法 SIMPLE 有关。
SIMPLE 根据连续方程推导出压力修正方法
求解压力。
由于连续方程中流场耦合项被过渡简化,使得压力修正方程不能准确反映流场
的变化,从而导致该方程收敛缓慢。
你可以试验 SIMPLEC 方法,应该会收敛快些。
在计算模拟中,continuity 总不收敛,除了加密网格,还有别的办法吗?别的条件都
已经收敛了,就差它自己了,还有收敛的标准是什么?是不是到了一定的尺度就能收敛了,
比如10-e5具体的数量级就收敛了
continuity 是质量残差,具体是表示本次计算结
果与上次计算结果的差别,如果别的条件收敛了,就差它。
可以点 report,打开里面 FLUX 选项,算出进
口与出口的质量流量差,看它是否小于0.5%.如果小于,可以判断它收敛.
(2)fluent 残差曲线图中 continuity 是什么含义?
是质量守恒方程的反映,也就是连续性的残差。
这个收敛的快并不能说明你的计算就一定
正确,还要看动量方程的迭代计算。
表示某次迭代与上一次迭代在所有 cells 积分的差值,continuty 表示连续性方程的残差
(3)正在学习 Fluent,模拟圆管内的流动,速度入口,出口 outflow 运行后 xy 的速度很快
就到1e-06了,但是 continuity 老是降不下去,维持在1e-00和1e-03之间,减小松弛因子
好像也没什么变化大家有什么建议吗?
你查看了流量是否平衡吗?在 report->flux 里面操作,mass flow rate,把所有进出
口都选上,compute 一下,看看 nut flux 是什么水平,如果它的值小于总进口流量的1%,
并且其他检测量在继续迭代之后不会发生波动,也可以认为你的解是收敛的。
造成连续方程高残差不收敛的原因主要有以下几点:
1.网格质量,主要可能是相邻单元的尺寸大小相差较大,它们的尺寸之比最好控制在1.2以内,不能超过1.4.
2.离散格式及压力速度耦合方法,如果是结构网格,建议使用高阶格式,如2阶迎风格式等,如果是非结构网格,除 pressure 保持standard 格式不变外,其他格式改用高阶格式;压
力速度耦合关系,如果使用 SIMPLE,SIMPLEC,PISO 等 segerated solver 对联系方程收敛没有提高的话,可以尝试使用 coupled solver。
另外,对于梯度的计算,不论使用结构或非结构网格,都可以改用 node-based 来提高计算精度。
一些情况:
1.监测流场某个变量来判断收敛更合理一些.
2.网格质量.
3.Velocity inlet boundary conditions are not appropriate for compressible flow problems.
(4)要加速 continuity 收敛该设置那些参数?
感觉需要调整 courant number
FLUENT 中 courant number 是在耦合求解的时候才出现的。
正确的调整,可以更好地
加速收敛和解的增强稳定性。
courant number 实际上是指时间步长和空间步长的相对关系,系统自动减小 courant 数,这种情况一般出现在存在尖锐外形的计算域,当局部的流速过大或者压差过大时出错,把局部的网格加密再试一下。
在 fluent 中,用 courant number 来调节计算的稳定性与收敛性。
一般来说,随着courantnumber 的从小到大的变化,收敛速度逐渐加快,但是稳定性逐渐降低。
所以具体
的问题,在计算的过程中,最好是把 ourant number 从小开始设置,看看迭代残差的收敛情况,如果收敛速度较慢而且比较稳定的话,可以适当的增加 courant number 的大小,
根据自己具体的问题,找出一个比较合适的 courant number,让收敛速度能够足够的快,而且能够保持它的稳定性。
个人认为这应该和你采用的算法有关
SIMPLE 算法是根据连续方程推导出压力修正方法求解压力。
由于连续方程中流场耦合项被过渡简化,使得压力修正方程不能准确反映流场的变化,从而导致该方程收敛缓慢。
试着用 SIMPLEC 算法看看。
FLUENT 求解器设置
FLUENT 求解器设置主要包括:1、压力-速度耦合方程格式选择2、对流插值3、梯度插值4、压力插值
下面对这几种设置做详细说明。
一、压力-速度耦合方程求解算法
FLUENT 中主要有四种算法:SIMPLE,SIMPLEC,PISO,FSM
(1) SIMPLE(semi-implicit method for pressure-linked equations)半隐式连接压力方程方法,是FLUENT 的默认格式。
(2) SIMPLEC(SIMPLE-consistent)。
对于简单的问题收敛非常快速,不对压力进行修正,所以压力松弛因子可以设置为1
(3) Pressure-Implicit with Splitting of Operators (PISO)。
对非定常流动问题或者包含比平均网格倾斜度更高的网格适用
(4) Fractional Step Method (FSM)对非定常流的分步方法。
用于NITA 格式,与PISO 具有相同的特性。
二、对流插值(动量方程)
FLUENT 有五种方法:一阶迎风格式、幂率格式、二阶迎风格式、MUSL 三阶格式、QUICK 格式
(1)FLUENT 默认采用一阶格式。
容易收敛,但精度较差,主要用于初值计算。
(2)Power Lar.幂率格式,当雷诺数低于5时,计算精度比一阶格式要高。
(3)二阶迎风格式。
二阶迎风格式相对于一阶格式来说,使用更小的截断误差,适用于三角形、四面体网格或流动与网格不在同一直线上;二阶格式收敛可能比较慢。
(4)MUSL(monotone upstream-centered schemes for conservation laws).当地3阶离散格式。
主要用于非结构网格,在预测二次流,漩涡,力等时更精确。
(5)QUICK(Quadratic upwind interpolation)格式。
此格式用于四边形/六面体时具有三阶精度,用于杂交网格或三角形/四面体时只具有二阶精度。
三、梯度插值梯度插值主要是针对扩散项。
FLUENT 有三种梯度插值方案:green-gauss cell-based,Green-gauss node-
based,least-quares cell based.
(1)格林-高斯基于单元体。
求解方法可能会出现伪扩散。
(2)格林-高斯基于节点。
求解更精确,最小化伪扩散,推荐用于三角形网格上
(3)基于单元体的最小二乘法插值。
推荐用于多面体网格,与基于节点的格林-高斯格式具有相同的精度和格式。
四、压力插值压力基分离求解器主要有五种压力插值算法。
(1)标准格式(Standard)。
为FLUENT 缺省格式,对大表妹边界层附近的曲线发现压力梯度流动求解精度会降低(但不能用于流动中压力急剧变化的地方——此时应该使用PRESTO!格式代替)
(2)PRESTO!主要用于高旋流,压力急剧变化流(如多孔介质、风扇模型等),或剧烈弯曲的区域。
(3)Linear(线性格式)。
当其他选项导致收敛困难或出现非物理解时使用此格式。
(4)second order(二阶格式)。
用于可压缩流动,不能用于多孔介质、阶跃、风扇、VOF/MIXTURE 多相流。
(5)Body Force Weighted 体积力。
当体积力很大时,如高雷诺数自然对流或高回旋流动中采用此格式。